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NOTES ON THE SCHUR-CONVEXITY OF THE EXTENDED
MEAN VALUES

FENG QI, JÓZSEF SÁNDOR, SEVER S. DRAGOMIR, AND ANTHONY SOFO

Abstract. In this article, the Schur-convexities of the weighted arithmetic

mean of function and the extended mean values are proved. Moreover, some

inequalities involving the arithmetic mean, the harmonic mean, the logarithmic

mean, and comparison between the extended mean values and the generalized

weighted mean with two parameters and constant weight are obtained.

1. Introduction

It is well-known that, in 1975, the extended mean values E(r, s;x, y) were defined

in [17] by K. B. Stolarsky as follows:

E(r, s;x, y) =
[
r

s
· ys − xs

yr − xr

]1/(s−r)

, rs(r − s)(x− y) 6= 0; (1)

E(r, 0;x, y) =
[
1
r
· yr − xr

ln y − lnx

]1/r

, r(x− y) 6= 0; (2)

E(r, r;x, y) =
1

e1/r

[
xxr

yyr

]1/(xr−yr)

, r(x− y) 6= 0; (3)

E(0, 0;x, y) =
√

xy, x 6= y; (4)

E(r, s;x, x) = x, x = y;

where x, y > 0 and r, s ∈ R.
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The monotonicity of extended mean values E(r, s;x, y) has been researched in

much literature, please refer to [1, 4, 9, 13, 14, 16]. It can be stated as follows.

Theorem A. The extended mean values E(r, s;x, y) is increasing in both x and y

and in both r and s.

The comparison of the extended mean values was reseached in [4, 7].

Theorem B. Let r, s, u, v be real numbers with r 6= s, u 6= v, then the inequality

E(r, s; a, b) ≤ E(u, v; a, b) (5)

is satisfied for all a, b > 0 if and only if

r + s ≤ u + v and e(r, s) ≤ e(u, v), (6)

where

e(x, y) =


x− y

ln x
y

for xy > 0 and x 6= y,

0 for xy = 0
(7)

if either 0 ≤ min{r, s, u, v} or max{r, s, u, v} ≤ 0, or

e(x, y) =
|x| − |y|
x− y

for x, y ∈ R and x 6= y (8)

if min{r, s, u, v} < 0 < max{r, s, u, v}.

In [11], the first author verified the logarithmic convexity of the extended mean

values E(r, s;x, y) with two parameters r and s as follows.

Theorem C. For all fixed x, y > 0 and s ∈ [0,+∞) (or r ∈ [0,+∞), respectively),

the extended mean values E(r, s;x, y) are logarithmically concave in r (or in s,

respectively) on [0,+∞); For all fixed x, y > 0 and s ∈ (−∞, 0] (or r ∈ (−∞, 0],

respectively), the extended mean values E(r, s;x, y) are logarithmically convex in r

(or in s, respectively) on (−∞, 0].

For completeness, we list the definition of Schur-convex of function as follows.

Definition 1 ([8, pp. 75–76]). A function f with n arguments defined on In is

Schur-convex on In if f(x) ≤ f(y) for each two n-tuples x = (x1, . . . , xn) and

y = (y1, . . . , yn) in In such that x ≺ y holds, where I is an interval with nonempty

interior.

The relationship of majorization x ≺ y means that

k∑
i=1

x[i] ≤
k∑

i=1

y[i],
n∑

i=1

x[i] =
n∑

i=1

y[i], (9)
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where 1 ≤ k ≤ n− 1, x[i] denotes the ith largest component in x.

A function f is Schur-concave if and only if −f is Schur-convex.

The generalized weighted mean of positive sequence a = (a1, · · · , an) was defined

in [10] as follows.

Definition 2. For a positive sequence a = (a1, · · · , an) with ai > 0 and a positive

weight w = (w1, · · · , wn) with wi > 0 for 1 ≤ i ≤ n, the generalized weighted mean

of positive sequence a with two parameters r and s is defined as

Mn(w; a; r, s) =


(∑n

i=1 wia
r
i∑n

i=1 wias
i

)1/(r−s)

, r − s 6= 0;

exp
(∑n

i=1 wia
r
i ln ai∑n

i=1 wiar
i

)
, r − s = 0.

(10)

The monotonicity of the generalized weighted mean of positive sequence a =

(a1, · · · , an) was proved in [10] and can be stated as follows.

Theorem D. The generalized weighted mean Mn(w; a; r, s) of positive sequence

a = (a1, · · · , an), with positive weight w = (w1, · · · , wn) and two parameters r and

s, is increasing in both r and s.

The first author proved in [12] the following Schur-convexity of the extended

mean values E(r, s;x, y).

Theorem E. For fixed x, y > 0 and x 6= y, the extended mean values E(r, s;x, y)

are Schur-concave on [0,+∞)× [0,+∞), the first quadrants, and Schur-convex on

(−∞, 0]× (−∞, 0], the third quadrants, with (r, s), respectively.

The following necessary and sufficient condition was stated in [6, p. 57] and [8,

p. 333] and was cited in [3].

Theorem F. A continuously differentiable function f on I2 (where I being an open

interval) is Schur-convex if and only if it is symmetric and satisfies that

(
∂f

∂y
− ∂f

∂x

)
(y − x) > 0 for all x, y ∈ I, x 6= y. (11)

In [3], the Schur-convexity of the arithmetic mean of function was obtained as

follows.
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Theorem G. Let f be a continuous function on I. Then the arithmetic mean of

function f (or the integral arithmetic mean),

φ(u, v) =


1

v − u

∫ v

u

f(t) dt, u 6= v,

f(r), u = v,

(12)

is Schur-convex (Schur-concave) on I2 if and only if f is convex (concave) on I.

Meanwhile, the Schur-convexity of the logarithmic mean values was verified in

the paper [3].

In this article, as a subsequent paper of [12], our main purpose is to prove the

Schur-convexities of the weighted arithmetic mean of function and the extended

mean values E(r, s;x, y) with respect to (x, y) for fixed (r, s), and then we obtain

the following

Theorem 1. Let f be a continuous function on I, let p be a positive continuous

weight on I. Then the weighted arithmetic mean of function f with weight p defined

by

F (x, y) =


∫ y

x
p(t)f(t) dt∫ y

x
p(t) dt

, x 6= y,

f(x), x = y

(13)

is Schur-convex (Schur-concave) on I2 if and only if inequality∫ y

x
p(t)f(t) dt∫ y

x
p(t) dt

≤ p(x)f(x) + p(y)f(y)
p(x) + p(y)

(14)

holds (reverses) for all x, y ∈ I.

Theorem 2. Let x > 0 and y > 0 be positive real numbers and r ∈ R.

(1) If r ≤ 0, then

L(xr, yr) ≥ [G(x, y)]r ≥ A(x, y)H(xr−1, yr−1), (15)

the equalities in (15) hold only if x = y or r = 0.

(2) If r ≥ 3
2 , we have

L(xr, yr) ≥ A(x, y)H(xr−1, yr−1), (16)

the equality in (16) holds only if x = y.

(3) If r ∈ (0, 1], inequality (16) reverses without equality unless x = y.

(4) Otherwise, the validity of inequality (16) may not be certain.



NOTES ON THE SCHUR-CONVEXITY OF THE EXTENDED MEAN VALUES 5

Theorem 3. For fixed point (r, s) such that r, s 6∈ (0, 3
2 ) (or r, s ∈ (0, 1], resp.), the

extended mean values E(r, s;x, y) is Schur-concave (or Schur-convex, resp.) with

(x, y) on the domain (0,∞)× (0,∞).

Corollary 1. Let x, y > 0. Then

(1) if r, s ∈ (0, 1], we have

E(r, s;x, y) ≤ M2((1, 1); (x, y); r − 1, s− 1), (17)

where M2((1, 1); (x, y); r − 1, s − 1) denotes the generalized weighted mean

of positive sequence (x, y) with two parameters r−1 and s−1 and constant

weight (1, 1) defined in Definition 2;

(2) if r, s 6∈ (0, 3
2 ), inequality (17) reverses;

(3) otherwise, the validity of inequality (17) may not be certain.

2. Proofs of Theorems

Proof of Theorem 1. The function F is obviously symmetric.

Straightforward computation gives us[
∂F

∂y
− ∂F

∂x

]
(y − x) =

[
p(y)f(y) + p(x)f(x)

p(x) + p(y)
−

∫ y

x
p(t)f(t) dt∫ y

x
p(t) dt

]
p(x) + p(y)∫ y

x
p(t) dt

. (18)

The proof follows from Theorem F. �

Proof of Theorem 2. For r = 0, it is easy to see that equality in (16) holds for all

x, y > 0.

Case 1. For r < 0, set s = −r > 0, then inequality (16) can be rewritten as

L
( 1

xs
,

1
ys

)
≥ x + y

2
H

( 1
xs+1

,
1

ys+1

)
, (19)

which is equivalent to

ys − xs

s(ln y − lnx)xsys
≥ x + y

xs+1 + ys+1
. (20)

From the logarithmic mean inequality L(a, b) ≥
√

ab for a, b > 0 (see [15]), we have

ys − xs

s(ln y − lnx)
≥
√

xsys. (21)

Since the function u(t) = ts+1 is convex on (0,∞) for s > −1, from definition of

convex function it follows that

xs+1 + ys+1

2
≥

(x + y

2

)s+1

(22)
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for s > −1. Combining (22) with the arithmetic-geometric mean inequality yields

that

xs+1 + ys+1 ≥ (x + y)
(x + y

2

)s

≥ (x + y)(
√

xy)s, (23)

then we have
1√
xsys

≥ x + y

xs+1 + ys+1
. (24)

Therefore, from (20), (21) and (24), it follows that

ys − xs

s(ln y − lnx)xsys
≥ 1√

xsys
≥ x + y

xs+1 + ys+1
, (25)

which implies inequality (15) for r < 0.

Case 2. If r > 0, without loss of generality, assume y > x > 0, then inequality (16)

becomes

(yr − xr)(yr−1 + xr−1) ≤ r(x + y)xr−1yr−1 ln
y

x
. (26)

Dividing on both sides of (26) by x2r−1 produces(
yr

xr
− 1

)(
yr−1

xr−1
+ 1

)
≤ r

(
1 +

y

x

)
yr−1

xr−1
ln

y

x
. (27)

Let y
x = t > 1 and define a function p(t) on (1,∞) such that

p(t) = (1− tr)(1 + tr−1) + r(1 + t)tr−1 ln t. (28)

Direct and standard calculating leads to

p′(t) = tr−2[(2r − 1)(1− tr) + r(r − 1 + rt) ln t] , tr−2g(t),

g′(t) =
r(r − 1) + r2t + r(1− 2r)tr + r2t ln t

t
,

h(t)
t

,

h′(t) = r2[2 + ln t + (1− 2r)tr−1],

h′′(t) =
r2[1 + (1− 2r)(r − 1)tr−1]

t
,

r2w(t)
t

.

(29)

Case 2.1. For r ∈ [ 12 , 1] the function w(t) > 0 and h′′(t) > 0, then h′(t) increases.

Since h′(1) = r2(3 − 2r) > 0, we have h′(t) > 0, and then h(t) increases. Since

h(1) = 0, thus h(t) > 0, and g′(t) > 0, and then g(t) is increasing. From g(1) = 0

it follows that g(t) > 0, which means that p′(t) > 0 and p(t) increases. Further,

since p(1) = 0, we obtain p(t) > 0 for r ∈ [ 12 , 1] and t ∈ (1,∞). This implies that

inequality (16) is reversed for r ∈ [ 12 , 1].
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Case 2.2. For r ≥ 3
2 , the function w(t) decreases and w(1) = r(3−2r) ≤ 0, and then

w(t) ≤ 0, and h′′(t) ≤ 0 and h′(t) decreases. Since h′(1) ≤ 0, we have h′(t) ≤ 0,

and h(t) is decreasing. From h(1) = 0 it follows that h(t) ≤ 0, and g′(t) ≤ 0, and

then g(t) is dereasing. The fact that g(1) = 0 yields g(t) ≤ 0, and p′(t) ≤ 0, and

then p(t) is decreasing. The fact that p(1) = 0 results in p(t) ≤ 0. This means that

inequality (16) holds for r ≥ 3
2 .

Case 2.3. For 0 < r < 1
2 , it is easy to see that the function w(t) is increasing. Since

w(1) = r(3− 2r) > 0, we obtain w(t) > 0, and h′′(t) > 0, and then h′(t) increases

strictly. The fact that h′(1) = r2(3− 2r) > 0 leads to h′(t) > 0, and h(t) increases.

Meanwhile, h(1) = 0 produces h(t) > 0, and g′(t) > 0, and then g(t) is increasing.

since g(1) = 0, thus g(t) > 0 and p′(t) > 0, and then p(t) is increasing. From

p(1) = 0, it follows that p(t) > 0, that is, inequality (16) reverses for r ∈ (0, 1
2 ).

Case 2.4. For r ∈ (1, 3
2 ), the function w(t) has a zero t0 = 1

[(r−1)(2r−1)]1/(r−1) .

Rearranging equality w(1) = (1 − 2r)(r − 1) + 1 = r(3 − 2r) > 0 yields that

0 < (r − 1)(2r − 1) = 1− w(1) < 1, hence we have t0 > 1.

In the case of t ∈ (1, t0), we have w(t) > 0 and h′′(t) > 0, since w(t) is decreasing

for all t > 1 and r ∈ (1, 3
2 ). By the same arguments as in Case 2.1, we obtain

that inequality (16) is reversed when y
x ∈

(
1, 1/[(r − 1)(2r − 1)]1/(r−1)

)
, where

r ∈ (1, 3
2 ).

In the case of t ∈ (t0,∞), we have w(t) < 0 and h′′(t) < 0, and then h′(t)

decreases. It is easy to see that limt→∞ h′(t) = −∞. Therefore, there exists a

point t1 such that t1 ≥ t0 and h′(t) < 0 for t ∈ (t1,∞). On the interval (t1,∞), the

function h(t) decreases and limt→∞ h(t) = −∞. Similarly, there exists a number t2

such that t2 ≥ t1 and h(t) < 0 and g′(t) < 0 for t ∈ (t2,∞). On the interval (t2,∞),

the function g(t) decreases and limt→∞ g(t) = −∞. Then there exists another

number t3 ≥ t2 such that g(t) < 0 and p′(t) < 0, and then p(t) is decreasing on

the interval (t3,∞). Since limt→∞ p(t) = −∞, then there exists a number t4 ≥ t3

such that p(t) is negative on the interval (t4,∞). This means that, for y
x ∈ (t4,∞)

and r ∈ (1, 3
2 ), inequality (16) holds. Note that the numbers ti, 0 ≤ i ≤ 4, are all

dependent on r undoubtedly.

Thus, for r ∈ (1, 3
2 ), the validity of inequality (16) depends on values of the ratio

y
x , that is, inequality (16) cannot hold for all x, y > 0. The proof is complete. �
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Proof of Theorem 3. For x, y > 0 and t ∈ R, let us define a function g by

g(t) , g(t;x, y) ,


(yt − xt)

t
, t 6= 0;

ln y − lnx, t = 0.
(30)

It is easy to see that g can be expressed in integral form as

g(t;x, y) =
∫ y

x

ut−1 du, (31)

and

g(n)(t) =
∫ y

x

(lnu)nut−1 du. (32)

Therefore, in [1, 11, 15, 16], the extended mean values E(r, s;x, y) were represented

in terms of g by

E(r, s;x, y) =


(

g(s;x, y)
g(r;x, y)

)1/(s−r)

, (r − s)(x− y) 6= 0;

exp
(

∂g(r;x, y)/∂r

g(r;x, y)

)
, r = s, x− y 6= 0.

(33)

To prove the Schur-convexity of the extended mean values, from Theorem 1, it

suffices to prove the following inequality

g(r;x, y)
g(s;x, y)

=

∫ y

x
tr−1dt∫ y

x
ts−1dt

=
s(yr − xr)
r (ys − xs)

<
xr−1 + yr−1

xs−1 + ys−1
, (34)

which is equivalent to the monotonicity with t of function g(t;x,y)
xt−1+yt−1 , this is further

reduced to the reversed inequality of (16), since

d
dt

[
g(t;x, y)

(xt−1 + yt−1)

]
=

[ln y − lnx]
[
A(x, y)H(xt−1, yt−1)− L(xt, yt)

]
t(xt−1 + yt−1)

. (35)

Therefore, the proof of Theorem 3 follows. �

Proof of Corollary 1. This follows from standard argument by combining (34) and

Theorem 2 with Definition 2 and definition of the extended mean values. �

3. Open Problems

At last, we propose the following open problem.

Open Problem. Under what conditions do the following inequalities

f

(
xp(x) + yp(y)
p(x) + p(y)

)
≤

∫ y

x
p(t)f(t) dt∫ y

x
p(t) dt

≤ p(x)f(x) + p(y)f(y)
p(x) + p(y)

(36)

hold for all x, y ∈ I? where I denotes an interval on R and p(x) is positive.
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