VICTORIA UNIVERSITY

MELBOURNE AUSTRALIA

Generalizations and Refinements of Hermite-
Hadamard's Inequality

This is the Published version of the following publication

Qi, Feng, Wei, Zong-Li and Yang, Qiao (2001) Generalizations and
Refinements of Hermite-Hadamard's Inequality. RGMIA research report
collection, 5 (2).

The publisher’s official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17700/



GENERALIZATIONS AND REFINEMENTS OF
HERMITE-HADAMARD’S INEQUALITY

FENG QI, ZONG-LI WEIL, AND QIAO YANG

ABSTRACT. In this article, with the help of concept of the harmonic sequence
of polynomials, the well known Hermite-Hadamard’s inequality for convex
functions is generalied to the cases with bounded derivatives of n-th order,
including the so-called n-convex functions, from which Hermite-Hadamard’s
inequality is extended and refined.

1. INTRODUCTION

Let f(x) be a convex function on the closed interval [a,b], the well-known
Hermite-Hadamard’s inequality can be expreseed as [5]:

b b
o< [ o-ar (57) < 0-0HTO - [raa o

A function f(x) is said to be r-convex on [a,b] with » > 2 if and only if f(") ()
exists and f()(z) > 0.

In terms of a trapezoidal formula and a midpoint formula for a real function
f(z) defined and integrable on [a,b], using the first and second Euler-Maclaurin
summation formulas, inequality (1) was generalized for (2r)-convex functions on
[a,b] with r > 1 in [2].

In [3, 4], the following double integral inequalities were obtained.

Theorem A. Let [ : [a,b] — R be a twice differentiable mapping and suppose that
v < f'(t) <T for allt € (a,b). Then we have

y(b—a)? a+b r'(b—a)?
<
- / fdt = ( ) =" g @)
yb—a)* _ fla) / ( )
< <
12 - 2 f()dt (3)
In [8], the above inequalities were refined as follows.
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Theorem B. Let f: [a,b] — R be a twice differentiable mapping and suppose that
v < f"(t) <T for allt € (a,b). Then we have

b
%(b_a)Qgﬁ f(t)dt—f(a;rb)§352_427(b—a)2, (4)
S-T b b S —
Bor-ar < L P < 002 )

where S = W.

If f”(t) <0 (or f”(t) > 0), then we can set I' = 0 (or v = 0) in Theorem A
and Theorem B, then Hermite-Hadamard’s inequality (1) and those similar to the
Hemite-Hadamard’s inequality (1) can be obtained.

In this article, using concept of the harmonic sequence of polynomials, the well
known Hermite-Hadamard’s inequality for convex functions is generalied to the
cases with bounded derivatives of n-th order, including the so-called n-convex func-
tions, from which Hermite-Hadamard’s inequality is extended and refeined.

2. SOME SIMPLE GENERALIZATIONS

In this section, we will generalize results above to the cases that the n-th deriv-
ative of integrand is bounded for n € N.

Theorem 1. Let f(t) be n-times differentiable on the clsoed interval [a,b] such that

v < fU(t) < T fort € [a,b] and n € N. Further, let u € [a,b] be a parameter.
Then

(b— a)S, max { (u ;!a)" Ru ;,“)n }

(n+1)! — -
- /“b o Z__é - a)n(; = z(;: ) (6)
< (b-a)S, max{(u L o 'u)}
N
where 5y, = L7201 Va)
Proof. Define
‘ —ma)” t € [a,ul,
palt) = (t ;'b)”, fe (7)

By direct computation, we have

b _
/ pn(t)dt = . (8)
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Integrating by parts and using mathematical induction yields

(u—a)”— (u—0)"

n!

b b
/ Pa(8) £ (£) dt = SOV () — / Pt (O V(@) dt (9)

and then

/:mt)f(“( £ dt + (—1)"+! / 0

*Z ez gy, (10)

(n—1)!

Utilizing of (8) and (10) yields

b U —a n+1l _ u— n+1
Lpn<t)[f(n)(t)_ / f )(n_|_1()| b) v

+Z (u—a)"" = (u—b)"~ Z(il)if(nfifl)(u), (11)

— (n—1)!

Meanwhile,

/ Pa(®)[f () — 4] dt
< / 1P (®)] | (t) — 5| dt

(12)
< max |p,(t)] / ) dt
t€la,b]
_ b—u)" (n—1) b) — (n—1)
e @ 0)" ’< W) (£ =S
n! n! b—a
The right inequality in (6) follows from combining of (11) with (12).
The left inequality in (6) follows from similar arguments as above. O

Theorem 2. Let f(t) be n-times differentiable on the clsoed interval [a,b] such that
v < fON(t) <T fort € la,b] and n € N. Then

B e (5]

< ( /f dt+z m(_l)nﬂﬂ_l)if("*i*“ (a;b) (13)

27’7/72
1 (b—a)"t! 1+ (-1
Qi e AN '~ IR (el S S |
=on T ql St S i
e O Sl ()
where S, = = .
Proof. This follows from taking u = “7“’ in inequality (6). O

Remark 1. If taking n = 2 in (13), the double inequality (4) follows.
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Theorem 3. Let f(t) be n-times differentiable on the clsoed interval [a,b] such that
v < fO(t) <T fort € la,b] andn €N, and u € R. Then

{(b_a)max{hzu|"7|bu|"}+ (b—w)" — (a — u)n+L )

! " (n+1)!
o= Jb—ul"
—(b—a)S, max{ B
b
<(=0" [ f)de
S8 A i (14)
s (0 —w)r i f =D () — (@ — w)* T f (D (a)
-1
) ;( | (n—1)!
o= u® b= ul” (b —w)"*! — (a —u)"*!
< |(p—
|a — u|n |b _ u"n
. a)Snmax{ oy
where Sy, = f(nfl)(bg—f‘"*”(a).
Proof. Define
t— n
() = n'U) , uER (15)

By direct computation, we have

(b—u)"tt — (@ — u)"t?

b
/a gn(t)dt = CESI] . (16)

Integrating by parts and using mathematical induction yields

b b
/ g ()£ (8) dt + / Gt (07D ()
- u) S B) — (- " FrD(a) 1

- n!

bqn(t)f ) dt+ (=)™ [ f()
J [

and then

S oW G @i
- (1) (n —1)! '
i=0 ’
Making use of of (16) and (18) and direct calculation yields
b bh— n+1 _ n+1
[ @b - rowla= e [ pay G0 lem 0,
+ (O OO (@ u T ) g

—~ (n—1)!
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It is easy to see that

b
/ ([ — 1 (1) at

< max |g,(t \/ Fm(t ) dt (20)
t€la,b]
_ _ (n=1)(p) — f(n—1)
B i N P O e [N P
n! n! b—a

The left inequality in (14) follows from combining of (19) with (20).
The right inequality in (14) follows from similar arguments as above. (I

Theorem 4. Let f(t) be n-times differentiable on the clsoed interval [a, ] such that
v < fO(t) <T fort € la,b] and n € N. Then

L0 [ )

a

3 | A ’ i 21
+ nzl (b— a)"— (=11 fln=i=1)(g) 4 (—1) fr=i=1)(p) (21)
i=0 (n —1)! T
1 (b— a)"+1 T
P RO SN TN S e VA P
= 9n n! + 2(n - 1) sl
where §,, = L0,
Proof. This follows from taking u = zib in (14). )

Corollary 1. Let f : [a,b] — R be a twice differentiable mapping on [a,b] and
suppose that v < f"(t) <T fort € (a,b). Then we have

2y — 35, )+f( ) 2" — 3.5, 2
—(b—- t)dt — < b— 22
e e [ <A a2, (22)
where Sg = M.
Proof. If setting n = 2 in (21), then inequality (22) follows. O

3. MORE GENERAL GENERALIZATIONS
In this section, we will generalize Hermite-Hadamard’s inequality to more general
cases with help of the concept of the harmonic sequence of polynomials.

Definition 1. A sequence of polynomials {P;(¢,z)}32, is called harmonic if it
satisfies the following Appell condition

Py 2 22D _p a2 b (23)

and Py(t,z) =1 for all defined (¢,2) and ¢ € N.
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It is well-known that Bernoulli’s polynomials B;(t) can be defined by the follow-
ing expansion

xet® = Bi(t) ,

7122 ot ol <2m teR, (24)
i=0

and are uniquely determined by the following formulae

Bi(t) =iB;-1(t), Bo(t)=1; (25)
Bi(t+1) — Bi(t) = it" 1. (26)

Similarly, Euler’s polynomials can be defined by

2¢t® = Ei(t)
— My g<n ter, (27)

and are uniquely determined by the following properties

E{(t) = iB;_1(t), Eo(t) =1; (28)
Ei(t+1)+ Ei(t) = 2t". (29)

For further details about Bernoulli’s polynomials and Euler’s polynomials, please
refer to [1, 23.1.5 and 23.1.6] or [9]. Moreover, some new generalizations of Bernoulli’
numbers and polynomials can be found in [6, 7].

There are many examples of harmonic sequences of polynomials. For instances,
for i being nonegative integer, t, 7,0 € R and 7 # 6,

[t— N0+ (1—N)7)]

Pix(t) £ Pia(t;7:0) = a ; (30)
P p(t) & P p(t;;0) = (T;!WBi <i_09)’ (31)

As usual, let B; = B;(0), ¢ € N, denote Bernoulli’s numbers. From properties
(25) and (26), (28) and (29) of Bernoulli’s and Euler’s polynomials respectively, we
can obtain easily that, for i > 1,

Bi11(0) = Biy1(1) = Biy1, Bi(0) = =By (1) = —%, (33)

and, for j € N,
2

E;(0)=-E;Q1) = *m@”l = 1)Bj1. (34)
It is also a well known fact that Bg; 11 = 0 for all ¢ € N.

Theorem 5. Let {P;(t)}2, be a harmonic sequence of polynomials, let f(t) be
n-times differentiable on the clsoed interval [a,b] such that v < f™(t) < T for

S
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t € [a,b] and n € N. Let o be a real constant. Then

{a+ max P()+o¢|}S

t€la,b]
Pn+1(b) *Pn-&-l(a)
(tIEn[?ZE]P() al + b a +oz)F
n (=1 (p ) (i—1)
< (- lb /f dt+Z ®)] 1()bfal(a)f 2@ (35)
< {a— max_ | P, (t )—l—aq S
t€(a,b]
+ (max |Pn(t) + o] — Po1(b) = Pria(a) —a) r
te(a,b)] b—a
and
{a— maX | P (t )—|—a|} S,
tela,
Poi1(b) — Pryi(a)
+ (tren[gfclp (1) +af - Lot = P —a)v
S( n+1 [b / f dt“ri f(z 1)( Zﬁai(a)f(i—l)(a) (36)
< {a—i— max | P (t )—l—a@ S
tela,
- (tlen[a);] |Pa(t) + ol + PnH(bl)) : aP’n+1(a) +a) Vs

where S = M.

Proof. By successive integration by parts and mathematical induction we obtain

b b
(-1)" / Py () ) (t) dt — / f(t)di

(37)
=D (D' [B®FI0) = Pla) 7 (@)
i=1
Using definition of the harmonic sequence of polynomials yields
b
/ Po(t)dt = Posr(b) — Posa(a). (38)
Using (37) and (38) gives us
b
bl [Pa(t) + ] [T~ 5 (0)] a
n+1/ f(t dt+( Frer(b) = Poa(a )+a> r (39)
b—a
ntis1 Bi(0) SO () — Pi(a) fOV(a)
+Z(_1) e b—a - ady.
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Direct calculating shows

b
bia/ [Pu(t) + o [T = ()] dt

b
<1 e IPa®) +af / T — £ (1)) e (40)

~ b—a tela,b]
FOD®) = f D (a)
a b—a } '

= max |P,(t) + {F
tE[a b]

From combining of (39) with (40), it follows that

{oﬁ- max P()+a|}5

tela,
P, b P,
+1(b) = Pat1(a) )F

b—a

n+1/ f dt—s—z n+z+1 ()f(’ 1)(bziai(a)f(i—1)(a) (41)

— (max |Pn(t) + o +
t€(a,b]

g[a_mmp()m@s

te(a,b]
= Pry1(b) — Poyi(a) _ Oz) T

P,
+(t21[3); (t) + -

The inequality (35) follows.
Similarly, we can obtain the inequality (36). O

Remark 2. If taking Py(t) = 3 (t — “'QH’)Z, o= —(b;a)z, and n = 2 in (35) and
(36), then the inequality (5) follows easily.

Remark 3. If setting P, (t) = ¢, (t) and a = 0 in (35) and (36), then we can deduce
Theorem 3 from Theorem 5.

Theorem 6. Let {E;(t)}52, be the Euler’s polynomials and { B; }32, the Bernoulli’s
numbers. Let f(t) be n—tzmes differentiable on the clsoed interval [a,b] such that
v < fO(t) <T fort € la,b] and n € N. Then

(a—b)" [(max B ()] + 4<2n+2_1)Bn+2> I — max |E,()] S,

n! t€[0,1] (n+1)(n+2) t€[0,1]
1 b
<y |
2] _ gyt (42)
+2 Z O [ a) 4 D )] (- 4B
(a — b)” 4(2n+2 — 1)
<l [trg[gu;] B0)1, ~ (s 1,0] — 2o Bea ) T
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and

(a —b)" 4(2n+2 — 1)
= Lfen[gﬁ Ea(t)] S — (gl[g>1(] Bl 2)Bm) v}

i (0=a)?t T o (2(i—1)) ,
+221 g O @+ 1 w)] By

(a— b)n 4(2n2 — 1)
< Kfen[oafﬁ |En(t)] + (n+1)<n+2)Bn+2) Y- max |En(t)] Sn} ;

where S = M and [z] denotes the Gauss function, whose value is the largest
integer not more than xT.

Proof. Let
(b—a)’ t—a
(1) = Prsltsbia) = = (1= (44)
Then, we have
ax [P,(0) = L= mnax |15, (45)
max = max
te[a,b] n!  tefo,1] ’
and
PnJrl(b) - PnJrl (a) 4(2n+2 - 1) (b - a)n
= B . 4
b—a n+2 (n+1) " (46)

Using formulae (34) and straightforward calculating yields

n P (=D (p (i=1)(q

— b—a
n —a i—1 . .
=S P ()06 - B )]
i=1 :
n _a)i-1 _ _
=S 0 m ) [ @)+ 0 ) )
=23 0 @+ ] e s,
=] .
— i (b_ a)2(Z b i— i—
=2 3 (1—4 )W [f@( D) (q) + f& 1>>(b)] Bos.
Substituting (44), (45), (46) and (47) into (35) and (36) and taking o = 0 leads to
(42) and (43). The proof is complete. O

Theorem 7. Let {P;(t)}2, and {Qi(t)}2, be two harmonic sequences of polyno-
mials, o and B two real constants, u € [a,b]. Let f(t) be n-times differentiable on
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the clsoed interval [a,b] such that v < f(t) <T fort € [a,b] and n € N. Then
{Qn—&-l(b) — Payi(a) + Poy1(u) — Qnii(u)

b—a b—a

(a = Plu+ (b — aar)
b—a

< (*_1)” /b £(t) dt+zn:(,1)n+i Qi(b)f(ifl)(bl)):fi(a)f(ifl)(a)

+ + C(u)] v —C(u)S,

Xn: n+1P( l)):aQ( )f(z 1)( ) (48)
5f(” D) —af" V(a a) . (a—=B) "D (u)
b—a b—a
< |:Qn+1(b) — Puyi(a) n Pri1(u) — Qnii(u)
- b—a b—a
+(a—ﬂ)"»;Ji(;ﬂ—ctcv)

- c<u>] y 4 WS,

and
Qnt1(b) — Poyi(a) n Pot1(u) = Qi (u)
b—a b—a
(a = Blu+ (b — aar)
b—a

_1\n b n 0. (i—1) — P(a (i—1) a
_1) / f(t) dt+Z(_1)n+zQz(b)f (b)_Pv( )f ( )

+

- C(u)] '+ C(u)Sy

M:
=
+
A
Y
=
\_/
@
A
£

~
2\
C

A

£

—
N
N=)
=

5f(” V() —af"Y(a )+ (a—B)f" D (u)
b—a b—a
< [Qnﬂ(b) — Puy1(a) n Pry1(u) — Qnia(u)
- b—a b—a
+(afﬂ)'u;_(;ﬁ*aoz)

+ C’(u)] I —C(u)Sy,

FO®)— Y (a)
b—a

where S,, = and

C(u) = max{ maX |P.(t) + o, max |Qn( )—i—ﬂ}. (50)

tefa,u]

Proof. Define
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It is easy to see that

b u b
/ (1) dt = / () dt +/ (1) dt
= [Qny1(b) — Ppyi1(a)] + [Poy1(u) — Quyr(u)] + (o — Blu+ (b8 — acr).  (52)

Direct computing produces
b u b
/ Gt O (1) dt = / Gt O (1) dt + / Bt O (1)
b
= (-1 / F(5) dt + (a— B) F" D ()

20 QB - Pl f @) (53)

+ Z(—l)"“ [Pi(u) = Qi(w)] £~ (u)

+ [B£ D ®) - af " V(a)]

and

b
< max [ (8)| / (F™ () - ) at

t€la,b]

b
/ Un () [F () —~] dt

(54)
< C() [0 0) — F* V(@) = (b - a)] .

Combining (52), (53), (54) and rearranging leads to (48).
The inequality (49) follows from the same arguments. The proof is complete. [

Remark 4. If taking v = b in Theorem 7, then Theorem 5 is derived.

Remark 5. If taking « = 8 = 0, P;(¢t) = @ and Q;(t) = (t_i,b)l in Theorem 7,
then Theorem 1 follows. ' '

Remark 6. If f()(t) > 0 (or f™(t) < 0) for t € [a,b], then we can set v = 0 (or
I’ = 0), and so some inequalities for the so-called n-convex (or n-concave) functions
are obtained as consequences of theorems in this paper, which generalize or refine
the well-known Hermite-Hadamard’s inequality.
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