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Abstract. In this paper, a class of mixed inverse variational inequalities is introduced and stud-
ied. We prove the existence of the solution of the auxiliary problem for mixed inverse variational
inequalities, suggest a predictor-corrector method for solving the mixed inverse variational in-
equalities by using the auxiliary principle technique. Then it is shown that the convergence of the
new method requires the partially relaxed strong monotonicity property of the operator, which
is a weak condition than cocoercivity. Furthermore, the sensitive analysis of the mixed inverse
variational inequality is also given. Our results can be viewed as an important extension of the
previously known results for inverse variational inequalities.
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1 Introduction

In recent years, variational inequalities have been generalized and extended in many different directions
using novel and innovative techniques to study wider classes of unrelated problems in mechanics, physics,
optimization and control, nonlinear programming, economics, regional, structural, transportation, elas-
ticity, and applied sciences, etc. (see, for example, [2, 3, 4, 9, 10, 11] and the references therein).

An important and useful generalization of variational inequalities is called the mixed variational in-
equality involving the nonlinear function. It is well known that due to the presence of the nonlinear
function, projection method and its variant forms including the Wiener-Hopf equations, descent meth-
ods cannot be extended to suggest iterative methods for solving the mixed variational inequalities. In
particular, it has been shown that if the nonlinear function is proper, convex and lower semicontinuous,
then the mixed variational inequalities are equivalent to the fixed-point problems. This equivalence has
been used to suggest and analyze some iterative methods for solving the mixed variational inequalities.
In this approach, one has to evaluate the resolvent of the operator, which is itself a difficult problem.
To overcome these difficulties, Glowinski et al. [5] suggested another technique, which is called auxiliary
principle technique. In 1999, Huang et al. [9] modified and extended the auxiliary principle technique
to study the existence of a solution for a class of generalized set-valued strongly nonlinear implicit varia-
tional inequalities and suggest some general iterative algorithms. Recently, Shi et al. [11] extended the
auxiliary principle technique to suggest and analyze a new predictor-corrector method for solving the
generalized general mixed quasi variational inequalities.

On the other hand, He et al. [6] introduced and studied the inverse variational inequalities, which can
be widely used to study the problems in economics, network and transportation, etc. (see [6, 7, 8]). The
primary motivation of the research on the inverse variational inequality arises from the transportation sys-
tem operation and control policies. Consider the simple network which include one origination-destination
pair connected by a few routes. Let u be the imposed route cost (toll charges or subsides) and F (u) be
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the relevant route flows. In order to avoid the traffic congestion and rationally use the road services, the
administration should find a control cost u such that the relevant route flows F (u) stay in a range. The
equilibrium can be interpreted as an inverse variational inequality. Similar applications of inverse vari-
ational inequalities can also be found in the electrical power network management. There are peak and
valley periods in the usage of electricity power. The electricity network is endangered if overloaded when
the peak periods of electricity consumption occur. On the other hand, when the electricity consumption
reaches the valley time, electricity could be wasted due to the difficulty of storing unused power. To
ensure safety of the electricity network and to encourage off-peak usage, the electricity power company
could charge different unit prices for peak time usage and valley time usage. Such a pricing scheme
could lead to a good control of power usage within the reasonable range. The equilibrium of this control
problem is also an inverse variational inequality.

Inspired and motivated by recent research going on in this fascinating and interesting field, in this
paper, an important and useful generalization of inverse variational inequalities is introduced and studied,
which is called the mixed inverse variational inequality involving the nonlinear function. We prove the
existence of the solution of the auxiliary problem for the mixed inverse variational inequalities, suggest
a predictor-corrector method for solving the mixed inverse variational inequalities by using the auxiliary
principle technique. Then it is shown that the convergence of the new method requires the partially
relaxed strong monotonicity property of the operator, which is a weak condition than cocoercivity. Fur-
thermore, the sensitive analysis of the mixed inverse variational inequality is also given. Our results
extend and improve the main results of He [8].

2 Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖·‖, respectively.
Let ϕ(·) : H → H be a nonlinear function. For a given nonlinear operator T : H → H, consider the
problem of finding u ∈ H such that

〈u, v − T (u)〉+ ϕ(v)− ϕ(T (u)) ≥ 0,∀v ∈ H. (2.1)

The inequality of type (2.1) is called the mixed inverse variational inequality.

If K is closed convex set in H and ϕ(v) ≡ IK(v), for all v ∈ H, where IK is the indictor function of
K defined by

IK(v) =
{

0 if v ∈ K
+∞ otherwise

then the problem (2.1) is reduced to finding u ∈ K, such that

〈u, v − T (u)〉 ≥ 0,∀v ∈ K. (2.2)

Problem (2.2) is called inverse variational inequality, which is introduced and studied by He [6] in 2006.
For the applications, formulation and numerical methods of inverse variational inequalities (2.2), we refer
the reader to the survey [8].

Lemma 2.1 For all u, v ∈ H, we have

2〈u, v〉 = ‖u + v‖2 − ‖u‖2 − ‖v‖2.

Definition 2.1 For all u1, u2, z ∈ H, an operator T (·) is said to be partially relaxed strongly monotone,
if there exists a constant α > 0 such that

〈T (u1)− T (u2), z − u2〉 ≥ −α‖u1 − z‖2.

In order to obtain our results, we need the following assumption.

2



Assumption 2.1 The mappings ϕ(·) : H → H satisfy the following conditions:

(1) ϕ(u) is bounded, that is, there exists a constant γ > 0 such that |ϕ(u)| ≤ γ‖u‖,∀u ∈ H, and
ϕ(0) = 0;

(2) ϕ(·) is lower semicontinuous and convex.

We also need the following lemma.

Lemma 2.2 [1] Let X be a nonempty closed convex subsets of Hausdorff linear topological space E,
φ, ψ : X ×X → R be mappings satisfying the following conditions:

(1) ψ(x, y) ≤ φ(x, y),∀x, y ∈ X;

(2) for each x ∈ X, φ(x, y) is upper semicontinuous with respect to y ;

(3) for each y ∈ X, the set {x ∈ X : ψ(x, y) < 0} is a convex set;

(4) there exist a nonempty compact set K ⊂ X and x0 ∈ K such that ψ(x0, y) < 0, for any y ∈ X \K.
Then there exists a y ∈ K such that φ(x, y) ≥ 0,∀x ∈ X.

3 The algorithm for mixed inverse variational inequalities

In this section, we give an existence theorem of a solution of the auxiliary problem for the mixed
inverse variational inequality (2.1). Based on this existence theorem, we suggest and analyze a new iter-
ative method for solving the problem (2.1).

For given u ∈ H, consider the problem of finding a unique z ∈ H satisfying the auxiliary mixed inverse
variational inequality (denoted by P(u))

〈ρu + T (z)− T (u), v − T (z)〉+ ρϕ(v)− ρϕ(T (z)) ≥ 0, (3.1)

for all v ∈ H , where ρ > 0 is a constant.

Remark 3.1 We note that if z = u, then clearly z is a solution of (2.1).

Theorem 3.1 If Assumption 2.1 holds, T : H → H is invertible and Lipschitz continuous, 0 < ργ < 1,
and (1− ργ)‖T (0)‖ ≤ ‖T (u)||+ ρ‖u‖, then P (u) has a solution.
Proof. Define φ, ψ : H ×H → H by

φ(v, z) = 〈v, v − T (z)〉 − 〈T (u), v − T (z)〉+ ρ〈u, v − T (z)〉 − ρϕ(T (z)) + ρϕ(v)

and

ψ(v, z) = 〈T (z), v − T (z)〉 − 〈T (u), v − T (z)〉+ ρ〈u, v − T (z)〉 − ρϕ(T (z)) + ρϕ(v),

respectively. Now we show that the mapping φ, ψ satisfy all the conditions of Lemma 2.2.
Clearly, φ and ψ satisfy condition (1) of Lemma 2.2. It follows from Assumption 2.1(3) that φ(v, z) is
upper semicontinuous with respect to z. By using Assumption 2.1 (2), it is easy to show that the set
{v ∈ H|ψ(v, z) < 0} is a convex set for each fixed z ∈ H and so the conditions (2) and (3) of Lemma 2.2
hold.
Now let

ω = ‖T (u)‖+ ρ‖u‖,K = {z ∈ H : (1− ργ)‖T (z)‖ ≤ ω}.
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Since T : H → H is invertible, K is a weakly compact subset of H. For any fixed z ∈ H \ K, from
Assumption 2.1, we have

ψ(0, z) = −〈T (z), T (z)〉+ 〈T (u), T (z)〉+ ρ〈u,−T (z)〉 − ρϕ(T (z))
≤ −‖T (z)‖2 + ‖T (u)‖‖T (z)‖+ ‖u‖‖T (z)‖+ ργ‖T (z)‖
= −‖T (z)‖(‖T (z)‖ − ‖T (u)‖ − ρ‖u‖ − ργ‖g(z)‖)
< 0.

Therefore, the condition (4) of Lemma 2.2 holds. By Lemma 2.2, there exists a z ∈ H such that
φ(v, z) ≥ 0, for all v ∈ H, that is,

〈v, v − T (z)〉 − 〈T (u), v − T (z)〉+ ρ〈u, v − T (z)〉 − ρϕ(T (z)) + ρϕ(v) ≥ 0,∀v ∈ H (3.2)

For arbitrary t ∈ (0, 1) and v ∈ H , let T (xt) = tv +(1− t)T (z). Replacing v by T (xt) in (3.2), we obtain

0 ≤ 〈T (xt), T (xt)− T (z)〉 − 〈T (u), T (xt)− T (z)〉+ ρ〈u, T (xt)− T (z)〉 − ρϕ(T (z)) + ρϕ(T (xt))
≤ t(〈T (xt), v − T (z)〉 − 〈T (u), v − T (z)〉) + ρt〈u, v − T (z)〉+ ρt(ϕ(v)− ϕ(T (z)).

Hence

〈T (xt), v − T (z)〉 − 〈T (u), v − T (z)〉+ ρ〈u, v − T (z)〉+ ρϕ(v))− ρϕ(T (z)) ≥ 0

and so

〈T (xt), v − T (z)〉 ≥ 〈T (u), v − T (z)〉 − ρ〈u, v − T (z)〉 − ρϕ(v) + ρϕ(T (z)).

Letting t → 0, we have

〈T (z), v − T (z)〉 ≥ 〈T (u), v − T (z)〉 − ρ〈u, v − T (z)〉 − ρϕ(v) + ρϕ(T (z))

Therefore, z ∈ H is a solution of the auxiliary problem P (u). This completes the proof.

By using Theorem 3.1, we now suggest the following iterative method for solving the mixed inverse
variational inequality (2.1).

Algorithm 3.1 For a given u0 ∈ H, compute the approximate solution un+1 by the iterative scheme

〈ρwn + T (un+1)− T (wn), v − T (un+1)〉+ ρϕ(v)− ρϕ(T (un+1)) ≥ 0,∀v ∈ H (3.3)

and

〈βun + T (wn)− T (un), v − T (wn)〉+ βϕ(v)− βϕ(T (wn)) ≥ 0,∀v ∈ H, (3.4)

where ρ > 0 and β > 0 are constants.

For the convergence analysis of Algorithm 3.1, we need the following result.

Lemma 3.1 Let u ∈ H be the exact solution of (2.1) and un+1 be the approximate solution ob-
tained from Algorithm 3.1. If the operator T (·) is partially relaxed strongly monotone, T−1 is Lipschitz
continuous with a constant σ > 0, and the conditions in Theorem 3.1 are satisfied, then

‖T (un+1)− T (u)‖2 ≤ ‖T (un)− T (u)‖2 − (1− 2ρασ)‖T (un+1)− T (un)‖2. (3.5)

Proof. Let u ∈ H be a solution of (2.1). Then

〈ρu, v − T (u)〉+ ρϕ(v)− ρϕ(T (u)) ≥ 0,∀v ∈ H (3.6)
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and

〈βu, v − T (u)〉+ βϕ(v)− βϕ(T (u)) ≥ 0,∀v ∈ H, (3.7)

where ρ > 0 and β > 0 are constants. Now taking v = T (un+1) in (3.6) and v = T (u) in (3.3), we have

〈ρu, T (un+1)− T (u)〉+ ρϕ(T (un+1))− ρϕ(T (u)) ≥ 0 (3.8)

and

〈ρwn + T (un+1)− T (wn), T (u)− T (un+1)〉+ ρϕ(T (u))− ρϕ(T (un+1)) ≥ 0. (3.9)

Since T (·) is partially relaxed strongly monotone, Adding (3.8) and (3.9), we have

〈T (un+1)− T (wn), T (u)− T (un+1)〉 ≥ ρ〈wn − u, T (un+1)− T (u)〉
≥ −ρα‖wn − un+1‖2. (3.10)

Setting u = T (u)− T (un+1) and v = T (un+1)− T (wn) in (2.2), we obtain

〈T (un+1)− T (wn), T (u)− T (un+1)〉 = (1/2){‖T (u)− T (wn)‖2 − ‖T (un+1)− T (wn)‖2
− ‖T (u)− T (un+1)‖2}. (3.11)

It follows from (3.10) and (3.11) that

‖T (un+1)− T (u)‖2 ≤ ‖T (wn)− T (u)‖2 − (1− 2ρασ)‖T (un+1)− T (wn)‖2, (3.12)

Similarly, we have

‖T (u)− T (wn)‖2 ≤ ‖T (un)− T (u)‖2 − (1− 2βασ)‖T (un)− T (wn)‖2
≤ ‖T (un)− T (u)‖2, 0 < β < 1/(2ασ). (3.13)

and

‖T (un+1)− T (wn)‖2 = ‖T (un+1)− T (un) + T (un)− T (wn)‖2
= ‖T (un+1)− T (un)‖2 + ‖T (un)− T (wn)‖2

+ 2〈T (un+1)− T (un), T (un)− T (wn)〉. (3.14)

Combining (3.12)-(3.14), we get

‖T (un+1)− T (u)‖2 ≤ ‖T (un)− T (u)‖2 − (1− 2ρασ)‖T (un+1)− T (un)‖2.
The required result.

Theorem 3.2 Let H be finite dimensional, T : H → H be invertible, T−1 is Lipschitz continuous and
0 < ρ < 1/(2ασ). Let {un} be the sequences obtained from Algorithm 3.1, u ∈ H be the exact solution
of (2.1) and the conditions in Lemma 3.1 are satisfied, then {un} strongly converge to a solution of (2.1).

Proof. Let u ∈ H be a solution of (2.1). Since 0 < ρ < 1/(2ασ), it follows from (3.5) that the sequence
{‖T (u)− T (un)‖} is nonincreasing and consequently {un} is bounded. Furthermore, we have

∑
(1− 2ρασ)‖T (un+1)− T (un)‖2 ≤ ‖T (u0)− T (u)‖2,

which implies that

lim
n→∞

‖T (un+1)− T (un)‖ = 0. (3.15)

Let û be the cluster point of {un} and the subsequence {unj} of the sequence {un} converge to û.
Replacing wn by unj in (3.3) and (3.4), the limit nj →∞ and using (3.14), we have

〈û, v − T (û)〉+ ϕ(v)− ϕ(T (û)) ≥ 0,∀v ∈ H,

which implies that û ∈ H is a solution of (2.1), and

‖T (un+1)− T (u)‖2 ≤ ‖T (un)− T (u)‖2. (3.16)

Thus it follows from the above inequality that the sequence{un} has exactly one cluster point û and
limn→∞ T (un) = T (û). Since T is invertible and T−1 is Lipschitz continuous, limn→∞ un = û. The
required result.
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4 Parametric mixed inverse variational inequalities

In this section, we give an existence theorem of a solution of the parametric problem for the mixed
inverse variational inequality (2.1).

For given λ ∈ H, consider the problem of finding a unique u ∈ H satisfying the parametric mixed
inverse variational inequality

〈u, v − Tλ(z)〉+ ϕ(v)− ϕ(Tλ(z)) ≥ 0, (4.1)

for all v ∈ H , where Tλ is dependent on the parameter λ ∈ H.

Theorem 4.1 If Assumption 2.1 holds, for any λ ∈ H, Tλ : H → H is invertible and Lipschitz
continuous, T−1

λ is strongly montone with a constant α > 0, and Tλ(0) = 0, then the parametric mixed
inverse variational inequality has a solution.

Proof. Define φ, ψ : H ×H → H by

φ(v, u) = 〈v, v − Tλ(u)〉 − 〈Tλ(u), v − Tλ(u)〉+ 〈u, v − Tλ(u)〉 − ϕ(Tλ(u)) + ϕ(v)

and

ψ(v, u) = 〈Tλ(u), v − Tλ(u)〉 − 〈Tλ(u), v − Tλ(u)〉+ 〈u, v − Tλ(u)〉 − ϕ(Tλ(u)) + ϕ(v),

respectively. Now we show that the mapping φ, ψ satisfy all the conditions of Lemma 2.2.
Clearly, φ and ψ satisfy condition (1) of Lemma 2.2. It follows from Assumption 2.1(2) that φ(v, u) is
upper semicontinuous with respect to u. By using Assumption 2.1 (2), it is easy to show that the set
{v ∈ H|ψ(v, u) < 0} is a convex set for each fixed u ∈ H and so the conditions (2) and (3) of Lemma 2.2
hold.
Since T−1

λ is strongly monotone,

〈u, Tλ(u)〉 ≥ α‖Tλ(u)‖2. (4.2)

Now let

K = {u ∈ H : ‖Tλ(u)‖ ≤ γ/α}.

For any fixed u ∈ H \K, from (4.2), we have

γ‖Tλ(u)‖ < α‖Tλ(u)‖2. (4.3)

Combining (4.2) and (4.3),we have

〈u, Tλ(u)〉 − γ‖Tλ(u)‖ > 0. (4.4)

From (4.4) and Assumption (2.1), we have

〈u, Tλ(u)〉+ ϕ(Tλ(u)) > 0. (4.5)

Since Tλ : H → H is invertible, K is a weakly compact subset of H. From Assumption 2.1, we have

ψ(0, u) = −〈Tλ(u), Tλ(u)〉+ 〈Tλ(u), Tλ(u)〉+ 〈u,−Tλ(u)〉 − ϕ(Tλ(u))
= −(〈u, Tλ(u)〉+ ϕ(Tλ(u)))
< 0.

Therefore, the condition (4) of Lemma 2.2 holds. By Lemma 2.2, there exists a u ∈ H such that
φ(v, u) ≥ 0, for all v ∈ H, that is,

〈v, v − Tλ(u)〉 − 〈Tλ(u), v − Tλ(u)〉+ 〈u, v − Tλ(u)〉 − ϕ(Tλ(u)) + ϕ(v) ≥ 0,∀v ∈ H (4.6)
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For arbitrary t ∈ (0, 1) and v ∈ H , let Tλ(xt) = tv + (1 − t)Tλ(u). Replacing v by Tλ(xt) in (4.6), we
obtain

0 ≤ 〈Tλ(xt), Tλ(xt)− Tλ(u)〉 − 〈Tλ(u), Tλ(xt)− Tλ(u)〉+ 〈u, Tλ(xt)− Tλ(u)〉 − ϕ(Tλ(u)) + ϕ(Tλ(xt))
≤ t(〈Tλ(xt), v − Tλ(u)〉 − 〈Tλ(u), v − Tλ(u)〉) + t〈u, v − Tλ(u)〉+ t(ϕ(v)− ϕ(Tλ(u)).

Hence

〈Tλ(xt), v − Tλ(u)〉 − 〈T (u), v − Tλ(u)〉+ 〈u, v − Tλ(u)〉+ ϕ(v))− ϕ(Tλ(u)) ≥ 0

and so

〈Tλ(xt), v − Tλ(u)〉 ≥ 〈T (u), v − Tλ(u)〉 − 〈u, v − Tλ(u)〉 − ϕ(v) + ϕ(Tλ(u)).

Letting t → 0, we have

〈Tλ(u), v − Tλ(u)〉 ≥ 〈Tλ(u), v − Tλ(u)〉 − 〈u, v − Tλ(u)〉 − ϕ(v) + ϕ(Tλ(u))

Therefore, u ∈ H is a solution of the parametric problem (4.1). This completes the proof.
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