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A GENERALISED TRAPEZOID TYPE INEQUALITY FOR
CONVEX FUNCTIONS

S.S. DRAGOMIR

ABSTRACT. A generalised trapezoid inequality for convex functions and appli-
cations for quadrature rules are given. A refinement and a counterpart result
for the Hermite-Hadamard inequalities are obtained and some inequalities for
pdf’s and (H H) —divergence measure are also mentioned.

1. INTRODUCTION

The following integral inequality for the generalised trapezoid formula was ob-
tained in [2] (see also [1, p. 68]):

Theorem 1. Let [ : [a,b] — R be a function of bounded variation. We have the
inequality

b
(11) / ﬂ0ﬁ—Kx—®fm%+®—@f®N

< [;(b—aH’x—“;bH\b/(f),

a

holding for all x € [a,b], where \/Z (f) denotes the total variation of f on the
interval [a, b].
The constant % is the best possible one.

This result may be improved if one assumes the monotonicity of f as follows (see
[1, p. 76])

Theorem 2. Let f : [a,b] — R be a monotonic nondecreasing function on [a,b].
Then we have the inequality:

b
(1.2) [t (@-a @+ o= f o)
b
< @—@ﬂw—@—®ﬂ®+/sm@—ﬂﬂwﬁ
< @-a)lf @) F@)+0-2)[f 0 - f @)
< [yo-a+l- o s
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2 S.S. DRAGOMIR

for all x € [a, b].
The above inequalities are sharp.

If the mapping is Lipschitzian, then the following result holds as well [3] (see
also [1, p. 82]).

Theorem 3. Let f : [a,b] — R be an L— Lipschitzian function on [a,b], i.e.., f
satisfies the condition:

(L) lf(s)—f@®)| < Lls—t| forany s,t€la,b (L>0is given).

Then we have the inequality:

b
(13) [ r@d-l@-a)s@+ oo @)

1 ) a+b\?
< [4(b—a) +(;E— 5 >
for any x € [a,b].

The constant  is best in (1.3).

L

If we would assume absolute continuity for the function f, then the following
estimates in terms of the Lebesgue norms of the derivative f' hold [1, p. 93].

Theorem 4. Let f : [a,b] — R be an absolutely continuous function on [a,b]. Then
for any x € [a,b], we have

b
0 [ fwda-ie-ar@+o-050)

[iw—af+(x—a§b) 1Pl i F € Lalab]:

< {0 00| I, i P el
(g+ 1)

p>1, s+ =1

1 a+b ,
Fo-a+e- 22 i,

where ||-||,, (p € [1,00]) are the Lebesgue norms, i.e.,
[l = ess sup [f'(s)]

s€la,b]

and

b P
£, = (/ |f’(8)|d5> , p>1

In this paper we point out some similar results for convex functions. Applications
for quadrature formulae, for probability density functions and H H—Divergences in
Information Theory are also considered.
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2. THE RESULTS

The following theorem providing a lower bound for the difference

b
(x*a)f(a)ﬂb*:c)f(b)*/ £ (t)dt

holds.

Theorem 5. Let f : [a,b] — R be a convex function on [a,b]. Then for any
x € (a,b) we have the inequality

2.1) S [0—0 @) - -0 1 )]
b
< @-af@+0-0r0- [ s

The constant % in the left hand side of (2.1) is sharp in the sense that it cannot be
replaced by a larger constant.

Proof. Tt is easy to see that for any locally absolutely continuous function f :
(a,b) — R, we have the identity
b b
22 @-df@+o-0f0- [ Fod= [ o f o
for any x € (a,b), where f’ is the derivative of f which exists a.e. on [a,b].

Since f is convex, then it is locally Lipschitzian and thus (2.2) holds. Moreover,
for any = € (a,b), we have the inequalities:

(2.3) @) < f (x) for ae. t€la,x
and
(2.4) () > fi(x) for ae. tel[z,b].

If we multiply (2.3) by  —t > 0, ¢ € [a, z] and integrate on [a, x], we get
xT 1 9
(25) [ @-orwi<;e-o’r @
and if we multiply (2.4) by t —x > 0, t € [z, ] and integrate on [z, b], we also have
(2.6) [t-arwazie-22r@.

Finally, if we subtract (2.5) from (2.6) and use the representation (2.2), we deduce
the desired inequality (2.1).
Now, assume that (2.1) holds with a constant C' > 0 instead of %, ie.,

(2.7) Clb-a) fi (@)~ (= a) 1. ()]
b
< @-af@+b-270)- [ foa
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Consider the convex function fo (t) := k[t — “£2|, k> 0, t € [a,b]. Then
a+b a+b
() =k fo( : ) -k,
k(b—a)
fo(a) = k(b=a) 5 / fo (t)dt = (b—a) :

If in (2.7) we choose fj as above and x = QT'H’, then we get

C[i(b—a)2k+i(b—a)2k} gik(b—a)Q

giving C' < %, and the sharpness of the constant is proved. I

Now, recall that the following inequality which is well known in the literature as
the Hermite-Hadamard inequality for convex functions holds

b
(H-H) F(42) < /f dt< ) f (o)
2 b —
The following corollary gives a sharp lower bound for the difference
fla)+ f(b
(a) ! f
—a

Corollary 1. Let f : [a,b] — R be a convex functzon on [a,b]. Then

(2.8) 0 < []g(‘”b) f’(a;—bﬂ(b—a)

fla)+ [
= 2 b—a/f t) dt.

The constant % 18 sharp.

The proof is obvious by the above theorem. The sharpness of the constant is
obtained for fy (t) = k|t — %52, t € [a,b], k > 0.
When z is a pomt of differentiability, we may state the following corollary as
well.
Corollary 2. Let f be as in Theorem 5. If x € (a,b) is a point of differentiability
for f, then
b

(2.9) (b—a)( —x>f’(af)S(w—a)f(aH(b—:c)f(b)— £ (1) de

Remark 1. Iff ICR— R is convex on I and if we choose x el (I is the interior
of I), b—:r—i—f, a—x—f h > 0 is such that a,b € I, then from (2.1) we may
write

a+b

(2.10) 0< 02 [f] (2) /. (@)] <

f(a) + /(1) e
. <7-h—/z

h
2

and the constant § is sharp in (2.10).
The following result providing an upper bound for the difference

b
<x—a>f<a>+<b—x>f(b>—/ £t de
also holds.
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Theorem 6. Let f : [a,b] — R be a convex function on [a,b]. Then for any
x € [a,b], we have the inequality:

(2.11) (x—a)f(a)+(b—2)f /f
< sle-ore-e-o o).

The constant % is sharp in the sense that it cannot be replaced by a smaller constant.

Proof. If either f! (a) = —oo or f’ (b) = 400, then the inequality (2.11) evidently
holds true.

Assume that f! (a) and f (b) are finite.

Since f is convex on [a,b], we have

(2.12) () > fl(a) for ae. tela,x|
and
(2.13) @) < fl(b) for ae. texb.

If we multiply (2.12) by (z —t) > 0, t € [a,z] and integrate on [a,z], then we
deduce

(2.14) [ e-nrwazje-o s @

and if we multiply (2.13) by t —x > 0, t € [x,b] and integrate on [z,b], then we
also have

b
(2.15) / (t—z) f (t)dt < % (b—x)° f" (b).

Finally, if we subtract (2.14) from (2.15) and use the representation (2.2), we deduce
the desired inequality (2.11).
Now, assume that (2.11) holds with a constant D > 0 instead of %, ie.,

(2.16) (x—a)f(a)+ (b—2x) / f(t
< D[(b—w)zfi(b)—(x—a) f+(a)]~
If we consider the convex function fo : [a,b] — R, fo(t) = k|t — , then we

have f’ (b) =k, f (a) = —k and by (2.16) we deduce for z = %t that
1k(b— > <D 1k(b— )2+1k(b— )?
1 a)" <D |7 a 1 a

giving D > %, and the sharpness of the constant is proved. I

The following corollary related to the Hermite-Hadamard inequality is interesting
as well.

Corollary 3. Let f : [a,b] — R be convex on [a,b]. Then

e o< IOHO L <o - @ o-a

oo\»—l

and the constant é 18 sharp.
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Remark 2. Denote B := f’ (b), A := f! (a) and assume that B # A, i.e., f is
not constant on (a,b). Then

(b—x)zB—(x—a)zA:(B—A)[x—(bﬁ:ZAﬂ BA_BA(b—a)2
and by (2.11) we get
b
(2.18) (x—a)fla)+(b—=)f(b)— [ f(t)dt
bB —aA\ ]’ AB )
< wA)P(B—A)] “moar Y

for any x € [a,b].

If A> 0, then zg = 2=2%4 € [a,b], and by (2.18) for x = *B=24 we get that

1 AB Bf (a) — Af (b) 1
(2.19) o< 0 b-a)< PO 2 —b_a/af(t)dt

which is an interesting inequality in itself as well.

3. THE COMPOSITE CASE
Consider the division I, : a = 29 < 21 < -+ < Tp—1 < T, = b and denote
hi = 241 — (z =0,n— 1) If & € [z, 2i41) (z =0,n— 1) are intermediate
points, then we will denote by

n—1

(3.1) Gn (fiIn,€) = ) [(& — =) [ (23) + (Tig1 — &) f (wis1)]

3

I§
=)

the generalised trapezoid rule associated to f, I,, and &.

The following theorem providing upper and lower bounds for the remainder
in approximating the integral f; f () dt of a convex function f in terms of the
generalised trapezoid rule holds.

Theorem 7. Let f : [a,b] — R be a convex function and I, and & be as above.
Then we have:

(32) [ 10t =G (g1~ 5. (120,
where G, (f; 1, g) is athe generalised Trapezoid Rule defined by (3.1) and the re-
mainder Sy, (f;In,€) satisfies the estimate:
EUIEY ) SIPSRRS LTS I S <5i>]
< Sn_<f,ofms> B
S <b)+§ (@i =€) f (@) = (& — =) £ (@)
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Proof. If we write the inequalities (2.1) and (2.11) on the interval [x;, z;4+1] and for
the intermediate points &; € [x;, z;+1], then we have

3 @ — €02 £ @) — (6 - 2 12 €0

2
< (G- a) @)+ - &) Fla) - [ S
< 5 [ € £ i) — (€ 2 £ (@)

Summing the above inequalities over ¢ from 0 to n — 1, we deduce

(3.4 % i [0 — €0 £1(€) — (& — ) £ (&)

/f n

[Z Ti4+1 — , (xi+1) - (fz — xi)Z fjr (:L’,L)‘| .
=0

i

IN

IA
| =
I I
(=) [

However,

Z_: (i1 = &) L (ziv1) = (b—&—1) +Z { w1 — &) f ($i+1)]
i=0

= (b-6) +Z F (@)

and
Z (& — 33i)2 fjr (z5) = Z (& — xi)z fﬁr (z5) + (§o — a)2 jr (a)
i=0 i=1

and then, by (3.4), we deduce the desired estimate (3.3). 1

The following corollary may be useful in practical applications.

Corollary 4. Let f : [a,b] — R be a differentiable convex function on [a,b]. Then
we have the representation (3.2) and S, (f; 1., &) satisfies the estimate:

(35 5 (25 e mr )

=0
< Sulfiln,€)
< 50— ) OG-0 R

" zj [C R [CR mH |

We may also consider the trapezoid quadrature rule:

n—1
f(@i) + f (@it1)
3.6 T, (f; I,) = —_—" . h;.
(36) (i) = 3 2
Using the above results, we may state the following corollary.
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Corollary 5. Assume that f : [a,b] — R is a convex function on [a,b] and I, is a
division as above. Then we have the representation

b
(3.7) / Py dt =T, (£ 1) — Qu (3 1)

where Ty, (f;I,) is the mid-point quadrature formula given in (5.6) and the re-
mainder Q. (f; I,) satisfies the estimates

1= ;[ T+ T ;o Tt T
69 0 gy n () o ()]

=0

|
—

n

[ff (@iv1) — f2 (z)] b3

| =

< Qn(filn) <

Il
<

i

The constant é is sharp in both inequalities.

4. APPLICATIONS FOR P.D.F.s

Let X be a random variable with the probability density function f : [a,b] C
R —[0,00) and with cumulative distribution function F (x) = Pr(X < z).
The following theorem holds.

Theorem 8. If f : [a,b] C R — Ry is monotonically increasing on [a,b], then we
have the inequality:

(4.1) Slo-2f @ -0 f @) e
< E(X)
< Sle-22r 0 -@-0tr @] +a

for any x € (a,b), where fi (a) represent respectively the right and left limits of f
in o and E (X) is the expectation of X.

The constant % s sharp in both inequalities.

The second inequality also holds for x = a or x = b.

Proof. Follows by Theorem 5 and 6 applied for the convex cdf function F (z) =
[ f(t)dt, @ € [a,b] and taking into account that

/bF(x)dac:b—E(X).

Finally, we may state the following corollary in estimating the expectation of X.

Corollary 6. With the above assumptions, we have

e
< BX) <l 0 - f- @] -0+ Lo
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5. APPLICATIONS FOR H H—-DIVERGENCE

Assume that a set y and the o—finite measure u are given. Consider the set of
all probability densities on p to be

(5.1) 0= {pl: 0~ R @) 20, [ p@rdute) =1
Csiszar’s f—divergence is defined as follows [4]

— q(af)}
(5:2) Dy (p.q) = /Xp(:v)f [p(x) dp (x), p,q €,

where f is convex on (0,00). It is assumed that f (u) is zero and strictly convex
at u = 1. By appropriately defining this convex function, various divergences are
derived.

In [5], Shioya and Da-te introduced the generalised Lin-Wong f—divergence
Dy (p, %p + %q) and the Hermite-Hadamard (HH) divergence

9 " ;(z)
(53  Dhy(p.a) :/q(m’;_(p(x)</1”f(t)dt> d (@), pra € 2,

and, by the use of the Hermite-Hadamard inequality for convex functions, proved
the following basic inequality

1 1 1

provided that f is convex and normalised, i.e., f (1) =0.
The following result in estimating the difference

1
5 Ds (p.q) — Dl (p,q)
holds.

Theorem 9. Let f : [0,00) — R be a normalised convex function and p,q € Q.
Then we have the inequality:

1
(5.5) 0 < ¢ Df/+.‘-+71|(p,Q)—DfL.|%|(p,Q)}
1
< 3Ds (p.q) — DYy (p,q)
1
< ngg.(‘—n(p,Q)-

Proof. Using the double inequality

17, b ) b
s () ()

b
< HOIO L [
< SO -f@ k-0



10 S.S. DRAGOMIR

q(z)

for the choices a = 1, b = L=<,
p(x)

over x on xy we get

o < 3 f [ () < () @) - sl o)

1
< 5Ds(a) = Dfpy (0:0)

< 5L (E8) - o] e@-rerme,

p(z)
which is clearly equivalent to (5.5). I

x € x, multiplying with p (z) > 0 and integrating

Corollary 7. With the above assumptions and if f is differentiable on (0,00), then
1 1
(5.6) 0< 5Dy (pq) — Dy (p.q) < gPsc-v ()
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