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GENERALIZATIONS AND REFINEMENTS OF
HERMITE-HADAMARD’S INEQUALITY

FENG QI, ZONG-LI WEI, AND QIAO YANG

Abstract. In this article, with the help of concept of the harmonic sequence

of polynomials, the well known Hermite-Hadamard’s inequality for convex
functions is generalied to the cases with bounded derivatives of n-th order,

including the so-called n-convex functions, from which Hermite-Hadamard’s

inequality is extended and refined.

1. Introduction

Let f(x) be a convex function on the closed interval [a, b], the well-known
Hermite-Hadamard’s inequality can be expreseed as [5]:

0 ≤
∫ b

a

f(t)dt− (b− a)f
(
a+ b

2

)
≤ (b− a)

f(a) + f(b)
2

−
∫ b

a

f(t)dt (1)

A function f(x) is said to be r-convex on [a, b] with r ≥ 2 if and only if f (r)(x)
exists and f (r)(x) ≥ 0.

In terms of a trapezoidal formula and a midpoint formula for a real function
f(x) defined and integrable on [a, b], using the first and second Euler-Maclaurin
summation formulas, inequality (1) was generalized for (2r)-convex functions on
[a, b] with r ≥ 1 in [2].

In [3, 4], the following double integral inequalities were obtained.

Theorem A. Let f : [a, b] → R be a twice differentiable mapping and suppose that
γ ≤ f ′′(t) ≤ Γ for all t ∈ (a, b). Then we have

γ(b− a)2

24
≤ 1
b− a

∫ b

a

f(t) dt− f

(
a+ b

2

)
≤ Γ(b− a)2

24
, (2)

γ(b− a)2

12
≤ f(a) + f(b)

2
− 1
b− a

∫ b

a

f(t) dt ≤ Γ(b− a)2

12
. (3)

In [8], the above inequalities were refined as follows.
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Theorem B. Let f : [a, b] → R be a twice differentiable mapping and suppose that
γ ≤ f ′′(t) ≤ Γ for all t ∈ (a, b). Then we have

3S − 2Γ
24

(b− a)2 ≤ 1
b− a

∫ b

a

f(t) dt− f

(
a+ b

2

)
≤ 3S − 2γ

24
(b− a)2, (4)

3S − Γ
24

(b− a)2 ≤ f(a) + f(b)
2

− 1
b− a

∫ b

a

f(t) dt ≤ 3S − γ

24
(b− a)2, (5)

where S = f ′(b)−f ′(a)
b−a .

If f ′′(t) ≤ 0 (or f ′′(t) ≥ 0), then we can set Γ = 0 (or γ = 0) in Theorem A
and Theorem B, then Hermite-Hadamard’s inequality (1) and those similar to the
Hemite-Hadamard’s inequality (1) can be obtained.

In this article, using concept of the harmonic sequence of polynomials, the well
known Hermite-Hadamard’s inequality for convex functions is generalied to the
cases with bounded derivatives of n-th order, including the so-called n-convex func-
tions, from which Hermite-Hadamard’s inequality is extended and refeined.

2. Some simple generalizations

In this section, we will generalize results above to the cases that the n-th deriv-
ative of integrand is bounded for n ∈ N.

Theorem 1. Let f(t) be n-times differentiable on the clsoed interval [a, b] such that
γ ≤ f (n)(t) ≤ Γ for t ∈ [a, b] and n ∈ N. Further, let u ∈ [a, b] be a parameter.
Then

(b− a)Sn max
{

(u− a)n

n!
,
(b− u)n

n!

}
+

[
(u− a)n+1 − (u− b)n+1

(n+ 1)!
− (b− a) max

{
(u− a)n

n!
,
(b− u)n

n!

}]
Γ

≤ (−1)n

∫ b

a

f(t) dt+
n−1∑
i=0

(u− a)n−i − (u− b)n−i

(n− i)!
(−1)if (n−i−1)(u)

≤ (b− a)Sn max
{

(u− a)n

n!
,
(b− u)n

n!

}
+

[
(u− a)n+1 − (u− b)n+1

(n+ 1)!
− (b− a) max

{
(u− a)n

n!
,
(b− u)n

n!

}]
γ,

(6)

where Sn = f(n−1)(b)−f(n−1)(a)
b−a .

Proof. Define

pn(t) =


(t− a)n

n!
, t ∈ [a, u],

(t− b)n

n!
, t ∈ (u, b].

(7)

By direct computation, we have∫ b

a

pn(t) dt =
(u− a)n+1 − (u− b)n+1

(n+ 1)!
. (8)
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Integrating by parts and using mathematical induction yields∫ b

a

pn(t)f (n)(t) dt =
(u− a)n − (u− b)n

n!
f (n−1)(u)−

∫ b

a

pn−1(t)f (n−1)(t) dt (9)

and then∫ b

a

pn(t)f (n)(t) dt+ (−1)n+1

∫ b

a

f(t) dt

=
n−1∑
i=0

(u− a)n−i − (u− b)n−i

(n− i)!
(−1)if (n−i−1)(u). (10)

Utilizing of (8) and (10) yields∫ b

a

pn(t)
[
f (n)(t)− γ

]
dt = (−1)n

∫ b

a

f(t) dt− (u− a)n+1 − (u− b)n+1

(n+ 1)!
γ

+
n−1∑
i=0

(u− a)n−i − (u− b)n−i

(n− i)!
(−1)if (n−i−1)(u). (11)

Meanwhile,∫ b

a

pn(t)
[
f (n)(t)− γ

]
dt

≤
∫ b

a

|pn(t)|
∣∣f (n)(t)− γ

∣∣ dt

≤ max
t∈[a,b]

|pn(t)|
∫ b

a

(
f (n)(t)− γ

)
dt

≤ max
{

(u− a)n

n!
,
(b− u)n

n!

} [
f (n−1)(b)− f (n−1)(a)

b− a
− γ

]
(b− a).

(12)

The right inequality in (6) follows from combining of (11) with (12).
The left inequality in (6) follows from similar arguments as above. �

Theorem 2. Let f(t) be n-times differentiable on the clsoed interval [a, b] such that
γ ≤ f (n)(t) ≤ Γ for t ∈ [a, b] and n ∈ N. Then

1
2n

(b− a)n+1

n!

[
Sn +

(
1 + (−1)n

2(n+ 1)
− 1

)
Γ
]

≤ (−1)n

∫ b

a

f(t) dt+
n−1∑
i=0

(b− a)n−i

(n− i)!
(−1)n+1 + (−1)i

2n−i
f (n−i−1)

(
a+ b

2

)
≤ 1

2n

(b− a)n+1

n!

[
Sn +

(
1 + (−1)n

2(n+ 1)
− 1

)
γ

] (13)

where Sn = f(n−1)(b)−f(n−1)(a)
b−a .

Proof. This follows from taking u = a+b
2 in inequality (6). �

Remark 1. If taking n = 2 in (13), the double inequality (4) follows.
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Theorem 3. Let f(t) be n-times differentiable on the clsoed interval [a, b] such that
γ ≤ f (n)(t) ≤ Γ for t ∈ [a, b] and n ∈ N, and u ∈ R. Then[

(b− a) max
{
|a− u|n

n!
,
|b− u|n

n!

}
+

(b− u)n+1 − (a− u)n+1

(n+ 1)!

]
γ

− (b− a)Sn max
{
|a− u|n

n!
,
|b− u|n

n!

}
≤ (−1)n

∫ b

a

f(t) dt

+
n−1∑
i=0

(−1)i (b− u)n−if (n−i−1)(b)− (a− u)n−if (n−i−1)(a)
(n− i)!

≤
[
(b− a) max

{
|a− u|n

n!
,
|b− u|n

n!

}
+

(b− u)n+1 − (a− u)n+1

(n+ 1)!

]
Γ

− (b− a)Sn max
{
|a− u|n

n!
,
|b− u|n

n!

}
,

(14)

where Sn = f(n−1)(b)−f(n−1)(a)
b−a .

Proof. Define

qn(t) =
(t− u)n

n!
, u ∈ R. (15)

By direct computation, we have∫ b

a

qn(t) dt =
(b− u)n+1 − (a− u)n+1

(n+ 1)!
. (16)

Integrating by parts and using mathematical induction yields∫ b

a

qn(t)f (n)(t) dt+
∫ b

a

qn−1(t)f (n−1)(t) dt

=
(b− u)nf (n−1)(b)− (a− u)nf (n−1)(a)

n!

(17)

and then ∫ b

a

qn(t)f (n)(t) dt+ (−1)n+1

∫ b

a

f(t) dt

=
n−1∑
i=0

(−1)i (b− u)n−if (n−i−1)(b)− (a− u)n−if (n−i−1)(a)
(n− i)!

.

(18)

Making use of of (16) and (18) and direct calculation yields∫ b

a

qn(t)
[
γ − f (n)(t)

]
dt = (−1)n+1

∫ b

a

f(t) dt+
(b− u)n+1 − (a− u)n+1

(n+ 1)!
γ

+
n−1∑
i=0

(−1)i+1 (b− u)n−if (n−i−1)(b)− (a− u)n−if (n−i−1)(a)
(n− i)!

. (19)
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It is easy to see that∫ b

a

qn(t)
[
γ − f (n)(t)

]
dt

≤ max
t∈[a,b]

|qn(t)|
∫ b

a

(
f (n)(t)− γ

)
dt

≤ max
{
|a− u|n

n!
,
|b− u|n

n!

} [
f (n−1)(b)− f (n−1)(a)

b− a
− γ

]
(b− a).

(20)

The left inequality in (14) follows from combining of (19) with (20).
The right inequality in (14) follows from similar arguments as above. �

Theorem 4. Let f(t) be n-times differentiable on the clsoed interval [a, b] such that
γ ≤ f (n)(t) ≤ Γ for t ∈ [a, b] and n ∈ N. Then

1
2n

(b− a)n+1

n!

[(
1 +

1 + (−1)n

2(n+ 1)

)
γ − Sn

]
≤ (−1)n

∫ b

a

f(t) dt

+
n−1∑
i=0

(b− a)n−i

(n− i)!
(−1)n+1f (n−i−1)(a) + (−1)if (n−i−1)(b)

2n−i

≤ 1
2n

(b− a)n+1

n!

[(
1 +

1 + (−1)n

2(n+ 1)

)
Γ− Sn

]
,

(21)

where Sn = f(n−1)(b)−f(n−1)(a)
b−a .

Proof. This follows from taking u = a+b
2 in (14). �

Corollary 1. Let f : [a, b] → R be a twice differentiable mapping on [a, b] and
suppose that γ ≤ f ′′(t) ≤ Γ for t ∈ (a, b). Then we have

2γ − 3S2

12
(b− a)2 ≤ 1

b− a

∫ b

a

f(t) dt− f(a) + f(b)
2

≤ 2Γ− 3S2

12
(b− a)2, (22)

where S2 = f ′(b)−f ′(a)
b−a .

Proof. If setting n = 2 in (21), then inequality (22) follows. �

3. More general generalizations

In this section, we will generalize Hermite-Hadamard’s inequality to more general
cases with help of the concept of the harmonic sequence of polynomials.

Definition 1. A sequence of polynomials {Pi(t, x)}∞i=0 is called harmonic if it
satisfies the following Appell condition

P ′i (t) ,
∂Pi(t, x)

∂t
= Pi−1(t, x) , Pi−1(t) (23)

and P0(t, x) = 1 for all defined (t, x) and i ∈ N.
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It is well-known that Bernoulli’s polynomials Bi(t) can be defined by the follow-
ing expansion

xetx

ex − 1
=

∞∑
i=0

Bi(t)
i!

xi, |x| < 2π, t ∈ R, (24)

and are uniquely determined by the following formulae

B′i(t) = iBi−1(t), B0(t) = 1; (25)

Bi(t+ 1)−Bi(t) = iti−1. (26)

Similarly, Euler’s polynomials can be defined by

2etx

ex + 1
=

∞∑
i=0

Ei(t)
i!

xi, |x| < π, t ∈ R, (27)

and are uniquely determined by the following properties

E′i(t) = iEi−1(t), E0(t) = 1; (28)

Ei(t+ 1) + Ei(t) = 2ti. (29)

For further details about Bernoulli’s polynomials and Euler’s polynomials, please
refer to [1, 23.1.5 and 23.1.6] or [9]. Moreover, some new generalizations of Bernoulli’s
numbers and polynomials can be found in [6, 7].

There are many examples of harmonic sequences of polynomials. For instances,
for i being nonegative integer, t, τ, θ ∈ R and τ 6= θ,

Pi,λ(t) , Pi,λ(t; τ ; θ) =
[t− (λθ + (1− λ)τ)]i

i!
, (30)

Pi,B(t) , Pi,B(t; τ ; θ) =
(τ − θ)i

i!
Bi

(
t− θ

τ − θ

)
, (31)

Pi,E(t) , Pi,E(t; τ ; θ) =
(τ − θ)i

i!
Ei

(
t− θ

τ − θ

)
. (32)

As usual, let Bi = Bi(0), i ∈ N, denote Bernoulli’s numbers. From properties
(25) and (26), (28) and (29) of Bernoulli’s and Euler’s polynomials respectively, we
can obtain easily that, for i ≥ 1,

Bi+1(0) = Bi+1(1) = Bi+1, B1(0) = −B1(1) = −1
2
, (33)

and, for j ∈ N,

Ej(0) = −Ej(1) = − 2
j + 1

(2j+1 − 1)Bj+1. (34)

It is also a well known fact that B2i+1 = 0 for all i ∈ N.

Theorem 5. Let {Pi(t)}∞i=0 be a harmonic sequence of polynomials, let f(t) be
n-times differentiable on the clsoed interval [a, b] such that γ ≤ f (n)(t) ≤ Γ for
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t ∈ [a, b] and n ∈ N. Let α be a real constant. Then[
α+ max

t∈[a,b]
|Pn(t) + α|

]
Sn

−
(

max
t∈[a,b]

|Pn(t) + α|+ Pn+1(b)− Pn+1(a)
b− a

+ α

)
Γ

≤ (−1)n+1

[
1

b− a

∫ b

a

f(t) dt+
n∑

i=1

(−1)iPi(b)f (i−1)(b)− Pi(a)f (i−1)(a)
b− a

]

≤
[
α− max

t∈[a,b]
|Pn(t) + α|

]
Sn

+
(

max
t∈[a,b]

|Pn(t) + α| − Pn+1(b)− Pn+1(a)
b− a

− α

)
Γ

(35)

and [
α− max

t∈[a,b]
|Pn(t) + α|

]
Sn

+
(

max
t∈[a,b]

|Pn(t) + α| − Pn+1(b)− Pn+1(a)
b− a

− α

)
γ

≤ (−1)n+1

[
1

b− a

∫ b

a

f(t) dt+
n∑

i=1

(−1)iPi(b)f (i−1)(b)− Pi(a)f (i−1)(a)
b− a

]

≤
[
α+ max

t∈[a,b]
|Pn(t) + α|

]
Sn

−
(

max
t∈[a,b]

|Pn(t) + α|+ Pn+1(b)− Pn+1(a)
b− a

+ α

)
γ,

(36)

where S = f ′(b)−f ′(a)
b−a .

Proof. By successive integration by parts and mathematical induction we obtain

(−1)n

∫ b

a

Pn(t)f (n)(t) dt−
∫ b

a

f(t) dt

=
n∑

i=1

(−1)i
[
Pi(b)f (i−1)(b)− Pi(a)f (i−1)(a)

]
.

(37)

Using definition of the harmonic sequence of polynomials yields∫ b

a

Pn(t) dt = Pn+1(b)− Pn+1(a). (38)

Using (37) and (38) gives us

1
b− a

∫ b

a

[
Pn(t) + α

][
Γ− f (n)(t)

]
dt

=
(−1)n+1

b− a

∫ b

a

f(t) dt+
(
Pn+1(b)− Pn+1(a)

b− a
+ α

)
Γ

+
n∑

i=1

(−1)n+i+1Pi(b)f (i−1)(b)− Pi(a)f (i−1)(a)
b− a

− αSn.

(39)
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Direct calculating shows∣∣∣∣∣ 1
b− a

∫ b

a

[
Pn(t) + α

][
Γ− f (n)(t)

]
dt

∣∣∣∣∣
≤ 1
b− a

max
t∈[a,b]

|Pn(t) + α|
∫ b

a

[
Γ− f (n)(t)

]
dt

= max
t∈[a,b]

|Pn(t) + α|
[
Γ− f (n−1)(b)− f (n−1)(a)

b− a

]
.

(40)

From combining of (39) with (40), it follows that[
α+ max

t∈[a,b]
|Pn(t) + α|

]
Sn

−
(

max
t∈[a,b]

|Pn(t) + α|+ Pn+1(b)− Pn+1(a)
b− a

+ α

)
Γ

≤ (−1)n+1

b− a

∫ b

a

f(t) dt+
n∑

i=1

(−1)n+i+1Pi(b)f (i−1)(b)− Pi(a)f (i−1)(a)
b− a

≤
[
α− max

t∈[a,b]
|Pn(t) + α|

]
Sn

+
(

max
t∈[a,b]

|Pn(t) + α| − Pn+1(b)− Pn+1(a)
b− a

− α

)
Γ.

(41)

The inequality (35) follows.
Similarly, we can obtain the inequality (36). �

Remark 2. If taking P2(t) = 1
2

(
t− a+b

2

)2, α = − (b−a)2

8 , and n = 2 in (35) and
(36), then the inequality (5) follows easily.

Remark 3. If setting Pn(t) = qn(t) and α = 0 in (35) and (36), then we can deduce
Theorem 3 from Theorem 5.

Theorem 6. Let {Ei(t)}∞i=0 be the Euler’s polynomials and {Bi}∞i=0 the Bernoulli’s
numbers. Let f(t) be n-times differentiable on the clsoed interval [a, b] such that
γ ≤ f (n)(t) ≤ Γ for t ∈ [a, b] and n ∈ N. Then

(a− b)n

n!

[(
max

t∈[0,1]
|En(t)|+ 4(2n+2 − 1)

(n+ 1)(n+ 2)
Bn+2

)
Γ− max

t∈[0,1]
|En(t)|Sn

]
≤ 1
b− a

∫ b

a

f(t) dt

+ 2
[n+1

2 ]∑
i=1

(b− a)2(i−1)

(2i)!

[
f (2(i−1))(a) + f (2(i−1))(b)

]
(1− 4i)B2i

≤ (a− b)n

n!

[
max

t∈[0,1]
|En(t)|Sn −

(
max

t∈[0,1]
|En(t)| − 4(2n+2 − 1)

(n+ 1)(n+ 2)
Bn+2

)
Γ
]

(42)
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and

(a− b)n

n!

[
max

t∈[0,1]
|En(t)|Sn −

(
max

t∈[0,1]
|En(t)| − 4(2n+2 − 1)

(n+ 1)(n+ 2)
Bn+2

)
γ

]
≤ 1
b− a

∫ b

a

f(t) dt

+ 2
[n+1

2 ]∑
i=1

(1− 4i)
(b− a)2(i−1)

(2i)!

[
f (2(i−1))(a) + f (2(i−1))(b)

]
B2i

≤ (a− b)n

n!

[(
max

t∈[0,1]
|En(t)|+ 4(2n+2 − 1)

(n+ 1)(n+ 2)
Bn+2

)
γ − max

t∈[0,1]
|En(t)|Sn

]
,

(43)

where S = f ′(b)−f ′(a)
b−a and [x] denotes the Gauss function, whose value is the largest

integer not more than x.

Proof. Let

Pi(t) = Pi,E(t; b; a) =
(b− a)i

i!
Ei

(
t− a

b− a

)
. (44)

Then, we have

max
t∈[a,b]

|Pn(t)| = (b− a)n

n!
max

t∈[0,1]
|En(t)| , (45)

and
Pn+1(b)− Pn+1(a)

b− a
=

4(2n+2 − 1)
n+ 2

(b− a)n

(n+ 1)!
Bn+2. (46)

Using formulae (34) and straightforward calculating yields

n∑
i=1

(−1)iPi(b)f (i−1)(b)− Pi(a)f (i−1)(a)
b− a

=
n∑

i=1

(−1)i (b− a)i−1

i!

[
Ei(1)f (i−1)(b)− Ei(0)f (i−1)(a)

]
=

n∑
i=1

(−1)i (b− a)i−1

i!
Ei(1)

[
f (i−1)(a) + f (i−1)(b)

]
= 2

n∑
i=1

(−1)i (b− a)i−1

(i+ 1)!

[
f (i−1)(a) + f (i−1)(b)

]
(2i+1 − 1)Bi+1

= 2
[n+1

2 ]∑
i=1

(1− 4i)
(b− a)2(i−1)

(2i)!

[
f (2(i−1))(a) + f (2(i−1))(b)

]
B2i.

(47)

Substituting (44), (45), (46) and (47) into (35) and (36) and taking α = 0 leads to
(42) and (43). The proof is complete. �

Theorem 7. Let {Pi(t)}∞i=0 and {Qi(t)}∞i=0 be two harmonic sequences of polyno-
mials, α and β two real constants, u ∈ [a, b]. Let f(t) be n-times differentiable on
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the clsoed interval [a, b] such that γ ≤ f (n)(t) ≤ Γ for t ∈ [a, b] and n ∈ N. Then[
Qn+1(b)− Pn+1(a)

b− a
+
Pn+1(u)−Qn+1(u)

b− a

+
(α− β)u+ (bβ − aα)

b− a
+ C(u)

]
γ − C(u)Sn

≤ (−1)n

b− a

∫ b

a

f(t) dt+
n∑

i=1

(−1)n+iQi(b)f (i−1)(b)− Pi(a)f (i−1)(a)
b− a

+
n∑

i=1

(−1)n+iPi(u)−Qi(u)
b− a

f (i−1)(u)

+
βf (n−1)(b)− αf (n−1)(a)

b− a
+

(α− β)f (n−1)(u)
b− a

≤
[
Qn+1(b)− Pn+1(a)

b− a
+
Pn+1(u)−Qn+1(u)

b− a

+
(α− β)u+ (bβ − aα)

b− a
− C(u)

]
γ + C(u)Sn

(48)

and [
Qn+1(b)− Pn+1(a)

b− a
+
Pn+1(u)−Qn+1(u)

b− a

+
(α− β)u+ (bβ − aα)

b− a
− C(u)

]
Γ + C(u)Sn

≤ (−1)n

b− a

∫ b

a

f(t) dt+
n∑

i=1

(−1)n+iQi(b)f (i−1)(b)− Pi(a)f (i−1)(a)
b− a

+
n∑

i=1

(−1)n+iPi(u)−Qi(u)
b− a

f (i−1)(u)

+
βf (n−1)(b)− αf (n−1)(a)

b− a
+

(α− β)f (n−1)(u)
b− a

≤
[
Qn+1(b)− Pn+1(a)

b− a
+
Pn+1(u)−Qn+1(u)

b− a

+
(α− β)u+ (bβ − aα)

b− a
+ C(u)

]
Γ− C(u)Sn,

(49)

where Sn = f(n−1)(b)−f(n−1)(a)
b−a and

C(u) = max
{

max
t∈[a,u]

|Pn(t) + α| , max
t∈(u,b]

|Qn(t) + β|
}
. (50)

Proof. Define

ψn(t) =

{
Pn(t) + α, t ∈ [a, u],
Qn(t) + β, t ∈ (u, b].

(51)
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It is easy to see that∫ b

a

ψn(t) dt =
∫ u

a

ψn(t) dt+
∫ b

u

ψn(t) dt

= [Qn+1(b)− Pn+1(a)] + [Pn+1(u)−Qn+1(u)] + (α− β)u+ (bβ − aα). (52)

Direct computing produces∫ b

a

ψn(t)f (n)(t) dt =
∫ u

a

ψn(t)f (n)(t) dt+
∫ b

u

ψn(t)f (n)(t) dt

= (−1)n

∫ b

a

f(t) dt+ (α− β)f (n−1)(u)

+
n∑

i=1

(−1)n+i
[
Qi(b)f (i−1)(b)− Pi(a)f (i−1)(a)

]
+

n∑
i=1

(−1)n+i [Pi(u)−Qi(u)] f (i−1)(u)

+
[
βf (n−1)(b)− αf (n−1)(a)

]
,

(53)

and ∣∣∣∣∣
∫ b

a

ψn(t)
[
f (n)(t)− γ

]
dt

∣∣∣∣∣ ≤ max
t∈[a,b]

|ψn(t)|
∫ b

a

(
f (n)(t)− γ

)
dt

≤ C(u)
[
f (n−1)(b)− f (n−1)(a)− γ(b− a)

]
.

(54)

Combining (52), (53), (54) and rearranging leads to (48).
The inequality (49) follows from the same arguments. The proof is complete. �

Remark 4. If taking u = b in Theorem 7, then Theorem 5 is derived.

Remark 5. If taking α = β = 0, Pi(t) = (t−a)i

i! and Qi(t) = (t−b)i

i! in Theorem 7,
then Theorem 1 follows.
Remark 6. If f (n)(t) ≥ 0 (or f (n)(t) ≤ 0) for t ∈ [a, b], then we can set γ = 0 (or
Γ = 0), and so some inequalities for the so-called n-convex (or n-concave) functions
are obtained as consequences of theorems in this paper, which generalize or refine
the well-known Hermite-Hadamard’s inequality.
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