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A KALLMAN-ROTA INEQUALITY FOR EVOLUTION
SEMIGROUPS

C. BUSE AND S.S. DRAGOMIR

ABSTRACT. A Kallman-Rota type inequality for evolution semigroups and ap-
plications for real valued functions are given.

1. INTRODUCTION

Let X be a real or complex Banach space and £(X) the Banach algebra of all
linear and bounded operators acting on X. The norms in X and in £(X) will be
denoted by ||| .

Let Ry the set of all non-negative real numbers and J € {R;,R}. The set
{(t,s) : t > s € J} will be denoted by Az. A family

Uy ={U(t,s): (t,s) € Az} C L(X)
is called an evolution family of bounded linear operators on X if U(t,t) = I (the

identity operator on X) and U(t,s)U(s,r) = U(t,r) for all t > s > r € J. Such a
family is said to be strongly continuous if for each x € X, the maps

(t,s) = Ut,s)r: Ay - X

are continuous. A strongly continuous evolution family is said to be exponentially
bounded if there exist w € R and K, > 1 such that

[|U(t,s)|| < K,e“=% for all (t,5) € Ay
and uniformly stable if there exists M € R, such that

(1.1) sup ||U(t,9)|| < M < 0.

(t,s)EAS
We remind that a family T = {T'(¢) : t > 0} C L(X) is called one-parameter
semigroup if T(0) =1 and T(t+s) = T(¢t)T(s) for all t > s > 0. An one-parameter
semigroup is called strongly continuous or Cy-semigroup if for each x € X the
maps ¢t — T(t)x are continuous on R,. For a Cp-semigroup T, its infinitesimal
generator A with the domain D(A) is defined by

t—0

T(t)x —
D(A) := {x € X : there exists in X, lim % =: Am} .

It is easy to see that if T = {T'(¢) : ¢ > 0} is a strongly continuous semigroup then
the family Uy = {U(t,s) := T(t — s) : (t,8) € Az} is a strongly continuous and
exponentially bounded evolution family. Conversely, if Uy is a strongly continuous
evolution family and U(¢,s) = U(t — s,0) for all (¢,s) € Ay then the family T :=
{T(t) = U(t,0) : t > 0} is a strongly continuous one-parameter semigroup. For
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more details about the strongly continuous semigroups and evolution families we
refer to [3].
Lemma 1. Let T:= {T'(t) : t > 0} be a strongly continuous one-parameter semi-
group and A : D(A) C X — X its infinitesimal generator. If T is uniformly stable,
that is, there is a positive constant M such that sup ||T(t)|| < M, then

t>0

(1.2) | Az|® < 4M? |A%z|| =],  for all z € D (A?).
Proof. See [4]. I

We are recalling the notion of evolution semigroup. For more details we refer to
[1], [2] and references therein. We will consider the both cases, i.e., the evolution
semigroups for evolution families on Ar, and on Ag.

Let Ugr, be a strongly continuous and exponentially bounded evolution family
of bounded linear operators acting on X. Let us consider the following spaces:

e Coo(Ry4, X) is the space consisting by all X-valued, continuous functions
on R, such that

F(0) = lim f(t) =0,
endowed with the sup-norm.
o L,(Ry, X),1 <p < oo is the usual Lebesgue-Bochner space of all measur-

able functions f : Ry — X, identifying functions which are equal almost
everywhere, such that

It = ([ IIf(S)II”dS); <.

Let X be either Coo(R+,X) or L,(R4, X) and f € X.
It is easy to see that for each ¢ > 0, the function T'(¢) f given by
U(s,s—1t)f(s—t), s>t
(13 rne ={ oo

0, 0<s<t

belongs to X, and the family T = {T'(¢) : t > 0} is an one-parameter semigroup of
bounded linear operators acting on X. Moreover, the following result, holds:
Lemma 2. The semigroup T defined in (1.3) is strongly continuous. If (A, D(A)) is
the generator of T with its domain then for every u, f in X the following statements
are equivalent:

(i) we D(A) and Au = —f;

(i) w(t) = o ULt 5)f (s)ds;
Proof. See [7]. 1

The strongly continuous semigroup T defined in (1.3) is called evolution semi-
group associated to Ur, on the space X.
We will state here our first result.

Theorem 1. Let Ur, be a strongly continuous uniformly stable evolution family
of bounded linear operators acting on X, and let g € X. Suppose that the following
conditions are fulfilled:

(i) JoU(:,s)g(s)ds belongs to X;

(ii) [y = s)U(:, s)g(s)ds belongs to X.
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Then the following inequality holds:

2
< AM? gl %
X

(1.4) ’

/- U(-,s)g(s)ds

0

/ (- = U $)g(s)ds
0

)

X
where M is the constant from the estimation (1.1).

BUC(R, X) is the space of all X-valued, bounded and uniformly continuous
functions on the real line endowed with the sup-norm. The following three spaces
are closed subspaces of BUC(R, X) :

e (R, X) is the space of all X-valued, continuous functions on R such that
tlim f(t) =0.

e AP(R, X) is the space of all almost periodic functions, that is, the smallest
closed subspace of BUC(R, X') containing the functions of the form

t— etz peRand z € X,

see e.g. [6].
e AAP(R, X) is the space of all X-valued asymptotically almost periodic
functions on R, i.e., the space consisting in all functions f for which there
exist g € Cp(R, X) and h € AP(R, X) such that f = g+ h.
Let Y one of the spaces described before and f € ). If Uy satisfies certain
conditions, which will be outlined in Lemma 3 below, then for each ¢ > 0 the
function given by

(1.5) s—= (TW)f)s):=U(s,s—t)f(s—t):R— X

belongs to Y, and the family T := {T'(t) : ¢ > 0} is an one-parameter semigroup
of bounded linear operators on ). The semigroup T can be not strongly continuo-
us. However, in certain cases, this semigroup is strongly continuous, and is called
evolution semigroup associated to Ur on the space ).

Lemma 3. Let Ur be a strongly continuous evolution family of bounded linear
operators on X, and q be a fixed positive real number.

(i) If Y = Co(R,X), and Ug is exponentially bounded, then the semigroup
associated to Ug, defined in (1.5), is a strongly continuous one-parameter
semigroup of bounded linear operators on Y;

(ii) If Y is either the spaces AP(R,X) or AAP(R,X) and Ug is q-periodic,
that is, U(t+q,s+q) = U(t, s) for all (t,s) € Ag, then the semigroup given
in (1.5), is a strongly continuous semigroup on Y.

Let (B, D(B)) the generator of the evolution semigroup given in (1.5). If u and
g belongs to Y then the following statements are equivalent:

(iii) v € D(B) and Bu = —g;

(iv)

(1.6) u(t) = U(t, s)u(s) —l—/ U(t,s)g(s)ds,
for allt > s.

Proof. See [5], [9] for evolution semigroups defined on Cy(R, X') and [8] for evolution
semigroups on AP(R, X) or AAP(R, X). I
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Let Y be one of the spaces Cyp(R, X ), AP(R, X), AAP(R, X) and let )y be the
set of all functions f € Y such that lim,_,(_. f(t) = 0. It is clearly that ) is a
closed subspace of ).

We may now state our second result.

Theorem 2. Let Ug be a strongly continuous uniformly stable evolution family of
bounded linear operators on X and q > 0, fixred. The following statements hold:
(G) If Y = Co(R, X), then the evolution semigroup given in (1.5) is defined on
Yo;
(i) If Y is one of the both spaces AP(R, X) or AAP(R, X) and Ug is q-periodic
then the evolution semigroup given in (1.4) is defined on Y.
If (C,D(C)) is the generator of the evolution semigroup on Yy, given in (1.5),
and v, h belongs to Yy, then the following statements are equivalent:
(4ij) v e D(C) and Cv = —h;
(Gv)
t

(1.7) moz/ U(t, 5)h(s)ds,

— 00
for every real number t. Moreover, the following inequality holds:
2

< 4M2 1] %
y

(1.8) H[%U@@MQ%

[:0—®U@®M$@

Yy
2. PROOFS

Proof of Theorem 1. Let T be the evolution semigroup associated to Ur, on the
space X and (A, D(A)) its infinitesimal generator. From Lemma 2 it follows that the

function ¢ — u(t) := f(f U(t,s)g(s)ds belongs to D(A) and Au = —g. The function
t— o(t) ;= fg U(t,r)u(r)dr belongs to X. Indeed, using the Fubini Theorem, we
have:

o(t) = /Ot :U(t,r) /OT U(r,s)g(s)ds} dr

_ A%A%mﬁm@@}h

_ AiAHMMQWLWmm4W

tr t
= / / U(t,s)g(s)dr| ds
0 LJs
¢
/ (t—s)U(t, s)g(s)ds,
0
where 1jg ) is the characteristic function of the interval [0, r]. Using again Lemma

2 follows that v € D(A?) and A%v = A(Av) = —Au = g.
Now the inequality (1.4) follows by Lemma 1, if we replace x with v in (1.2). I

Proof of Theorem 2. Firstly we prove that ) is an invariant subspace for each oper-
ator T'(t),t > 0, given in (1.5). By Lemma 3 it suffices to prove that I%m )(T(t)f)(s)
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0 for each t > 0 and every f € ), and this fact is an easy consequence of the fol-
lowing estimations:

TSI < UG, s =D 1f(s = )] < M| f(s =) = 0 as s — (—00),

where M is the positive constant from (1.1). Now, the implication (jjj) =(jv)
follows from Lemma 3, passing to the limit for s — (—o0). The converse implication
(jv) = (jjj) can be obtained on the following way.
Let v as in (1.7) and ¢t > 0. Simple calculus gives
T(t)v—wv fot T(r)hdr

=— — —hin X
t t

when ¢t — 0, that is v € D(C) and Cv = —h. Now the inequality (1.8), can be
established as in the proof of Theorem 1 and we omit the details. I

3. APPLICATIONS

In this section some scalar inequalities are presented.

Corollary 1. Let g : Ry — R be a continuous function such that g(0) = g(o0) :=
tlim g(t) = 0. Suppose that the functions:

t— h(t) = /0 g(s)ds and t — u(t) := /0 (t—s)g(s)ds

verifies the condition h(oo) = u(oco) = 0.
Then the following inequality holds:

/Otg(S)ds

Proof. We apply Theorem 1 for X = Cyo(Ry,R) and for U(t,s)z = x, where
t>s>0and x € R. |

2

<4-suplg(t)| x sup
t>0 t>0

sup
t>0

/ (¢~ s)a(s)ds|.

Corollary 2. Let g,h,u as in Corollary 1 and f be a continuous, positive and
nondecreasing function on Ry. The following inequality holds:

i s@awis | T et
S O R et B 70

Proof. Follows by Theorem 1 for X = Cyo(R4+,R) and U(t, s) = ];((2 |

Corollary 3. Let 1 < p < oo and f € L,(R4,R). If the functions

t t
t—g(t) = / f(s)ds and t — h(t) := / (t—s)f(s)ds
0 0
belongs to LP (R, R), then the following inequality, holds:
lglls < 4l f1, < 1], -

Proof. Follows by Theorem 1 for X = L,(R4,R) and for U(¢,s)x = « where t >
s>0and x € R. 1
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Corollary 4. Let g : R — R be an almost periodic or asymptotically almost periodic

function such that g(—oo) = 0. Then
t ) 2 t a2
14sin”s / 14 sin“s

su ———¢g(s)ds| <16su t)| x su t—s)————g(s)ds|.

op| [ TR a()as) < 16supla)]xsup | [ (0= 91 a(e)
Proof. Follows by Theorem 2 for Y = AP(R,R) or Y = AAP(R,R) and U(t, s)x =
ﬁ%}giix where ¢ > s and = € R. It is clear that U = {U(¢, s);t > s} is a m-periodic
family consisting in operators acting on R, and sup,>, U(t,s) < 2. 11

REFERENCES

[1] C. Chicone, Yu. Latushkin, “Evolution Semigroups in Dynamical Systems and Differential
Equations”, Amer. Math. Soc., Math. Surv. and Monographs, 70, 1999.

[2] S. Clark, Yu Latushkin, S. Montgomery-Smith and T. Randolph, Stability radius and internal
versus external stability in Banach spaces: An evolution semigroup approach, SIAM J. Contr.
and Optim., 38 (2000), 1757-1793.

[3] K. Engel and R. Nagel, “One-parameter semigroups for linear evolution equations”, Springer-
Verlag, New-York, 2000.

[4] R. R. Kallman and G. C. Rota, On the inequality ||f’|| < 4| fll|If”|l, Inequalities II, O.
Shisha, Ed., Academic Press, New-York, 1970, pp. 187-192.

[5] Yu. Latushkin and S. Montgomery-Smith, Evolutionary semigroups and Lyapunov theorems
in Banach spaces, J. Func. Anal., 127(1995), 173-197.

6] B. M. Levitan and V. V. Zhikov, “Almost Periodic Functions and Differential Equations”,
Moscow Univ. Publ. House, 1978. English translation by Cambridge Univ. Press, Cambridge
U.K., 1982.

[7] Nguyen Van Minh, Frank Réibiger and Roland Schnaubelt, Exponential stability, exponential
expansiveness, and exponential dichotomy of evolution equations on the half-line, Integral
Equations Operator Theory, 32,(1998), 332-353.

[8] T. Naito, Nguyen Van Minh, Evolution semigroups and spectral criteria for almost periodic
solutions of periodic evolution equations, J. Differential Equations, 152(1999), 338-376.

9] R. Rau, Hyperbolic evolution semigroups on vector valued-functions, Semigroup Forum, 48
(1994), 107-118.

DEPARTMENT OF MATHEMATICS, WEST UNIVERSITY OF TIMISOARA, TIMISOARA, 1900, BD. V.
PARVAN. NR. 4, ROMANIA

E-mail address: buse@timl.uvt.ro

URL: http://rgmia.vu.edu.au/BuseCVhtml/

SCHOOL OF COMMUNICATIONS AND INFORMATICS, VICTORIA UNIVERSITY OF TECHNOLOGY, P.O.
Box 14428, MELBOURNE CiTY MC, VICTORIA 8001,, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.vu.edu.au/SSDragomirWeb.html



