

On some Variants of Jensen's Inequality

This is the Published version of the following publication

Dragomir, Sever S and Hunt, Emma (2002) On some Variants of Jensen's Inequality. RGMIA research report collection, 5 (1).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17697/

On some variants of Jensen's inequality

S. S. DRAGOMIR

School of Communications & Informatics, Victoria University, Vic. 8001, Australia

EMMA HUNT

Department of Mathematics, University of Adelaide, SA 5005, Adelaide, Australia and Surveillance Systems Division, DSTO, PO Box 1500, Edinburgh 5111, Australia

Abstract.

Some variants of Jensen's discrete inequality are derived. These include interpolations of the basic relation for subadditive maps and of the generalised triangle inequality.

AMS Subject Classification: 26D15.

Key words and Phrases: Jensen's inequality, generalised triangle inequality, subadditive maps

1 Introduction

Let X be a real linear space and $C \subseteq X$ a convex set in X, that is, a set such that

 $x, y \in C$ and $\lambda \in [0, 1]$ imply $\lambda x + (1 - \lambda)y \in C$.

If $f: C \to \mathbf{R}$ is convex, f satisfies

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

for all $x, y \in C$ and $\lambda \in [0, 1]$. If $p_i \ge 0$ (i = 1, ..., n) with $P_n := \sum_{i=1}^n p_i > 0$ and $y_i \in C$ (i = 1, ..., n), we have the Jensen inequality

$$f\left(\frac{1}{P_n}\sum_{i=1}^n p_i y_i\right) \le \frac{1}{P_n}\sum_{i=1}^n p_i f(y_i)$$

(see [2] or [8, p. 6]). For some recent generalizations, refinements and applications the reader is referred to [1]–[7], [9] and [8, p. 20].

In this paper we show that several new results flow from simple but judicious applications of Abel's identity, which gives the following. Suppose X is a linear space, $x_i \in X$ (i = 1, ..., n) and $s_n := \sum_{i=1}^n x_i$. If a_i is real (i = 1, ..., n), then

$$\sum_{i=1}^{n} a_i x_i = a_1 s_1 + \sum_{i=2}^{n} a_i (s_i - s_{i-1})$$
$$= \sum_{i=1}^{n-1} (a_i - a_{i+1}) s_i + a_n s_n.$$

Consequences include an interpolation of the basic inequality for subadditive maps and of the generalised triangle inequality.

2 Results

We will start with the following theorem.

Theorem 2.1. Let X be a linear space and $f: X \to \mathbf{R}$ a convex mapping, $x_1, \ldots, x_n \in X$ and $0 \neq a_1 \geq a_2 \geq \cdots \geq a_n \geq 0$. Then

$$f\left(a_1^{-1}\sum_{i=1}^n a_i x_i\right) \le a_1^{-1} \left\{ a_1 f(x_1) + \sum_{i=2}^n a_i \left[f\left(\sum_{j=1}^i x_j\right) - f\left(\sum_{j=1}^{i-1} x_j\right) \right] \right\}.$$

Proof. Choose $p_i := a_i - a_{i+1}$ $(1 \le i < n)$, $p_n := a_n$ and $y_i = s_i$ (i = 1, ..., n) in Jensen's theorem. We derive

$$f\left[\frac{\sum_{i=1}^{n} (a_i - a_{i+1}) s_i}{\sum_{i=1}^{n} (a_i - a_{i+1})}\right] \le \frac{\sum_{i=1}^{n} (a_i - a_{i+1}) f(s_i)}{\sum_{i=1}^{n} (a_i - a_{i+1})},$$

where for notational simplicity we have introduced $a_{n+1} := 0$. The desired result now follows by Abel's identity.

Corollary 2.2. Let $g: X \to (0, \infty)$ be logarithmically concave, that is, let $\ln g$ be concave. Under the assumptions of the theorem

$$g\left(a_1^{-1}\sum_{i=1}^n a_i x_i\right) \ge \left\{ [g(x_1)]^{a_1} \prod_{i=2}^n \left[\frac{g\left(\sum_{j=1}^i x_i\right)}{g\left(\sum_{j=1}^{i-1} x_j\right)} \right]^{a_i} \right\}^{1/a_1}.$$

The result follows from the theorem for the convex mapping $f = -\ln g$.

Suppose that the mapping $\varphi:X\to\mathbf{R}$ is subadditive, that is, for $\alpha,\,\beta$ nonnegative we have

$$\varphi(\alpha x + \beta y) \le \alpha \varphi(x) + \beta \varphi(y).$$

By mathematical induction we have for all $\alpha_i \geq 0$ and $y_i \in X$ $(i = \dots, n)$ that

$$\varphi\left(\sum_{i=1}^{n} \alpha_i y_i\right) \le \sum_{i=1}^{n} \alpha_i \varphi(y_i).$$

This inequality may be interpolated as follows.

Corollary 2.3. Let $\varphi: X \to \mathbf{R}$ be subadditive, $y_1, \ldots, y_n \in X$ and $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_n \geq 0$. Then

$$\varphi\left(\sum_{i=1}^{n}\alpha_{i}y_{i}\right) \leq \alpha_{1}\varphi(y_{1}) + \sum_{i=2}^{n}\alpha_{i}\left[\varphi\left(\sum_{j=1}^{i}y_{j}\right) - \varphi\left(\sum_{j=1}^{i-1}y_{j}\right)\right]$$

$$\leq \sum_{i=1}^{n}\alpha_{i}\varphi(y_{i}).$$

Proof. As φ is subadditive, it is convex. The first desired inequality follows from Theorem 2.1.

For the second, we observe that for $2 \le i \le n$,

$$\varphi\left(\sum_{j=1}^{i} y_j\right) - \varphi\left(\sum_{j=1}^{i-1} y_j\right) \le \varphi(y_i).$$

Multiplying the *i*th inequality by α_i and summing over *i* provides the desired result.

Our second main result is the following.

Theorem 2.4. Let $f: X \to \mathbf{R}$ be convex and $x_i \in X$ (i = 1, ..., n). Suppose that $m_i(i = 1, ..., n)$ satisfy

$$\sum_{j=1}^{i} m_j \ge 0 \quad (1 \le i \le n)$$

and

$$\sum_{i=1}^{n} (n+1-i)m_i > 0.$$

Then

$$f\left(\frac{\sum_{i=1}^{n} m_i x_i}{\sum_{i=1}^{n} (n+1-i)m_i}\right) \le \frac{\sum_{i=1}^{n} \sum_{j=i}^{n} f(x_j - x_{j+1})}{\sum_{i=1}^{n} (n+1-i)m_i},$$

where again we put $x_{n+1} := 0$ for notational convenience.

Proof. Let $s_i = \sum_{j=1}^i m_j \ (1 \le i \le n)$. Then by Abel's identity

$$\sum_{i=1}^{n} m_i x_i = s_1 x_1 + \sum_{i=2}^{n} (s_i - s_{i-1}) x_i$$
$$= \sum_{i=1}^{n} s_i (x_i - x_{i+1}).$$

Applying Jensen's inequality provides

$$f\left[\frac{\sum_{i=1}^{n} s_i (x_i - x_{i+1})}{\sum_{i=1}^{n} s_i}\right] \le \frac{\sum_{i=1}^{n} s_i f(x_i - x_{i+1})}{\sum_{i=1}^{n} x_i}.$$

The numerator on the right-hand side may be written as

$$\sum_{i=1}^{n} m_i \sum_{j=i}^{n} f(x_j - x_{j+1})$$

and we have the desired result.

Corollary 2.5. Let $g: X \to (0, \infty)$ be logarithmically concave. With the above assumptions

$$g\left(\frac{\sum_{i=1}^{n} m_i x_i}{\sum_{i=1}^{n} (n+1-i)m_i}\right) \ge \left\{\prod_{i=1}^{n} \left[\prod_{j=i}^{n} g(x_j - x_{j+1})\right]^{m_i}\right\}^{1/\sum_{i=1}^{n} (n+1-i)m_i}.$$

The result follows from the theorem with the choice of convex mapping $f = -\ln g$.

3 Applications

We now derive some particular applications relating to homely choices of convex function.

1. Let $x_i > 0 \ (i = 1, ..., n)$ with $0 \neq a_1 \geq a_2 \geq ... \geq a_n \geq 0$. Then

$$\sum_{i=1}^{n} a_i x_i \ge a_1 \left[x_1^{a_1} \prod_{i=2}^{n} \left(\frac{\sum_{j=1}^{i} x_j}{\sum_{j=1}^{i-1} x_j} \right)^{a_i} \right]^{1/a_1}.$$

The result follows from Corollary 2.2 with the mapping $g:(0,\infty)\to(0,\infty)$ given by g(x)=x.

Suppose $x_1 \ge x_2 \ge \cdots \ge x_n \ge 0$ and $n_i \in \mathbf{R}$ with $m_1 \ge 0$. In the same way we have from Corollary 2.5 that

$$\frac{\sum_{i=1}^{n} m_i x_i}{\sum_{i=1}^{n} (n+1-i)m_i} \ge \left\{ \prod_{i=1}^{n} \left[\prod_{j=i}^{n} (x_j - x_{j+1}) \right]^{m_i} \right\}^{1/\sum_{i=1}^{n} (n+1-i)m_i}$$

2. Let $x_i > 0 \ (i = 1, ..., n)$ and $0 \neq a_1 \geq a_2 \geq ... \geq a_n \geq 0$. Then

$$a_1^2 \le \left(\sum_{i=1}^n a_i x_i\right) \left(\frac{a_1}{x_1} - \sum_{i=2}^n \frac{a_i x_i}{\left(\sum_{j=1}^{i-1} x_j\right) \left(\sum_{k=1}^i x_k\right)}\right).$$

This follows from Theorem 2.1 applied to the convex mapping f(x) = 1/x on the interval $(0, \infty)$.

3. Let $x_i \in \mathbf{R}$ and $a_1 \geq a_2 \geq \cdots \geq a_n \geq 0$. Then

$$\left(\sum_{i=1}^{n} a_i x_i\right)^2 \le a_1 \left\{ a_1 x_1^2 + \sum_{i=2}^{n} a_i x_i \left[x_i + 2 \sum_{j=1}^{i-1} x_j \right] \right\}.$$

This follows from Theorem 2.1 applied for the convex mapping $f(x) = x^2$ $(x \in \mathbf{R})$.

4. Consider the mapping $f: \mathbf{R} \to \mathbf{R}$ given by $f(x) = \ln(1 + e^x)$. We have $f'(x) = e^x/(1 + e^x)$ and $f''(x) = e^x/(1 + e^x)^2$, which shows that f is convex on \mathbf{R} .

Let $0 \neq a_1 \geq a_2 \geq \cdots \geq a_n \geq 0$ and $x_1, \ldots, x_n \in \mathbf{R}$. Then by Theorem 2.1

$$\ln\left[1 + \exp\left(a_1^{-1} \sum_{i=1}^n a_i x_i\right)\right]$$

$$\leq a_1 \ln[1 + e^{x_1}] + \sum_{i=2}^n a_i \left[\ln\left\{1 + \exp\left(\sum_{j=1}^i x_j\right)\right\}\right]$$

$$-\ln\left\{1 + \exp\left(\sum_{j=1}^{i-1} x_j\right)\right\}$$

$$= \ln\left\{(1 + e^{x_1})^{a_1} \prod_{i=2}^n \left[\frac{1 + \exp\left(\sum_{j=1}^i x_j\right)}{1 + \exp\left(\sum_{j=1}^{i-1} x_j\right)}\right]^{a_i}\right\},$$

whence

$$1 + \exp\left(a_1^{-1} \sum_{i=1}^n a_i x_i\right) \le \left[1 + e^{x_1}\right]^{a_1} \prod_{i=2}^n \left[\frac{1 + \exp\left(\sum_{j=1}^i x_j\right)}{1 + \exp\left(\sum_{j=1}^{i-1} x_j\right)}\right]^{a_i}.$$

5. Let X be a real normed space and $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_n \geq 0$. Then for $x_i \in X$ $(i = 1, \ldots, n)$ we have the refinement

$$\left\| \sum_{i=1}^{n} \alpha_{i} x_{i} \right\| \leq \alpha_{1} \| x_{1} \| + \sum_{i=2}^{n} \alpha_{i} \left(\left\| \sum_{j=1}^{i} x_{i} \right\| - \left\| \sum_{j=1}^{i-1} x_{i} \right\| \right)$$

$$\leq \sum_{i=1}^{n} \alpha_{i} \| x_{i} \|$$

of the generalised triangle inequality. The result follows from Corollary 2.3.

References

- [1] S. S. Dragomir, Some refinements of Ky Fan's inequality, *J. Math. Anal. Appl.* **163** (1992), 317–321.
- [2] S. S. Dragomir, Some refinements of Jensen's inequality, *J. Math. Anal. Appl.* **168** (1992), 518–522.
- [3] S. S. Dragomir, On some refinements of Jensen's inequality and applications, *Utilitas Math.* **43** (1993), 235–243.
- [4] S. S. Dragomir, Two mappings associated with Jensen's inequality, *Extracta Math.* 8 (1993), 102–105.
- [5] S. S. Dragomir, A further improvement of Jensen's inequality, *Tamkang J. Math.* **15** (1994), 29–36.
- [6] S. S. Dragomir and N. M. Ionescu, Some remarks on convex functions, *Anal. Num. Theor. Approx.* **21** (1992), 31–36.
- [7] S. S. Dragomir and D. M. Milošević, A sequence of mappings connected with Jensen's inequality and applications, *Mat. Vesn.* **44** (1992), 113–121.
- [8] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, *Classical and New Inequalities in Analysis*. Kluwer Academic Publishers, Dordrecht/Boston/London (1993).
- [9] J. E. Pečarić and S. S. Dragomir, A refinement of Jensen inequality and applications, *Studia Univ. Babes–Bolyai* **34** (1989), 15–19.