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A PERTURBED VERSION OF THE GENERALISED TAYLOR’S
FORMULA AND APPLICATIONS

S.S. DRAGOMIR AND A. SOFO

ABSTRACT. A Perturbed version of the generalised Taylor’s formula for Appell-
type polynomials and applications are given.

1. INTRODUCTION

In [4], Matié¢ et al. introduced the concept of harmonic sequences of polynomials
by assuming that the polynomial {P, }, . satisfies the condition

(1.1) Py=1, P.(t)=P,_1(t) forallt€R and neN.
With this assumption, they proved the following generalised Taylor’s formula:

Theorem 1. Let I C R be a closed interval and a € I. If f : I — R is any function
such that, for some n € N, f(") is absolutely continuous, then for any x € I

(12) f(2)= f(@)+ 3 (D" [P ) /O (@) P @) £ (@)] + Ro (fra.).
k=1

where

(1.3) R, (fra,2) = (—1)" / Py (1) £ () dt

and { Py}, cy 18 a harmonic sequence of polynomials.

As examples of such polynomials, they mentioned the following

1 n
Pn(t)::m(t—w) , tER;
or
1 a+z\"
Pn(t)::n!<t— 5 ) , teR;
or

P, () = (5”;!“)”3” (t_a) a1, Pt =1,

x—a
where B, () are the Bernoulli polynomials, or

oy (22) 2o -

P, (t):= py e

where E,, (-) are the Euler polynomials.
Mati¢ et al. [4] proved the following general estimation result for the remainder
Ry (fia,2).
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2 S.S. DRAGOMIR AND A. SOFO

Corollary 1. Under the assumptions of Theorem 1 and if x > a, then
ax |P, fOD ()] d
max [P @[ £ ()] ds;

Ja [P (s) ds max |f("“)( )|

(1.4) R (fra,2)] < rele
. 1
(1P (5)17ds) ™ (f |50 () ds) "
where % % =1 p>1
Now, if one would choose in (1.2) f g (t)dt and then put x = b, one

could state the following generalised 1ntegrat10n by parts formula

b n
(1'5) / g (t) dt = Z (—1)k+1 [Pk (b) g(k_l) (b) — P (a) g(k—l) (a)

k=1

S (f;a,0),

where

(1.6) Sy (f;a,b) / P,

Using the classical notation for the Lebesgue norms,
[Pl =ess sup |h(t)],

t€la,b]
1

b P
A, - :</ h(t)lpdt> ,p>1;

the remainder (1.6) may be bounded in the following manner

1Palloc N9 ™1,
(L7 ISa(gab) < q 1Pl [l9™],

1Pall, [l9™]],» where £ +1 =1, p>1.

For recent results on Taylor’s expansion see [1] and [3].

2. THE RESULTS

The following result is a reformulation of Theorem 1 in a more appropriate
manner for our further purposes.
Theorem 2. Assume that the sequence of polynomials {P, (t,7)},cy satisfies the
Appell condition [2], i.e.,

oP, (t,
(2.1) % =P,_1(t,x), t,reR, neN and Py (t,x)=1, t,x € R.

Let I C R be a closed interval, a € I. If f : I — R is any function such that
for some n € N, f(™ is absolutely continuous, then for any x € I we have the
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representation
02 1@ = J@+ 3 [Pl 19 (@) P a,) £ (0
k=1
+R, (f;a,2),
where

Using the notations

P

911001, = ;s p=>1

b
/ g (D)7 dt

and

191110 py.00 = €55 sup g (£)],
t€la,b]
(teb,a])

where a, b are arbitrary real numbers, then we can state the following corollary (see
[4, Corollary 1])

Corollary 2. With the assumptions in Theorem 2, we have the bounds for the
remainder Ry, (f;a,x)

HP" ('7x)||[a,m],oo Hf(n-i_l)H[a,m],l ;

24) (R (fi0,0] < {1 (0o SO oy P> 1 B2 =1,
fo(n+1) c L [a }
1P o)l g0 1 g e 8 £ € Loo [01].

The following perturbed version of the above result also holds.

Theorem 3. Let P, (t,z), f, a, « be as in Theorem 2. Then for any y € I, we
have the representation:

(25)f () = +Z DM [P (@) £ (@) - P () 79 (a)
(1) Par (15) = Pron (0] 70 ()4 5 (.9

where the new remainder Sy, (f;a,x,y) can be represented in the following manner

(2.6) Su (fia,z,y) = (=1)" /”” P, (t,) [f(”+1) (t) — f(”+1) (y)] dt.
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Proof. We have
Ra(fiaw) = (" [ "By (t,2) £ (1) d
= (=" / "By (t,2) £ (y) dt

0 [P [700 0 — 50 )a
= (_1)n Pn+1 (t,.’t) f(nJrl) (y) |Z + Sn (f7 a, x,y)
= (=" [Pat1 (2,2) = Poga (a,2)] ) (y) + S, (fr0,2,9)

Using (2.2) we deduce (2.5). 1

Remark 1. Some particular interesting cases are for y =a and y = x.

The following corollary for functions f for which f"*1 is Holder continuous
holds.

Corollary 3. If the function f"tY . T — R is of r — H—Hélder type on I, i.e.,
(2.7) FOH) () — fOTV )| < H s —ul" for all s,u eI,

where H > 0 and r € [0,1] are given, then for any y between a and x, we have the
bound

(2.8) S (fia,2,9)|
A ly—al™ + o =y ] 1P ()

lfa,2,00

IN

1
rp+1 rp+1| P
" [Iy—al” + |z —y[™ ] 1P () g g > 2> 1,
(rp+1)»

Hmax {ly —al" |z = y|"}Pn (- 2) | g,00,1 -
Proof. As f("*t1) is of Holder type, we have

r

S0 (fr0,2,9)] <

P (6] [£05 () = £ )t

< H / |Pn(t,x)||t—y|”"dt‘ — A(z,a).
Obviously,
) < HIP Dl [0l
ly—a 4|z =y
= H Pn ) )
|| ( £E)H[a,z],oo r+1

which proves the first part of (2.8).
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Using Holder’s integral inequality, we have:

z 1
P
/ |t —y|"™"dt
a

1
rp+1 + ‘13 _ y|rp+1‘| P

A(z,a)

IN

HIP, ()

||[a,z],q

ly — al
H ||PTL (.71‘)”[@,1],(1 [

rp+1
H T rp+1 %
= 1P ) [l =l e =y
(rp+1)»
and the second inequality in (2.8) is also proved.
Finally,
Awa) < 1 g 0=y [P (o)l
(t€[z,al)

< Hmax{ly—al", [z —y" P (,2) 4,011
and the corollary is proved. i

Remark 2. We have the following inequalities:

(2.9) |f

)+ Z k+1 {Pk 7, 1) f(k)( ) — Py (a,x) f(k) (a)}

+<1Wum4@a»RHMmmu““Mm}

Hlz—al ™

r+1 Hpn ("x)H[a,m],oo;
< B(za) Hlz—al"7
> T,a) = - P . )
’ 1P O P> L p =L
(rp+ 1)% [a,2].4 P

Hla = al [P (12 g gy

and

(2.10) Pm—f@+§FMHMmmNWmemeﬂ
D P (00) = Past (@) £ )] < B

and

(2.11) wa—ﬂ@+:54f“FMmmwww—mwwmeﬂ
D P 0) ~ P ()] 10 (55 || < LB ).

where f and P, are as in Corollary 3.
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3. SOME PARTICULAR CASES

It is natural now to investigate the case when f("*1) is assumed to be absolutely
continuous.
The following result holds.

Corollary 4. Let P, (t,x), f,a,x be as in Theorem 1 and F ) s absolutely
continuous on I. Then we have the inequality

S0 (fia,2,9)|

L e—ay+(y-232)°]

X ||Pn ('717)”[(1,1],00 Hf(n+2)||[a’$]}oo ) Zf f(n+2) € Ly [(l, I] 5

U«B Tr— B n ; n
{Iy \ +,;i| vl +1] 1P (0l ¢ +2)H[a7z]m’ it f) e L Ja,a];
a>1, é + % =1;
31z —al+ [y = F= 1P Gl a1 1F P oo £ € Lo [0,
S |:|x_yq +|y a‘q HP Hax OOHf(nJrQ)Ham ’ p>1’ %—i_%:l

f(n+2) € Lp [av x] 5

|:|a:'g q +|"/ al q :| ||P ,x)”[aﬂ]ﬂ Hf(n+2) ||[a7x]7p ,
1)

p>1, f—|—f 1, >1,%+%=1,f("+2)6Lp[a,x];

1
[% [z —a|+ ‘y - %H "1 ('756)“[11,1],1 Hf(n—i_z)H[a,z]yp’ p>1

HPn ('a .’E) H la,z],1 ||f(n+2) H la,z],1°
Proof. Since f("+1) is absolutely continuous, then f("*1) is a.e. differentiable on

f(n+1) ( ) (n+1) / f (n+2)

We have
=yl £y e iSO € Lo [aa]

if "2 ¢ L, [a,x]

FHD (@) = £ ()] < 4 Je =yl £
p>1, 1% =+ % =1,

y,t,p

(PRl AFPR
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Using the representation (2.6), we may get that

[ 1Rl ] = 3 0

1S (f30,2,9)] < / 1P (t2) 1t = yl% £ dt! =: M (a,7)

/ |Pn (t,x)| Hf(n+2)||[y,t],1 dt‘ = M3 (a’x)

Since
)f(n+2) < Hf(n+2) ,
ly,t],00 - la,z],00
then we get
M (a,x)
xr
< || 1R vl
2 atx\2
1P (3 2) e [3 @ = )% + (v = 252)°]
< (n+2) alPHl g gy BH1T] F
- Hf [a,z],00 x ||Pn ('717)”[(1,1],(1 |:‘y | ﬁi‘l L :| y Q> la é"’ % = 17
1P (s 2) o1 [3 12— al + [y — 22]].
Since
TS W
ly,t]p — [a,a],p
then we get
M; (a,x)
< e Vel ot ar
la,z],p
1 1
lz—yla " Hy—ala
12 ol e | 2252
< ], eyt ]
- f [a,z],p ”Pn ('ax)H[a,z],'y -l %:\19 | , v > 1 % + % =1,
1
1P Gy @) g g [5 12— al + |y — 4= (]
and since
Hf(n+2)H < Hf(n+2) 7
ly,t]. 1 la,z],1
then
M a,2) < |72 PGl

and the corollary is proved. i
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Remark 3. We have the following inequality

+Z DH [P @) 19 (@) = P (02) 1) (@)

-

1) [Py (o )—Pn+1(a,w)]f(”+1)(a)H
2

< Lz,
2@ =)’ [Pa ()l 000 | F 2 [ if f?) € Loo [a,2];
o 1+ . n+2 . (n+2 .
(ﬁ+1)% |I a| s Hpn( 7x)H[a,rc],a Hf( )H[a,x],oo’ Zf f ) € L [aax]v
and a > 1, é % =1;
&= al 1P o)yt 1 g i F02) € Loy fa,a]
=8 At P () 50 >1, b4 d=1
q+1 n\» [a,m],oo [a,:p],p’ p ' p q 9
f(n+2) € Lp [(1, LE] 5
q%lx—a\%’% (n+2) 1,1
el LGOI [ (Rl A p>lytg=1
§>1, ¢+ % =1, f+) ¢ [, [a,z];
|LE - a|5 ||P’ﬂ ("x)”[a,m],l ||f(n+2)H[a,r],p’ p>1, % + % =1,
ft2) ¢ L,a,x];
and
‘f (@) = | £ (@) + 3 ()M [Pe(2) 19 () — Py (a,2) £ ()]
k=1
D Pri (020 = P @) 1 (@) |
< L(z,a)
and
‘f @)~ | £ @) + 3 0 [P (a) 19 (@) — By a.2) O (a)]
k=1
n a+x
FED P (220) = Praa (0, ) 5050 (52|
1
S iL(m,a) .

If we consider the polynomial P, (t,x) := % (t — z)", then we have, by (2.5), the
following perturbed version of Taylor’s formula

(z —a)" ™

n k
1) Fo) = f o)+ 30 E ) @)+ S 00 () 4T ()
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where the remainder S (f;a,z,y) is given by

St (Fae = 8 [ [70 @ - 50 )

n!

We have
1]/ n |z —a"t
[P0 (5 2) (0,070 = ] ‘/a |t — x| dt‘ BCES
1 1
1| [ N N e
1P g = | [l = e (100,
n |Ja n!(ng+1)s
1P ()] o =
(@ =— su —z" =
[a,],00 n! tG[aI,)z] n!
(t€[z,al)
for all a,z € I.
Using (2.8), we may state that
(32) |8, (fia,,y)|
H n+1 |: r+1 r+1
— |z —a —a|l"" + ]z — } ;
(T+1)(n+1)!| |y — al |z =yl
Hlz a|"+% ¥
< I ;[\y—a\rp+1+lw—ylrp+l}p7p>17},+§=1;
n!(rp+1)7 (ng+1)°
Hu —al”" Nz —ul"
e (ly — al” e - o'}

for all y between x and a.
The following particular inequalities which follow by directly evaluating A (x, a)
(defined in Corollary 2) are useful:

k
(33) |f (@) - [f @+ T g <a>] |

H |£L’ o a|’ﬂ+7”+2 .
(r+1)(n+ 1)
H ‘1: _ a|n+r+1

n! (rp + 1)% (ng+ 1)%

9

" |CC _ a|n+r

)

n!
provided that f("*+1) is of r — H—Holder type on I.
Example 1. We also have

B (@ —a) (@=a)"™™ i)
(34) Fla)=|fa)+ D =" () + AR
k=1

< Cf(x,a)
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and
65 |f@ = |f@+3 T g (g 4 Lo
| k=1 k! (n+1)!
1
= 270 (LL', a) s

where f 1Y) s of r — H—Hélder type on I.

(n+1) (G F T
e ()

If we consider the polynomial P, (t,z) := # (t - %)n, then, by (2.5), we may
state:
n Nk
@6 @) = fa)+ Y E [0 @) 4 (1) ()]
k=1
1 _1 n _ n+1
Wk (2n+)1 (}Tﬁ 1;) FOD () + S (fra,2,y),

where the remainder SM (f;a,x,y) is given by

(="

SM(fia,z,y) = o

We have

n
t_a+x

1P ()| o) 1

x
/
2
[

a

1
n!(n+1)
|.'L' _ a|n+l

(n+ 1)127’

xT
il
ate
2
L
a

ng+1

.

n x
ﬁ+/
atz
2

n+1

a+x .

2

_a‘n—‘rl

2n+1

|z — al |z

2n+1

1
ngq 7

dt

nq x
ﬁ+/

atz

2

|33 _ a|nq+1 ]

(ng + 1) 2natt

a+x
t—+

[P (-5 )

|| la,z],q

t—

a—+x
2

Q=

[t

|z —al
(ng + 1) 2natt

Lot
2nnl (ng + 1)

E

and
a+x
2

n |l'—a|n
1B () s i -z

H[a,a:],oo - nl tela.]

[ (=555) o= s

a+x

)} dt.

n

dt

nq

dt
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Using (2.8), we may state that:

(3.7) |SM (fra,2,y)]
H|z—a"™

. r+1 - r+1| .
(n+ )12 (r +1) [ly=al™" +lo =o'
H‘I a\n+% 1 1 5
— N L
< T — [y =™ o=y
= (rp+1)? (ng+ 1)2 27n!
1,1 _ .
p > 1) 5 + E - 1,
‘x _a‘n r r
gy max {ly —al", |z —y['}.

The following particular inequalities which follow by directly evaluating A (x, a) are
useful:

n k
(3.8) ‘f (x) — [f (a) + Z W [f(k) (@) + (=1)F1 F®) ()

L+ (=) (@ —a)"™" )
L) f<+>(a)]

H|z - a|"+r+2 )
(n+ D127 (r+1)°

H |$ _ a|n+’l‘+l

(rp+ 1)% (ng + 1)% onp)’

|.’I/' _ a|n+’l‘

2

where f("*1) is of 7 — H—Hélder type on I.
We also have:

(3.9) f (@) - [f () + ; W 78 (@) + (=D F9 (@)
p O oy <x>] <D(x.0

and

(3.10) ‘f (x) = [f (a) + ; “2;,3) [7® (@) + (=D D (@)
P OO ™ e (422 || < Lo o)

for all a,z € I.

Remark 4. Similar inequalities may be stated if we use Corollary /.
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Remark 5. Similar inequalities can be stated for the other choices of “harmonic
polynomials” P, (t,x) considered in [4]. As we do not have explicit or at least
bounds for || Py (@), p € [1,00], we omit the details.

The following corollaries are given for particular Peano kernels based on the
order a < y < x.
Under the assumptions of Theorem 2, let a point y € I C R such that a <
y < x. If we consider the polynomial P, (t,z) := % (t — )", by (2.5) we have the
perturbed version of Taylor’s formula:
)n+1

(3.11) f +Z f<k> @+ &=

(n+1)! F )+ ST (fray,2),

where the remainder ST (f;a,y,z) is given by

312) ST (fraga)= L [ = [ - 1 )]

The following corollary holds for functions f for which f(**1 is Holder contin-
uous.
Corollary 5. If the function f™t9 : I — R is of r — H—Hélder type on I, we
have, for H > 0 and r € [0,1], the bound

R H n+r
(3.13) Sg(f;a,y,a:)‘ < E(aﬁ—y) T, (n+1L,r+ 1)+ B(n+1,r+1)],

where
a = y—a>07
-y
1
B(l,s) = /tl—l(l—t)“ldu l,s>0
0

is the classical Beta function and

T
T, (1, ) :/ A+t 1s >0
0

is a real positive valued integral.

Proof. As f("*t1) is of Holder type, we have

& H [* -
n Ja

where
~ H Yy T
A(a,z) = — [/ (x —t)" (y—t)’"dt+/ (x—t)" (t—y)" dt].
'/ a v
Making the substitutions
t=y—(z—y)w and t=y+ (zr—y)w
into the first and second integrals respectively, we obtain
H n-+r
Ala,z) = ﬁ(x—y) T, (4 1,r+1) 4+ B(n+ 1,7+ 1)]

and Corollary 5 follows. I
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Remark 6. When y = a the following inequality holds, provided that f"+1) is of
r — H—Holder type on I

w (x — a)k
‘f (@)~ 3 T o

k=0

H(x - a)"'H'Jrl
< - 0

B(n+1,r+1).

n!

Corollary 6. If f(*1) . I — R is absolutely continuous on I, then we have

F) - fa) -3 D g0 gy - B
x a 2 u a CE] y
| (W@ @™ 2y
<Hf( +2)Hc><>< (n+1)! N (n+2)! + (nt 2! >7

where f"? € Lo [a,x].

Proof. From Corollary 4

’ Yt —x|™|t - Tt — ™t —
/|Pn(t,:v)|\t—y\dt _ /MCM/ le=a"lt =yl ,,
a a y

n! n!
[ty [,

y-a)z—a"" @-a"? 20@-y""”
(n+1)! (n+2)! (n+2)! 7

and Corollary 6 follows. i

Now consider the polynomial

V=1 =3 g [ @ 0 )
_1\" T —a n+1
[+ (2112 (]n<+ 0 £ ()

= SM(fia,y,2),

where the remainder 5”,12/[ (f;a,y,x) is given by

5 () = S [T (6= 52) [0 - 500 )] ar

2

Corollary 7. If f("+1) : I — R is absolutely continuous on I and a <y < x, then

we have (n42) .
5 2 f n+ _ n
Syt (f;a7y,fc)‘ < H(n+ 1)’!"’" (x 5 a) y—

=

a+x
2

Proof. Consider
a+z|"

[t — yl dt.
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If “£% € (a,y), then

% n y n
nll, = / (“‘;“—t> (y—t)dt+/ (t—a;x) (y —t)dt
+/ (t—a+x> (y—t)dt
: 2
= lata " "” a+z\"
/ <a —t) (y—t)dt+/ (t— ) (y — t) dt.
o 2 ate 2

Integration by parts leads to the result

() (-5

If <42 € [y, x), then also

n'IQ

Il
—
<
7N
IS
o |+
8

|

~~
~__
3

—

~

|

NS

N—

IS

~

+
::\
¥
N
IS
+
8

|

~
~__
3

—

-

|

NS

S—

oW

~

2 2

afe 4 n z 4 n
/ <a z—t) (t—y)dt+/ (t—a x) (t —y) dt.
a 2 ofe 2

Integration by parts leads to the result:

2 Tr—a ntl a+zx
Ih=—" [—— _ )
: (n+1>!(2) (“ 2)

Utilising I; and I we see that Corollary 7 follows. i

Remark 7. When y = a the following inequality holds

n k
F@) = @)= S (19 @)+ ()" ) (@)

L+ (1" @ -a)™ 2| F | (3 —a\ "
Tt (n+ 1) f(+1)(a)’< (n+1)! (2) '
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