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A GRÜSS TYPE INEQUALITY FOR SEQUENCES OF VECTORS
IN NORMED LINEAR SPACES AND APPLICATIONS

S. S. DRAGOMIR

Abstract. A discrete inequality of Grüss type in normed linear spaces and

applications for the discrete Fourier transform, Mellin transform of sequences,
for polynomials with coefficients in normed spaces and for vector valued Lips-

chitzian mappings are given.

1. Introduction

In 1935, G. Grüss [9] proved the following integral inequality which gives an
approximation of the integral of the product in terms of the product of the integrals
as follows ∣∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx

∣∣∣∣∣(1.1)

≤ 1
4

(Φ− φ) (Γ− γ) ,

where f , g : [a, b] → R are integrable on [a, b] and satisfy the condition

(1.2) φ ≤ f (x) ≤ Φ, γ ≤ g (x) ≤ Γ

for each x ∈ [a, b] , where φ,Φ, γ,Γ are given real constants.
Moreover, the constant 1

4 is sharp in the sense that it cannot be replaced by a
smaller one.

For a simple proof of (1.1) as well as for some other integral inequalities of Grüss
type, see Chapter X of the recent book [11] and the papers [1]-[8] and [10].

In 1950, M. Biernacki, H. Pidek and C. Ryll-Nardjewski [11, Chapter X] estab-
lished the following discrete version of Grüss’ inequality:
Theorem 1. Let a = (a1, ..., an) , b = (b1, ..., bn) be two n−tuples of real numbers
such that r ≤ ai ≤ R and s ≤ bi ≤ S for i = 1, ..., n. Then one has

(1.3)

∣∣∣∣∣ 1n
n∑

i=1

aibi −
1
n

n∑
i=1

ai ·
1
n

n∑
i=1

bi

∣∣∣∣∣ ≤ 1
n

[n
2

](
1− 1

n

[n
2

])
(R− r) (S − s) ,

where [x] denotes the integer part of x, x ∈ R.

A weighted version of the discrete Grüss inequality was proved by J. E. Pečarić
in 1979 [11, Chapter X]:
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Theorem 2. Let a and b be two monotonic n−tuples and p a positive one. Then∣∣∣∣∣ 1
Pn

n∑
i=1

piaibi −
1

Pn

n∑
i=1

piai ·
1

Pn

n∑
i=1

pibi

∣∣∣∣∣(1.4)

≤ |an − a1| |bn − b1| max
1≤k≤n−1

[
PkP̄k+1

P 2
n

]
,

where Pn :=
∑n

i=1 pi, and P̄k+1 = Pn − Pk+1.

In 1981, A. Lupaş, [11, Chapter X] proved some similar results for the first
difference of a as follows.

Theorem 3. Let a, b be two monotonic n−tuples in the same sense and p a positive
n-tuple. Then

min
1≤i≤n−1

|∆ai| min
1≤i≤n−1

|∆bi|

 1
Pn

n∑
i=1

i2pi −

(
1

Pn

n∑
i=1

ipi

)2
(1.5)

≤ 1
Pn

n∑
i=1

piaibi −
1

Pn

n∑
i=1

piai ·
1

Pn

n∑
i=1

pibi

≤ max
1≤i≤n−1

|∆ai| max
1≤i≤n−1

|∆bi|

 1
Pn

n∑
i=1

i2pi −

(
1

Pn

n∑
i=1

ipi

)2
 ,

where ∆ai := ai+1 − ai is the forward first difference. If there exist the numbers
ā, ā1, r, r1 (rr1 > 0) such that ak = ā + kr and bk = ā1 + kr1, then equality holds
in (1.5).

In the recent paper [6], the authors obtained the following related result

Theorem 4. Let (X, ‖·‖) be a normed linear space over K, K = R, C, xi ∈ X,
αi ∈ K and pi ≥ 0 (i = 1, ..., n) such that

∑n
i=1 pi = 1.

Then we have the inequality∥∥∥∥∥
n∑

i=1

piαixi −
n∑

i=1

piαi

n∑
i=1

pixi

∥∥∥∥∥(1.6)

≤ max
1≤j≤n−1

|∆αj | max
1≤j≤n−1

‖∆xj‖

 n∑
i=1

i2pi −

(
n∑

i=1

ipi

)2
 .

The inequality (1.6) is sharp in the sense that the constant c = 1 in the right hand
side cannot be replaced by a smaller one.

In this paper we point out another inequality of Grüss type and apply it in
approximating the discrete Fourier transform, the Mellin transform of sequences,
for polynomials with coefficients in normed linear spaces and for vector valued
Lipschitzian mappings.

2. A New Discrete Inequality of Grüss Type

The following inequality of Grüss type holds.
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Theorem 5. Let (X, ‖·‖) be a normed linear space over K, K = R, C, xi ∈ X, αi

∈ K and pi ≥ 0 (i = 1, ..., n) (n ≥ 2) such that
∑n

i=1 pi = 1. Then we have the
inequality

(2.1)

∥∥∥∥∥
n∑

i=1

piαixi −
n∑

i=1

piαi

n∑
i=1

pixi

∥∥∥∥∥ ≤ 1
2

n∑
i=1

pi (1− pi)
n−1∑
i=1

|∆αi|
n−1∑
i=1

‖∆xi‖ ,

where ∆αi := αi+1 − αi (i = 1, ..., n− 1) and ∆xi := xi+1 − xi (i = 1, ..., n− 1)
are the usual forward differences.
The constant 1

2 is sharp in the sense that it cannot be replaced by a smaller constant.

Proof. Let us start with the following identity in normed linear spaces which can
be proved by direct computation [6]

n∑
i=1

piαixi −
n∑

i=1

piαi

n∑
i=1

pixi =
1
2

n∑
i,j=1

pipj (αj − αi) (xj − xi)

=
∑

1≤i<j≤n

pipj (αj − αi) (xj − xi) .

As i < j, we can write

αj − αi =
j−1∑
k=i

(αk+1 − αk) =
j−1∑
k=i

∆αk

and

xj − xi =
j−1∑
l=i

(xl+1 − xl) =
j−1∑
l=i

∆xl.

Using the generalized triangle inequality, we have successively:∥∥∥∥∥
n∑

i=1

piαixi −
n∑

i=1

piαi

n∑
i=1

pixi

∥∥∥∥∥(2.2)

=

∥∥∥∥∥∥
∑

1≤i<j≤n

pipj

j−1∑
k=i

∆αk

j−1∑
l=i

∆xl

∥∥∥∥∥∥
≤

∑
1≤i<j≤n

pipj

∣∣∣∣∣
j−1∑
k=i

∆αk

∣∣∣∣∣
∥∥∥∥∥

j−1∑
l=i

∆xl

∥∥∥∥∥
≤

∑
1≤i<j≤n

pipj

j−1∑
k=i

|∆αk|
j−1∑
l=i

‖∆xl‖ =: A.

It is obvious for all 1 ≤ i < j ≤ n− 1, we have that
j−1∑
k=i

|∆αk| ≤
n−1∑
k=1

|∆αk|

and
j−1∑
l=i

‖∆xl‖ ≤
n−1∑
l=1

‖∆xl‖
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and then

(2.3) A ≤
n−1∑
k=1

|∆αk|
n−1∑
l=1

‖∆xl‖
∑

1≤i<j≤n

pipj .

Now, let us observe that

∑
1≤i<j≤n

pipj =
1
2

 n∑
i,j=1

pipj −
∑
i=j

pipj

(2.4)

=
1
2

 n∑
i=1

pi

n∑
j=1

pj −
n∑

i=1

p2
i


=

1
2

n∑
i=1

pi (1− pi) .

Using (2.2)− (2.4) , we deduce the desired inequality (2.1) .
To prove the sharpness of the constant 1

2 , let us assume that (2.1) holds with a
constant c > 0. That is,

(2.5)

∥∥∥∥∥
n∑

i=1

piαixi −
n∑

i=1

piαi

n∑
i=1

pixi

∥∥∥∥∥ ≤ c
n∑

i=1

pi (1− pi)
n−1∑
i=1

|∆αi|
n−1∑
i=1

‖∆xi‖

for all αi, xi, pi (i = 1, ..., n) as above and n ≥ 2.
Choose in (2.1) n = 2 and compute

2∑
i=1

piαixi −
2∑

i=1

piαi

2∑
i=1

pixi =
1
2

2∑
i,j=1

pipj (αi − αj) (xi − xj)

=
∑

1≤i<j≤2

pipj (αi − αj) (xi − xj)

= p1p2 (α1 − α2) (x1 − x2) .

Also,
2∑

i=1

pi (1− pi)
1∑

i=1

|∆αi|
1∑

i=1

‖∆xi‖ = (p1p2 + p1p2) |α1 − α2| ‖x1 − x2‖ .

Substituting in (2.5) , we obtain

p1p2 |α1 − α2| ‖x1 − x2‖ ≤ 2cp1p2 |α1 − α2| ‖x1 − x2‖ .

If we assume that p1, p2 > 0, α1 6= α2, x1 6= x2, then we obtain c ≥ 1
2 , which proves

the sharpness of the constant 1
2 .

The following corollary holds.
Corollary 1. Under the above assumptions for xi, αi (i = 1, ..., n) , we have the
inequality

(2.6)

∥∥∥∥∥ 1
n

n∑
i=1

αixi −
1
n

n∑
i=1

αi ·
1
n

n∑
i=1

xi

∥∥∥∥∥ ≤ 1
2

(
1− 1

n

) n−1∑
i=1

|∆αi|
n−1∑
i=1

‖∆xi‖ ,

and the constant 1
2 is sharp.
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Considering the case of real or complex numbers is important in practical appli-
cations.

Corollary 2. Let αi, βi ∈ K, pi ≥ 0 (i = 1, ..., n) with
∑n

i=1 pi = 1. Then we have
the inequality

(2.7)

∣∣∣∣∣
n∑

i=1

piαiβi −
n∑

i=1

piαi

n∑
i=1

piβi

∣∣∣∣∣ ≤ 1
2

n∑
i=1

pi (1− pi)
n−1∑
i=1

|∆αi|
n−1∑
i=1

|∆βi| ,

and the constant 1
2 is sharp.

Remark 1. If in the above inequality we choose βi = ᾱi (i = 1, ..., n) , then we get

0 ≤
n∑

i=1

pi |αi|2 −

∣∣∣∣∣
n∑

i=1

piαi

∣∣∣∣∣
2

(2.8)

≤ 1
2

n∑
i=1

pi (1− pi)

(
n−1∑
i=1

|∆αi|

)2

,

and the constant 1
2 is sharp.

3. Applications for the Discrete Fourier Transform

Let (X, ‖·‖) be a normed linear space over K, K = C, R, and x̄ = (x1, ..., xn) be
a sequence of vectors in X.

For a given w ∈ K, define the discrete Fourier transform

(3.1) Fw (x̄) (m) :=
n∑

k=1

xk exp (2wimk) , m = 1, ..., n.

The following approximation result for the Fourier transform (3.1) holds.

Theorem 6. Let (X, ‖·‖) and x̄ ∈ Xn be as above. Then we have the inequality∥∥∥∥∥Fw (x̄) (m)− sin (wmn)
sin (wm)

exp [(n + 1) im]× 1
n

n∑
k=1

xk

∥∥∥∥∥(3.2)

≤ (n− 1)2 |sin (wm)|
n−1∑
i=1

‖∆xi‖ ,

for all m ∈ {1, ..., n} .

Proof. Using the inequality (2.6) , we can state that∥∥∥∥∥
n∑

k=1

akxk −
n∑

k=1

ak ·
1
n

n∑
k=1

xk

∥∥∥∥∥(3.3)

≤ n− 1
2

n−1∑
k=1

|∆ak|
n−1∑
k=1

‖∆xk‖
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for all ak ∈ K, xk ∈ X, k = 1, ..., n.
Now, choose in (3.3) , ak = exp (2wimk) to obtain∥∥∥∥∥Fw (x̄) (m)−

n∑
k=1

exp (2wimk) · 1
n

n∑
k=1

xk

∥∥∥∥∥(3.4)

≤ n− 1
2

n−1∑
k=1

|exp (2wim (k + 1))− exp (2wimk)|
n−1∑
k=1

‖∆xk‖ ,

for all m ∈ {1, ..., n} .
However,

n∑
k=1

exp (2wimk) = exp (2wim)×
[
exp (2wimn)− 1
exp (2wim)− 1

]
= exp (2wim)×

[
cos (2wmn) + i sin (2wmn)− 1
cos (2wm) + i sin (2wm)− 1

]
= exp (2wim)×

[
−2 sin2 (wmn) + 2i sin (wmn) cos (wmn)
−2 sin2 (wm) + 2i sin (wm) cos (wm)

]
= exp (2wim)× sin (wmn)

sin (wm)

[
sin (wmn)− i cos (wmn)
sin (wm)− i cos (wm)

]
= exp (2wim)× sin (wmn)

sin (wm)

[
cos (wmn) + i sin (wmn)
cos (wm) + i sin (wm)

]

=
sin (wmn)
sin (wm)

× exp (2wim)
[
exp (iwmn)
exp (iwm)

]
=

sin (wmn)
sin (wm)

× exp [2wim + iwmn− iwm]

=
sin (wmn)
sin (wm)

× exp [(n + 1)mi] .

We observe that

exp (2wim (k + 1))− exp (2wimk)
= cos (2wm (k + 1)) + i sin (2wm (k + 1))− cos (2wmk)− i sin (2wmk)
= cos (2wm (k + 1))− cos (2wmk) + i [sin (2wm (k + 1))− sin (2wmk)]

= −2 sin
[
2wm (k + 1) + 2wmk

2

]
sin
[
2wm (k + 1)− 2wmk

2

]
+i2 cos

[
2wm (k + 1) + 2wmk

2

]
sin
[
2wm (k + 1)− 2wmk

2

]
= −2 sin ((2k + 1) wm) sin (wm) + 2i cos ((2k + 1)wm) sin (wm)
= 2i sin (wm) [cos [(2k + 1)mw] + i sin [(2k + 1) mw]]
= 2i sin (wm) exp [(2k + 1) mwi] ,

and then

|exp (2wim (k + 1))− exp (2wimk)| = 2 |sin (wm)|
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for all k = 1, ..., n− 1. Consequently,
n−1∑
k=1

|exp (2wim (k + 1))− exp (2wimk)| = 2 |sin (wm)| (n− 1)

and by (3.4) , we get the desired inequality (3.2) .

4. Applications for the Discrete Mellin Transform

Let (X, ‖·‖) be a normed linear space over K, K = C, R, and x̄ = (x1, ..., xn) be
a sequence of vectors in X.

Define the Mellin transform

(4.1) M (x̄) (m) :=
n∑

k=1

km−1xk, m = 1, ..., n;

of the sequence x̄ ∈ Xn.
The following result holds.

Theorem 7. Let (X, ‖·‖) and x̄ ∈ Xn be as above. Then we have the inequality∥∥∥∥∥M (x̄) (m)− Sm−1 (n)× 1
n

n∑
k=1

xk

∥∥∥∥∥(4.2)

≤
(n− 1)

(
nm−1 − 1

)
2

n−1∑
k=1

‖∆xk‖ ,

where Sp (n) , p ∈ R, n ∈ N is the p−powers sum of the first n natural numbers,
i.e.,

Sp (n) =
n∑

k=1

kp.

Proof. Using the inequality (3.3) , we can state that∥∥∥∥∥
n∑

k=1

km−1xk −
n∑

k=1

km−1 · 1
n

n∑
k=1

xk

∥∥∥∥∥
≤ n− 1

2

n−1∑
k=1

∣∣∣(k + 1)m−1 − km−1
∣∣∣ n−1∑

k=1

‖∆xk‖

=
(n− 1)

(
nm−1 − 1

)
2

n−1∑
k=1

‖∆xk‖ ,

and the inequality (4.2) is proved.

Consider the following particular values of the Mellin transform

µ1 (x̄) :=
n∑

k=1

kxk

and

µ2 (x̄) :=
n∑

k=1

k2xk.

The following corollary holds.
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Corollary 3. Let X and x̄ be as specified above. Then we have the inequalities:

(4.3)

∥∥∥∥∥µ1 (x̄)− n + 1
2

n∑
k=1

xk

∥∥∥∥∥ ≤ (n− 1)2

2

n−1∑
k=1

‖∆xk‖

and

(4.4)

∥∥∥∥∥µ2 (x̄)− (n + 1) (2n + 1)
6

n∑
k=1

xk

∥∥∥∥∥ ≤ (n− 1)2 (n + 1)
2

n−1∑
k=1

‖∆xk‖ .

Remark 2. If we assume that p = (p1, ..., pn) is a probability distribution, i.e., pk ≥
0 (k = 1, ..., n) and

∑n
k=1 pk = 1, then, by (4.3) and (4.4) , we get the inequalities

(4.5)

∣∣∣∣∣
n∑

k=1

kpk −
n + 1

2

∣∣∣∣∣ ≤ (n− 1)2

2

n−1∑
k=1

|pk+1 − pk|

and

(4.6)

∣∣∣∣∣
n∑

k=1

k2pk −
(n + 1) (2n + 1)

6

∣∣∣∣∣ ≤ (n− 1)2 (n + 1)
2

n−1∑
k=1

|pk+1 − pk| ,

which have been obtained in [4] and applied for the estimation of the 1 and 2-
moments of a guessing mapping.

5. Applications for Polynomials

Let (X, ‖·‖) be a normed linear space over K, K = C, R, and c̄ = (c0, ..., cn) be a
sequence of vectors in X.

Define the polynomial P : C → X with the coefficients c̄ by

P (z) = c0 + zc1 + ... + zncn, z ∈ C, cn 6= 0.

The following approximation result for the polynomial P holds.
Theorem 8. Let X, c̄ and P be as above. Then we have the inequality:

(5.1)
∥∥∥∥P (z)− zn+1 − 1

z − 1
× c0 + ... + cn

n + 1

∥∥∥∥ ≤ n |z − 1|
2 (|z| − 1)

(|z|n − 1)
n−1∑
k=0

‖∆ck‖

for all z ∈ C, |z| 6= 1.

Proof. Using the inequality (3.3) , we can state that∥∥∥∥∥
n∑

k=0

zkck −
n∑

k=0

zk × 1
n + 1

n∑
k=0

ck

∥∥∥∥∥(5.2)

≤ n

2

n−1∑
k=0

∣∣zk+1 − zk
∣∣ n−1∑

k=0

‖∆ck‖

=
n

2

n−1∑
k=0

|z|k |z − 1|
n−1∑
k=0

‖∆ck‖

=
n |z − 1|

2 (|z| − 1)
(|z|n − 1)

n−1∑
k=0

‖∆ck‖ ,

and, as
∑n

k=0 zk = zn+1−1
z−1 , z 6= 1, the inequality (5.1) is proved.
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The following result for the complex roots of the unity also holds:

Theorem 9. Let zk := cos
(

kπ
n+1

)
+ i sin

(
kπ

n+1

)
, k ∈ {0, ..., n} be the complex

(n + 1)−roots of the unity. Then we have the inequality

(5.3) ‖P (zk)‖ ≤ n2 sin
[

kπ

2 (n + 1)

] n−1∑
k=0

‖∆ck‖

for all k ∈ {1, ..., n} .

Proof. As in the proof of Theorem 8, we have∥∥∥∥∥P (z)− zn+1 − 1
z − 1

× 1
n + 1

n∑
k=0

ck

∥∥∥∥∥(5.4)

≤ n

2

n−1∑
m=0

|z|m |z − 1|
n−1∑
k=0

‖∆ck‖ .

If we choose z = zk, k ∈ {1, ..., n} , we have |zk|m = 1, zn+1
k = 1 and then, by (5.4)

we deduce

(5.5) ‖P (zk)‖ ≤ n2

2
|zk − 1|

n−1∑
k=0

‖∆ck‖ .

However,

zk − 1 = cos
(

kπ

n + 1

)
+ i sin

(
kπ

n + 1

)
− 1

= −2 sin2

(
kπ

2 (n + 1)

)
+ 2i sin

[
kπ

2 (n + 1)

]
cos
[

kπ

2 (n + 1)

]
= 2i sin

(
kπ

2 (n + 1)

)[
cos
[

kπ

2 (n + 1)

]
+ i sin

[
kπ

2 (n + 1)

]]
and then

|zk − 1| = 2 sin
[

kπ

2 (n + 1)

]
, for all k ∈ {1, ..., n} .

Using (5.5) , we deduce the desired inequality (5.3) .

Corollary 4. Let P (z) =
∑n

k=0 ckzk be a polynomial with real coefficients satisfy-
ing the condition c0 ≤ c1 ≤ ... ≤ cn. Then we have the inequality

(5.6) |P (zk)| ≤ n2 sin
[

kπ

2 (n + 1)

]
(cn − c0) ,

for all k ∈ {1, ..., n} , where zk are as in Theorem 9.

6. Applications for Lipschitzian Mappings

Let (X, ‖·‖) be as above and F : X → Y a mapping defined on the normed linear
space X with values in the normed linear space Y which satisfies the Lipschitzian
condition

(6.1) |F (x)− F (y)| ≤ L ‖x− y‖ for all x, y ∈ X,

where | · | denotes the norm on Y .
The following theorem holds.
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Theorem 10. Let F : X → Y be as above and xi ∈ X, pi ≥ 0 (i = 1, ..., n) and∑n
i=1 pi = 1. Then we have the inequality:

(6.2)

∣∣∣∣∣
n∑

i=1

piF (xi)− F

(
n∑

i=1

pixi

)∣∣∣∣∣ ≤ L
n∑

i=1

pi (1− pi)
n−1∑
k=1

‖∆xk‖ .

Proof. As F is Lipschitzian, we have (6.1) for all x, y ∈ X. Choose x =
∑n

i=1 pixi

and y = xj (j = 1, ..., n) to get

(6.3)

∣∣∣∣∣F
(

n∑
i=1

pixi

)
− F (xj)

∣∣∣∣∣ ≤ L

∥∥∥∥∥
n∑

i=1

pixi − xj

∥∥∥∥∥
for all j ∈ {1, ..., n} .

If we multiply (6.3) by pj ≥ 0 and sum over j from 1 to n, we obtain

(6.4)
n∑

j=1

pj

∣∣∣∣∣F
(

n∑
i=1

pixi

)
− F (xj)

∣∣∣∣∣ ≤ L

n∑
j=1

pj

∥∥∥∥∥
n∑

i=1

pixi − xj

∥∥∥∥∥ .

Using the generalized triangle inequality, we have

(6.5)
n∑

j=1

pj

∣∣∣∣∣F
(

n∑
i=1

pixi

)
− F (xj)

∣∣∣∣∣ ≥
∣∣∣∣∣∣F
(

n∑
i=1

pixi

)
−

n∑
j=1

pjF (xj)

∣∣∣∣∣∣ .
By the generalized triangle inequality in the normed space X, we also have

n∑
j=1

pj

∥∥∥∥∥
n∑

i=1

pixi − xj

∥∥∥∥∥ =
n∑

j=1

pj

∥∥∥∥∥
n∑

i=1

pi (xi − xj)

∥∥∥∥∥(6.6)

≤
n∑

i,j=1

pipj ‖xi − xj‖

= 2
∑

1≤i<j≤n

pipj ‖xi − xj‖ := B.

As in the proof of Theorem 3, we have, for i < j

‖xi − xj‖ =

∥∥∥∥∥
j−1∑
k=i

∆xk

∥∥∥∥∥ ≤
j−1∑
k=i

‖∆xk‖

and then

B ≤ 2
∑

1≤i<j≤n

pipj

j−1∑
k=i

‖∆xk‖

≤ 2
∑

1≤i<j≤n

pipj

n−1∑
k=1

‖∆xk‖ .

Since ∑
1≤i<j≤n

pipj =
1
2

n∑
i=1

pi (1− pi)

then we get, by (6.4)− (6.6) , the desired inequality (6.2) .

The following corollary is a natural consequence of the above results.
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Corollary 5. Let xi ∈ X and pi be as above. Then we have the inequality:

0 ≤
n∑

i=1

pi ‖xi‖ −

∥∥∥∥∥
n∑

i=1

pixi

∥∥∥∥∥ ≤
n∑

i=1

pi (1− pi)
n−1∑
k=1

‖∆xk‖ .
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