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AN OSTROWSKI TYPE INEQUALITY FOR CONVEX
FUNCTIONS

S.S. DRAGOMIR

ABSTRACT. An Ostrowski type integral inequality for convex functions and
applications for quadrature rules and integral means are given. A refinement
and a counterpart result for Hermite-Hadamard inequalities are obtained and
some inequalities for pdf’s and (H H) —divergence measure are also mentioned.

1. INTRODUCTION
The following result is known in the literature as Ostrowski’s inequality [1].

Theorem 1. Let f : [a,b] — R be a differentiable mapping on (a,b) with the
property that |f' ()| < M for all t € (a,b). Then

(1.1) ' (z) b—a/f t)dt

for all x € [a,b].
The constant % is the best possible in the sense that it cannot be replaced by a
smaller constant.

A simple proof of this fact can be done by using the identity:

b
(1.2) /f dt+— plat) f () dt, z€lab],

where

t—a if a<t<z

p(z,t) ==
t—b if z<t<b

which holds for absolutely continuous functions f : [a,b] — R.
The following Ostrowski type result holds (see [2], [3] and [4]).
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Theorem 2. Let f : [a,b] — R be absolutely continuous on [a,b]. Then, for all
x € [a,b], we have:

b
(1.3) ‘f(m) - b%/ £ (t)dt

z—atl 2
1 ()] - o i J € Loglant);

IA

: [(i—s)”1+(i—§)”ﬂr<b—a>i||f’||q i e Lot

(p+1)%
%Jr%:l, p>1;

_atb
[3+ === 1,
where ||-||,. (r € [1,00]) are the usual Lebesque norms on L, [a,b], i.e.,

9]lo := ess sup |g(t)]
t€la,b]

b H
lgll, == (/ lg (t)lrdt> , 7€ [1,00).

and % respectively are sharp in the sense presented in

and

1
1
(pt1)P

The constants %,

Theorem 1.

The above inequalities can also be obtained from Fink’s result in [5] on choosing
n = 1 and performing some appropriate computations.

If one drops the condition of absolute continuity and assumes that f is Holder
continuous, then one may state the result (see [6]):

Theorem 3. Let f : [a,b] — R be of r — H—Hélder type, i.c.,

(1.4) [f (@)= fWI<Hl|z—yl", forall z,y¢€la,b],
where r € (0,1] and H > 0 are fized. Then for all x € [a,b] we have the inequality:

b
(15) |f(ar)—b_1a [ rwa

b—z\" ! z—a\ " X
b—a)".
(=2) +(=2) Jo-o
The constant Tlﬁ s also sharp in the above sense.
Note that if r = 1, i.e., f is Lipschitz continuous, then we get the following

version of Ostrowski’s inequality for Lipschitzian functions (with L instead of H)

(see [7])
2
1 r — atb
< 4+< b—é ) (b—a)L.
Here the constant i is also best.

Moreover, if one drops the continuity condition of the function, and assumes that
it is of bounded variation, then the following result may be stated (see [8]).

H
<
- r+1

b
(1.6) |f<a:>—b_1a/ 7 (t)dt
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Theorem 4. Assume that f : [a,b] — R is of bounded variation and denote by

b
V (f) its total variation. Then

a

b r_atb|] 0
(17) |f<a:>bia/f<t>dt < |53+ ]\/(f)

for all x € [a, b].
The constant % 1s the best possible.

If we assume more about f, i.e., f is monotonically increasing, then the inequality
(1.7) may be improved in the following manner [9] (see also [10]).

Theorem 5. Let f : [a,b] — R be monotonic nondecreasing. Then for all x € [a,b],
we have the inequality:

b
(1) ‘f(w)— el RAOL

< bla{[2w—(a+b)}f(w)+/asgn(t—w)f(t)dt}

1

< gy l@—a)lf @)= fla)]+0-2)[f0) - f ()]}
1 x—“T“’
< [2+ — ][f(b)f(a)]-

All the inequalities in (1.8) are sharp and the constant % is the best possible.

In this paper we establish an Ostrowski type inequality for convex functions.
Applications for quadrature rules, for integral means, for probability distribution
functions, and for H H—divergences in Information Theory are also considered.

2. THE RESULTS

The following theorem providing a lower bound for the Ostrowski difference
[P F(t)dt — (b—a) f (z) holds.
Theorem 6. Let f : [a,b] — R be a convex function on [a,b]. Then for any
x € (a,b) we have the inequality:

b
ey e e -0’ @< [ fod-0-0f.

The constant % in the left hand side of (2.1) is sharp in the sense that it cannot be
replaced by a larger constant.

Proof. 1t is easy to see that for any locally absolutely continuous function f :
(a,b) — R, we have the identity

T b b
(2.2) /(t*a)f’(t)dH/ (t*b)f’(t)dt:f(x)*/ f(t)at,

T

for any = € (a,b) where f’ is the derivative of f which exists a.e. on (a,b).
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Since f is convex, then it is locally Lipschitzian and thus (2.2) holds. Moreover,
for any x € (a,b), we have the inequalities

(2.3) f () < f (x) for ae. t € [a,x]
and
(2.4) f1(t) > fi(x) for ae. t e [z,b].

If we multiply (2.3) by t —a > 0, t € [a,z], and integrate on [a, ]|, we get

(25) [t-aswasje-o?s @

and if we multiply (2.4) by b—t¢ > 0, t € [z,b], and integrate on [z, ], we also have
(2.6) / b (b—1t) f'(t)dt > % (b—x)* f} (x).

Finally, if we subtract (2.6) from (2.5) and use the representation (2.2) we deduce

the desired inequality (2.1).
Now, assume that (2.1) holds with a constant C' > 0 instead of , i.e.,

b
@27 Clo-2*fL @) —(@—a’f ()| < / f#)dt=(b—a)f ().

Consider the convex function fy (¢) := & ‘t — GTH) ,k>0,t¢€[a,b]. Then

fi: (“;b) —k (“"2”’) ——k, fo ("‘2”’> ~0

b
1
/ fo(t)dt = Zk(bfa)Q.
If in (2.7) we choose fy as above and z = “£2, then we get

c[i(b—afmi(b—a)zk] gik(b—af,

and

which gives C' < %, and the sharpness of the constant is proved. I

Now, recall that the following inequality, which is well known in the literature
as the Hermite-Hadamard inequality for convex functions, holds:

b
(HH) f(a—;b) S%a/ f(ﬂchng.

The following corollary which improves the first Hermite-Hadamard inequality
(HH) holds.

Corollary 1. Let f : [a,b] — R be a convex function on [a,b]. Then
11, (a+b , [a+b

sl (57) e ()]

1 b a+b

< — — .

< oo [roa-r ()

The constant % s sharp.

(2.8) 0

IN
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The proof is obvious by the above theorem. The sharpness of the constant is
obtained for fo (t) :=k |t — “TH’| ,t€la,b], k>0.

When z is a point of differentiability, we may state the following corollary as
well.
Corollary 2. Let f be as in Theorem 6. If x € (a,b) is a point of differentiability
for f, then

a+b 1 b
(2.9 (S -o) o [roa-ie.
—al,
Remark 1. If f : I C R — R is convex on I and if we choose x el (I is the

interior of I), b =x + %, a=1x— %, h > 0 is such that a,b € I, then from (2.1)
we may write

IN

x—i—%
/ f(t)dt—hf(z),

(2.10) 0< 2P 7 (@)~ 2 ()]

[N

and the constant § is sharp in (2.10).

The following result providing an upper bound for the Ostrowski difference
f: ft)dt — (b—a) f (z) also holds.
Theorem 7. Let f : [a,b] — R be a convexr function on [a,b]. Then for any
x € [a,b], we have the inequality:

b
1
(2.11) / JWdt=0-a)f (@) <35 (b2 L) - (@—a) [} ()]
The constant % 1s sharp in the sense that it cannot be replaced by a smaller constant.

Proof. If either f! (a) = —oo or f’ (b) = +o0, then the inequality (2.11) evidently
holds true.

Assume that f) (a) and f’ (b) are finite.

Since f is convex on [a,b], we have

(2.12) f'(t) > fL (a) for ae. t € [a,x]
and
(2.13) () < fL(b) for ae. t € [z,b].

If we multiply (2.12) by t—a > 0, t € [a, z], and integrate on [a, 2], then we deduce

(2.14) [ t-armazge-os @

and if we multiply (2.13) by b—¢ > 0, t € [z,b], and integrate on [z,b], then we
also have

b
(2.15) / (b—t) f' (t)dt < % (b—x)* f (b).

Finally, if we subtract (2.14) from (2.15) and use the representation (2.2), we deduce
the desired inequality (2.11).
Now, assume that (2.11) holds with a constant D > 0 instead of %, ie.,

b
@) [ f@d-0-0f@<D[6-0f 0~ @0’ F ).
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If we consider the convex function f : [a,0] — R, fo(t) = k|t — %£2|, then we
have f’ (b) =k, f (a) = —k and by (2.16) we deduce for z = %t that

1 2 1 2 1 2

- - <D|- - + - —

4k(b a) {414;(13 a) 4k(b a) ],
giving D > %, and the sharpness of the constant is proved. I

The following corollary related to the Hermite-Hadamard inequality is interesting
as well.

Corollary 3. Let f : [a,b] — R be convez on [a,b]. Then

(2.17) 0<—/f dtf(a;b>§;[f’_(b)fi(a)](ba)

and the constant % 5 18 sharp.

Remark 2. Denote B := f/ (b), A := f (a) and assume that B # A, i.e., f is
not constant on (a,b). Then

(b—2)’B—(z—a)A

= (B-A) [m— (bg_zAﬂz—BABA(b—a)Q

and by (2.11) we get

b
(2.18) / f@)dt—(b—a)f(x)

{5 )

for any x € [a,b].
If A >0 then zo = 2=24 ‘AA € [a,b] and by (2.18) we get, choosing v = 7{;1;:?4,4,
that

B b
1) o< Ao a)ﬁf(”ﬁ_j“)—bfa/f@)dt

which is an interesting inequality in itself.
Remark 3. If f : I C R — R is convex on I and if we choose x el b=xz+ %,
a=x— %, h > 0 is such that a,b € I, then from (2.11) we deduce:

(2.20) o</:gf()dt—hf() Ly {f’ (”Z)‘fi(“gﬂ’

2

o9}

and the constant é s sharp.

3. THE COMPOSITE CASE
Consider the division I, : a = 29 < 1 < --- < Tp,_1 < T, = b and denote
hi=xip1—x4,0=0,n—1.1f &, € [x;,Ti41] (Z =0,n— 1) are intermediate points,
then we will denote by

n—1

(3.1) n (f3 10, €) - Zh F(€
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the Riemann sum associated to f, I, and &.
The following theorem providing upper and lower bounds for the remainder in

approximating the integral fab f(t)dt of a convex function f in terms of a general
Riemann sum holds.

Theorem 8. Let f : [a,b] — R be a convexr function and I, and & be as above.
Then we have:

b
(3.2) / FW)dt = Ry (fi Tn &) + W (f: 1, £).

where Ry, (f; I, &) is the Riemann sum defined by (3.1) and the remainder Wy, (f; L., €)
satisfies the estimate:

(33) N (zi+15>2f’+<s>ij@ixiff'_(a)]
L2=0 1=0
< W, (fi106)
[ n—1
< o6 O+ Y [@-e) £ @)
L i=1

6 @) - - o £ (@) .

Proof. If we write the inequalities (2.1) and (2.11) on the interval [x;, 2;11] and for
the intermediate points &; € [x;, 2;4+1], then we have

3 [ -0 €0 — (6 — 20" 17 (&)

2
< [Troa-nie
< 5 @ — €0 £ @) - 6 - ) (@)
Summing the above inequalities over 4 from 0 to n — 1, we deduce
(34) ;Z (s = €0 4 (€) — (6 — ) 1L ()]
< /abf(t)dt—Rn (f:10.€)

IN
I

n—1 n
% [ (@ig1 — &) f (i) — > (& — ) f (%)] -

=0 i

I
o

However,

I
-

n—2

(@i =€) F (@) = (b=&ud) SO+ |@in = &) £ (@ir)|

n

s
Il
=)
-
I
- O

3

= (=& ) SO+ Y (@i &) f (@)

i=1
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and
n—1 n—1
&, — xi)2 Jh () = Z & - xi)Q Jh (@) + (&0 — a)2 [l (a)
i=0 i=1

and then, by (3.4), we deduce the desired estimate (3.3). 1

The following corollary may be useful in practical applications.

Corollary 4. Let f : [a,b] — R be a differentiable conver function on (a,b).
Then we have the representation (3.2) and the remainder W, (f; I,,, €) satisfies the
estimate:

(3.5) § (er;“ - éi) hif' (&)

=0
S Wn (f;lnagi)
AU E G A )

n—1
+ Z (l’z - 524—;1_1) (& —&i1) f' (@)
i=1

We may also consider the mid-point quadrature rule:

n—1
(3.6) My (F. 1) = Y haf (“j“) .
=0

Using Corollaries 1 and 2, we may state the following result as well.

Corollary 5. Assume that f : [a,b] — R is a convex function on [a,b] and I, is a
division as above. Then we have the representation:

b
(3.7) / F(@)de = My (£, 1) + Su (£, 1)

where My, (f, 1) is the mid-point quadrature rule given in (3.6) and the remainder
Sn (f, I,,) satisfies the estimates:

1 , [ Ti+ Tign , [ Ti+ Tign
o 0o gy n () - ()

n—1

M

< Su (1) S 5 30 U i) — f ()] 12

Il
=)

%

The constant % s sharp in both inequalities.

4. INEQUALITIES FOR INTEGRAL MEANS

We may prove the following result in comparing two integral means.
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Theorem 9. Let f : [a,b] — R be a convex function and ¢,d € [a,b] with ¢ < d.
Then we have the inequalities

m b SO FDod @, _C/ ‘o

Ty

FL®) [0=d)* +(b—d)(b—c)+ <b—c>2]

IN

6(b—a)
Fi(@) [(@=a)’ +(d=a) (c—a) + (c - a)’]
a 6(b—a) '

Proof. Since f is convex, then for a.e. z € [a b], we have (by (2.9)) that

(4.2) (“ b ) #) dt —
2
Integrating (5.2) on [c, d] we deduce
1 “la+b
(4.3) d—c_/c ( 5 —x) x)dr < t)dt — —c/f

Since

. /j(@b—x)wx
(a—2|—b_d>f(d)_<a+b ) /f ]

then by (4.3) we deduce the first part of (4.1).
Using (2 11), we may write for any « € [a, b] that

d—c¢

e [ 0@ s@ < g [0 21 0 - @02 2 @)

Integrating (4.4) on [¢,d], we deduce

b d

(4.5) bia/af(t)dtfﬁ/c @) d
! d
< s lf"“’)dic/c - do— 1@ [ (Ia)ZdI].

Since

d e B » e

dic/(b_x)de:(b s d>3<b )+ (b— o)

and

1 /d(xa)2dx(da)2+(da)(ca)+(6a)2’
d—c /., ;
then by (4.5) we deduce the second part of (4.1). I
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Remark 4. If we choose f(z) = aP, p € (—00,0) U [1,00)\{~1} or f(z) = 2
or even f(x) = —lnzx, x € [a,b] C (0,00), in the above inequalities, then a great
number of interesting results for p—logarithmic, logarithmic and identric means
may be obtained. We leave this as an exercise to the interested reader.

5. APPLICATIONS FOR P.D.F.s

Let X be a random variable with the probability density function f : [a,b] C
R — Ry and with cumulative distribution function F (z) = Pr (X <z).

The following theorem holds.
Theorem 10. If f : [a,b] C R — R is monotonically increasing on [a,b], then we
have the inequality:

(1) S[0-22f @) - - @)
< b—E(X)—(b—a)F(z)
< gle-22r ) - @]

for any x € (a,b), where f_ (a) means the left limit in o while fi (a) means the
right limit in « and FE (X) is the expectation of X.

The constant % is sharp in both inequalities.

The second inequality also holds for x = a of x = b.

Proof. Follows by Theorem 6 and 7 applied for the convex cdf function F'(z) =
[ f(t)dt, @ € [a,b] and taking into account that

/bF(x)dx:b—E(X).
1

Finally, we may state the following corollary in estimating the probability Pr (X < “TH’) .

Corollary 6. With the above assumptions, we have
1
(5.2) b—E(X) -2 (b- a)* [f- (b) = fr ()]

Pr<Xg a+b>

IN

2
b—E(X) -5 (b a)’ [f+ (“2”’) - (“‘;b)]

6. APPLICATIONS FOR HH—DIVERGENCE

IN

Assume that a set x and the o—finite measure p are given. Consider the set of
all probability densities on p to be

(6.1) 0= {plps 0~ R pla) 20, /Xp(x)dﬂ(x)zl}'

Csiszar’s f—divergence is defined as follows [11]

(6.2) Dy (p,q) := /Xp(w)f [q(x)} dp(x), p.q €9,

p(x)
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where f is convex on (0,00). It is assumed that f (u) is zero and strictly convex
at u = 1. By appropriately defining this convex function, various divergences are
derived.

In [12], Shioya and Da-te introduced the generalised Lin-Wong f—divergence
Dy (p7 %p + %q) and the Hermite-Hadamard (H H) divergence

2 e
(63) Dy (p.a) :=/M</1“f(t)dt> di(z), pg e,

and, by the use of the Hermite-Hadamard inequality for convex functions, proved
the following basic inequality

11 1
(6.4) Dy <p, P+ Qq) < D}y (pa) < 5Dy (p.q),

provided that f is convex and normalised, i.e., f (1) =0.
The following result in estimating the difference

11
D}y (,q) — Dy (p7 P+ 2q>

holds.

Theorem 11. Let f : [0,00) — R be a convex function and p,q € Q. Then we have
the inequality:

1
(6.5) 0 < g Df/+A\#|(p,Q)—DfL‘|#|(p,q)}
11
< D}y (p.q) - Dy <p,2p+2q>

1
< ngg(.—n (p,q) -

Proof. Using the double inequality

17, B\, b
) ()
1 b a+b
o [ roa- (450
1

< S-0-F @ 06-0

a(z)
p(z)’

IN

for the choices a = 1, b = x € x, multiplying with p () > 0 and integrating

over x on x we get

0 < o f [ (M) - (M) ) - @l dnto

11
DYy (p,q) — Dy (p, oP 261)

< 5[ (E8)-rofe@-rerae,

IN

p(z)

which is clearly equivalent to (6.5). 1
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Corollary 7. With the above assumptions and if [ is differentiable on (0,00), then

1 1 1
(6.6) 0 < D}y (p,q) — Dy (p, 2P+ 2q> < <Dyr—1)(p,q).
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