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A GENERALISED TRAPEZOID TYPE INEQUALITY FOR
CONVEX FUNCTIONS

S.S. DRAGOMIR

Abstract. A generalised trapezoid inequality for convex functions and appli-

cations for quadrature rules are given. A refinement and a counterpart result
for the Hermite-Hadamard inequalities are obtained and some inequalities for

pdf’s and (HH)−divergence measure are also mentioned.

1. Introduction

The following integral inequality for the generalised trapezoid formula was ob-
tained in [2] (see also [1, p. 68]):

Theorem 1. Let f : [a, b] → R be a function of bounded variation. We have the
inequality ∣∣∣∣∣

∫ b

a

f (t) dt− [(x− a) f (a) + (b− x) f (b)]

∣∣∣∣∣(1.1)

≤
[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣] b∨
a

(f) ,

holding for all x ∈ [a, b] , where
∨b

a (f) denotes the total variation of f on the
interval [a, b].
The constant 1

2 is the best possible one.

This result may be improved if one assumes the monotonicity of f as follows (see
[1, p. 76])

Theorem 2. Let f : [a, b] → R be a monotonic nondecreasing function on [a, b].
Then we have the inequality:∣∣∣∣∣

∫ b

a

f (t) dt− [(x− a) f (a) + (b− x) f (b)]

∣∣∣∣∣(1.2)

≤ (b− x) f (b)− (x− a) f (a) +
∫ b

a

sgn (x− t) f (t) dt

≤ (x− a) [f (x)− f (a)] + (b− x) [f (b)− f (x)]

≤
[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣] [f (b)− f (a)]
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2 S.S. DRAGOMIR

for all x ∈ [a, b].
The above inequalities are sharp.

If the mapping is Lipschitzian, then the following result holds as well [3] (see
also [1, p. 82]).

Theorem 3. Let f : [a, b] → R be an L−Lipschitzian function on [a, b] , i.e.., f
satisfies the condition:

(L) |f (s)− f (t)| ≤ L |s− t| for any s, t ∈ [a, b] (L > 0 is given).

Then we have the inequality:∣∣∣∣∣
∫ b

a

f (t) dt− [(x− a) f (a) + (b− x) f (b)]

∣∣∣∣∣(1.3)

≤

[
1
4

(b− a)2 +
(

x− a + b

2

)2
]

L

for any x ∈ [a, b].
The constant 1

4 is best in (1.3).

If we would assume absolute continuity for the function f , then the following
estimates in terms of the Lebesgue norms of the derivative f ′ hold [1, p. 93].

Theorem 4. Let f : [a, b] → R be an absolutely continuous function on [a, b]. Then
for any x ∈ [a, b], we have∣∣∣∣∣

∫ b

a

f (t) dt− [(x− a) f (a) + (b− x) f (b)]

∣∣∣∣∣(1.4)

≤



[
1
4

(b− a)2 +
(

x− a + b

2

)2
]
‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

1

(q + 1)
1
q

[
(x− a)q+1 + (b− x)q+1

] 1
q ‖f ′‖p if f ′ ∈ Lp [a, b] ,

p > 1, 1
p + 1

q = 1;[
1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣] ‖f ′‖1 ,

where ‖·‖p (p ∈ [1,∞]) are the Lebesgue norms, i.e.,

‖f ′‖∞ = ess sup
s∈[a,b]

|f ′ (s)|

and

‖f ′‖p :=

(∫ b

a

|f ′ (s)| ds

) 1
p

, p ≥ 1.

In this paper we point out some similar results for convex functions. Applications
for quadrature formulae, for probability density functions and HH−Divergences in
Information Theory are also considered.
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2. The Results

The following theorem providing a lower bound for the difference

(x− a) f (a) + (b− x) f (b)−
∫ b

a

f (t) dt

holds.

Theorem 5. Let f : [a, b] → R be a convex function on [a, b] . Then for any
x ∈ (a, b) we have the inequality

1
2

[
(b− x)2 f ′+ (x)− (x− a)2 f ′− (x)

]
(2.1)

≤ (x− a) f (a) + (b− x) f (b)−
∫ b

a

f (t) dt.

The constant 1
2 in the left hand side of (2.1) is sharp in the sense that it cannot be

replaced by a larger constant.

Proof. It is easy to see that for any locally absolutely continuous function f :
(a, b) → R, we have the identity

(2.2) (x− a) f (a) + (b− x) f (b)−
∫ b

a

f (t) dt =
∫ b

a

(t− x) f ′ (t) dt

for any x ∈ (a, b) , where f ′ is the derivative of f which exists a.e. on [a, b] .
Since f is convex, then it is locally Lipschitzian and thus (2.2) holds. Moreover,

for any x ∈ (a, b) , we have the inequalities:

(2.3) f ′ (t) ≤ f ′− (x) for a.e. t ∈ [a, x]

and

(2.4) f ′ (t) ≥ f ′+ (x) for a.e. t ∈ [x, b] .

If we multiply (2.3) by x− t ≥ 0, t ∈ [a, x] and integrate on [a, x], we get

(2.5)
∫ x

a

(x− t) f ′ (t) dt ≤ 1
2

(x− a)2 f ′− (x)

and if we multiply (2.4) by t− x ≥ 0, t ∈ [x, b] and integrate on [x, b] , we also have

(2.6)
∫ b

x

(t− x) f ′ (t) dt ≥ 1
2

(b− x)2 f ′+ (x) .

Finally, if we subtract (2.5) from (2.6) and use the representation (2.2), we deduce
the desired inequality (2.1).

Now, assume that (2.1) holds with a constant C > 0 instead of 1
2 , i.e.,

C
[
(b− x)2 f ′+ (x)− (x− a)2 f ′− (x)

]
(2.7)

≤ (x− a) f (a) + (b− x) f (b)−
∫ b

a

f (t) dt.
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Consider the convex function f0 (t) := k
∣∣t− a+b

2

∣∣ , k > 0, t ∈ [a, b] . Then

f ′0+

(
a + b

2

)
= k, f ′0−

(
a + b

2

)
= −k,

f0 (a) =
k (b− a)

2
= f0 (b) ,

∫ b

a

f0 (t) dt =
1
4
k (b− a)2 .

If in (2.7) we choose f0 as above and x = a+b
2 , then we get

C

[
1
4

(b− a)2 k +
1
4

(b− a)2 k

]
≤ 1

4
k (b− a)2

giving C ≤ 1
2 , and the sharpness of the constant is proved.

Now, recall that the following inequality which is well known in the literature as
the Hermite-Hadamard inequality for convex functions holds

(H-H) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f (t) dt ≤ f (a) + f (b)
2

.

The following corollary gives a sharp lower bound for the difference

f (a) + f (b)
2

− 1
b− a

∫ b

a

f (t) dt.

Corollary 1. Let f : [a, b] → R be a convex function on [a, b]. Then

0 ≤ 1
8

[
f ′+

(
a + b

2

)
− f ′−

(
a + b

2

)]
(b− a)(2.8)

≤ f (a) + f (b)
2

− 1
b− a

∫ b

a

f (t) dt.

The constant 1
8 is sharp.

The proof is obvious by the above theorem. The sharpness of the constant is
obtained for f0 (t) = k

∣∣t− a+b
2

∣∣ , t ∈ [a, b] , k > 0.
When x is a point of differentiability, we may state the following corollary as

well.
Corollary 2. Let f be as in Theorem 5. If x ∈ (a, b) is a point of differentiability
for f, then

(2.9) (b− a)
(

a + b

2
− x

)
f ′ (x) ≤ (x− a) f (a) + (b− x) f (b)−

∫ b

a

f (t) dt.

Remark 1. If f : I ⊆ R → R is convex on I and if we choose x ∈̊I (̊I is the interior
of I), b = x + h

2 , a = x − h
2 , h > 0 is such that a, b ∈ I, then from (2.1) we may

write

(2.10) 0 ≤ 1
8
h2
[
f ′+ (x)− f ′− (x)

]
≤ f (a) + f (b)

2
· h−

∫ x+ h
2

x−h
2

f (t) dt

and the constant 1
8 is sharp in (2.10).

The following result providing an upper bound for the difference

(x− a) f (a) + (b− x) f (b)−
∫ b

a

f (t) dt

also holds.
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Theorem 6. Let f : [a, b] → R be a convex function on [a, b]. Then for any
x ∈ [a, b] , we have the inequality:

(x− a) f (a) + (b− x) f (b)−
∫ b

a

f (t) dt(2.11)

≤ 1
2

[
(b− x)2 f ′− (b)− (x− a)2 f ′+ (a)

]
.

The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller constant.

Proof. If either f ′+ (a) = −∞ or f ′− (b) = +∞, then the inequality (2.11) evidently
holds true.

Assume that f ′+ (a) and f ′− (b) are finite.
Since f is convex on [a, b] , we have

(2.12) f ′ (t) ≥ f ′+ (a) for a.e. t ∈ [a, x]

and

(2.13) f ′ (t) ≤ f ′− (b) for a.e. t ∈ [x, b] .

If we multiply (2.12) by (x− t) ≥ 0, t ∈ [a, x] and integrate on [a, x] , then we
deduce

(2.14)
∫ x

a

(x− t) f ′ (t) dt ≥ 1
2

(x− a)2 f ′+ (a)

and if we multiply (2.13) by t − x ≥ 0, t ∈ [x, b] and integrate on [x, b] , then we
also have

(2.15)
∫ b

x

(t− x) f ′ (t) dt ≤ 1
2

(b− x)2 f ′− (b) .

Finally, if we subtract (2.14) from (2.15) and use the representation (2.2), we deduce
the desired inequality (2.11).

Now, assume that (2.11) holds with a constant D > 0 instead of 1
2 , i.e.,

(x− a) f (a) + (b− x) f (b)−
∫ b

a

f (t) dt(2.16)

≤ D
[
(b− x)2 f ′− (b)− (x− a)2 f ′+ (a)

]
.

If we consider the convex function f0 : [a, b] → R, f0 (t) = k
∣∣t− a+b

2

∣∣ , then we
have f ′− (b) = k, f ′+ (a) = −k and by (2.16) we deduce for x = a+b

2 that

1
4
k (b− a)2 ≤ D

[
1
4
k (b− a)2 +

1
4
k (b− a)2

]
giving D ≥ 1

2 , and the sharpness of the constant is proved.

The following corollary related to the Hermite-Hadamard inequality is interesting
as well.
Corollary 3. Let f : [a, b] → R be convex on [a, b] . Then

(2.17) 0 ≤ f (a) + f (b)
2

− 1
b− a

∫ b

a

f (t) dt ≤ 1
8
[
f ′− (b)− f ′+ (a)

]
(b− a)

and the constant 1
8 is sharp.
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Remark 2. Denote B := f ′− (b) , A := f ′+ (a) and assume that B 6= A, i.e., f is
not constant on (a, b) . Then

(b− x)2 B − (x− a)2 A = (B −A)
[
x−

(
bB − aA

B −A

)]2
− AB

B −A
(b− a)2

and by (2.11) we get

(x− a) f (a) + (b− x) f (b)−
∫ b

a

f (t) dt(2.18)

≤ (B −A)
[
x−

(
bB − aA

B −A

)]2
− AB

(B −A)2
(b− a)2

for any x ∈ [a, b] .
If A ≥ 0, then x0 = bB−aA

B−A ∈ [a, b], and by (2.18) for x = bB−aA
B−A we get that

(2.19) 0 ≤ 1
2
· AB

B −A
(b− a) ≤ Bf (a)−Af (b)

B −A
− 1

b− a

∫ b

a

f (t) dt

which is an interesting inequality in itself as well.

3. The Composite Case

Consider the division In : a = x0 < x1 < · · · < xn−1 < xn = b and denote
hi := xi+1 − xi

(
i = 0, n− 1

)
. If ξi ∈ [xi, xi+1]

(
i = 0, n− 1

)
are intermediate

points, then we will denote by

(3.1) Gn (f ; In, ξ) :=
n−1∑
i=0

[(ξi − xi) f (xi) + (xi+1 − ξi) f (xi+1)]

the generalised trapezoid rule associated to f, In and ξ.
The following theorem providing upper and lower bounds for the remainder

in approximating the integral
∫ b

a
f (t) dt of a convex function f in terms of the

generalised trapezoid rule holds.

Theorem 7. Let f : [a, b] → R be a convex function and In and ξ be as above.
Then we have:

(3.2)
∫ b

a

f (t) dt = Gn (f ; In, ξ)− Sn (f ; In, ξ) ,

where Gn (f ; In, ξ) is the generalised Trapezoid Rule defined by (3.1) and the re-
mainder Sn (f ; In, ξ) satisfies the estimate:

1
2

[
n−1∑
i=0

(xi+1 − ξi)
2
f ′+ (ξi)−

n−1∑
i=0

(ξi − xi)
2
f ′− (ξi)

]
(3.3)

≤ Sn (f ; In, ξ)

≤ 1
2

[(
b− ξn−1

)2
f ′− (b) +

n−1∑
i=1

[(
xi − ξi−1

)2
f ′− (xi)− (ξi − xi)

2
f ′+ (xi)

]
− (ξ0 − a)2 f ′+ (a)

]
.
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Proof. If we write the inequalities (2.1) and (2.11) on the interval [xi, xi+1] and for
the intermediate points ξi ∈ [xi, xi+1] , then we have

1
2

[
(xi+1 − ξi)

2
f ′+ (xi)− (ξi − xi)

2
f ′− (ξi)

]
≤ (ξi − xi) f (xi) + (xi+1 − ξi) f (xi+1)−

∫ xi+1

xi

f (t) dt

≤ 1
2

[
(xi+1 − ξi)

2
f ′− (xi+1)− (ξi − xi)

2
f ′+ (xi)

]
.

Summing the above inequalities over i from 0 to n− 1, we deduce

1
2

n−1∑
i=0

[
(xi+1 − ξi)

2
f ′+ (ξi)− (ξi − xi)

2
f ′− (ξi)

]
(3.4)

≤ Gn (f ; In, ξ)−
∫ b

a

f (t) dt

≤ 1
2

[
n−1∑
i=0

(xi+1 − ξi)
2
f ′− (xi+1)−

n−1∑
i=0

(ξi − xi)
2
f ′+ (xi)

]
.

However,
n−1∑
i=0

(xi+1 − ξi)
2
f ′− (xi+1) =

(
b− ξn−1

)2
f ′− (b) +

n−2∑
i=0

[
(xi+1 − ξi)

2
f ′− (xi+1)

]
=

(
b− ξn−1

)2
f ′− (b) +

n−1∑
i=1

(
xi − ξi−1

)2
f ′− (xi)

and
n−1∑
i=0

(ξi − xi)
2
f ′+ (xi) =

n−1∑
i=1

(ξi − xi)
2
f ′+ (xi) + (ξ0 − a)2 f ′+ (a)

and then, by (3.4), we deduce the desired estimate (3.3).

The following corollary may be useful in practical applications.
Corollary 4. Let f : [a, b] → R be a differentiable convex function on [a, b] . Then
we have the representation (3.2) and Sn (f ; In, ξ) satisfies the estimate:

n−1∑
i=0

(
xi + xi+1

2
− ξi

)
hif

′ (ξi)(3.5)

≤ Sn (f ; In, ξ)

≤ 1
2

[ (
b− ξn−1

)2
f ′− (b)− (ξ0 − a)2 f ′+ (a)

+
n−1∑
i=1

[(
xi −

ξi + ξi−1

2

)(
ξi − ξi−1

)
f ′ (xi)

]]
.

We may also consider the trapezoid quadrature rule:

(3.6) Tn (f ; In) :=
n−1∑
i=0

f (xi) + f (xi+1)
2

· hi.

Using the above results, we may state the following corollary.
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Corollary 5. Assume that f : [a, b] → R is a convex function on [a, b] and In is a
division as above. Then we have the representation

(3.7)
∫ b

a

f (t) dt = Tn (f ; In)−Qn (f ; In)

where Tn (f ; In) is the mid-point quadrature formula given in (3.6) and the re-
mainder Qn (f ; In) satisfies the estimates

0 ≤ 1
8

n−1∑
i=0

[
f ′+

(
xi + xi+1

2

)
− f ′−

(
xi + xi+1

2

)]
h2

i(3.8)

≤ Qn (f ; In) ≤ 1
8

n−1∑
i=0

[
f ′+ (xi+1)− f ′− (xi)

]
h2

i .

The constant 1
8 is sharp in both inequalities.

4. Applications for P.D.F.s

Let X be a random variable with the probability density function f : [a, b] ⊂
R →[0,∞) and with cumulative distribution function F (x) = Pr (X ≤ x) .

The following theorem holds.

Theorem 8. If f : [a, b] ⊂ R → R+ is monotonically increasing on [a, b], then we
have the inequality:

1
2

[
(b− x)2 f+ (x)− (x− a)2 f− (x)

]
+ x(4.1)

≤ E (X)

≤ 1
2

[
(b− x)2 f+ (b)− (x− a)2 f− (a)

]
+ x

for any x ∈ (a, b) , where f± (α) represent respectively the right and left limits of f
in α and E (X) is the expectation of X.
The constant 1

2 is sharp in both inequalities.
The second inequality also holds for x = a or x = b.

Proof. Follows by Theorem 5 and 6 applied for the convex cdf function F (x) =∫ x

a
f (t) dt, x ∈ [a, b] and taking into account that∫ b

a

F (x) dx = b− E (X) .

Finally, we may state the following corollary in estimating the expectation of X.

Corollary 6. With the above assumptions, we have

1
8

[
f+

(
a + b

2

)
− f−

(
a + b

2

)]
(b− a)2 +

a + b

2
(4.2)

≤ E (X) ≤ 1
8

[f+ (b)− f− (a)] (b− a)2 +
a + b

2
.
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5. Applications for HH−Divergence

Assume that a set χ and the σ−finite measure µ are given. Consider the set of
all probability densities on µ to be

(5.1) Ω :=
{

p|p : Ω → R, p (x) ≥ 0,

∫
χ

p (x) dµ (x) = 1
}

.

Csiszár’s f−divergence is defined as follows [4]

(5.2) Df (p, q) :=
∫

χ

p (x) f

[
q (x)
p (x)

]
dµ (x) , p, q ∈ Ω,

where f is convex on (0,∞). It is assumed that f (u) is zero and strictly convex
at u = 1. By appropriately defining this convex function, various divergences are
derived.

In [5], Shioya and Da-te introduced the generalised Lin-Wong f−divergence
Df

(
p, 1

2p + 1
2q
)

and the Hermite-Hadamard (HH) divergence

(5.3) Df
HH (p, q) :=

∫
χ

p2 (x)
q (x)− p (x)

(∫ q(x)
p(x)

1

f (t) dt

)
dµ (x) , p, q ∈ Ω,

and, by the use of the Hermite-Hadamard inequality for convex functions, proved
the following basic inequality

(5.4) Df

(
p,

1
2
p +

1
2
q

)
≤ Df

HH (p, q) ≤ 1
2
Df (p, q) ,

provided that f is convex and normalised, i.e., f (1) = 0.
The following result in estimating the difference

1
2
Df (p, q)−Df

HH (p, q)

holds.

Theorem 9. Let f : [0,∞) → R be a normalised convex function and p, q ∈ Ω.
Then we have the inequality:

0 ≤ 1
8

[
Df ′+·| ·+1

2 | (p, q)−Df ′−·| ·+1
2 | (p, q)

]
(5.5)

≤ 1
2
Df (p, q)−Df

HH (p, q)

≤ 1
8
Df ′−·(·−1) (p, q) .

Proof. Using the double inequality

0 ≤ 1
8

[
f ′+

(
a + b

2

)
− f ′−

(
a + b

2

)]
|b− a|

≤ f (a) + f (b)
2

− 1
b− a

∫ b

a

f (t) dt

≤ 1
8
[
f− (b)− f ′+ (a)

]
(b− a)
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for the choices a = 1, b = q(x)
p(x) , x ∈ χ, multiplying with p (x) ≥ 0 and integrating

over x on χ we get

0 ≤ 1
8

∫
χ

[
f ′+

(
p (x) + q (x)

2p (x)

)
− f ′−

(
p (x) + q (x)

2p (x)

)]
|q (x)− p (x)| dµ (x)

≤ 1
2
Df (p, q)−Df

HH (p, q)

≤ 1
8

∫
χ

[
f ′−

(
q (x)
p (x)

)
− f ′+ (1)

]
(q (x)− p (x)) dµ (x) ,

which is clearly equivalent to (5.5).

Corollary 7. With the above assumptions and if f is differentiable on (0,∞) , then

(5.6) 0 ≤ 1
2
Df (p, q)−Df

HH (p, q) ≤ 1
8
Df ′·(·−1) (p, q) .
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