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CERTAIN BOUNDS FOR THE DIFFERENCES OF MEANS

PENG GAO

Abstract. Let Pn,r(x) be the generalized weighted power means. We consider bounds for the
differences of means in the following forms(β 6= 0):

max{Cu,v,β

x2β−α
1

,
Cu,v,β

x2β−α
n

}σn,w′,β ≥
P α

n,u − P α
n,v

α
≥ min{Cu,v,β

x2β−α
1

,
Cu,v,β

x2β−α
n

}σn,w,β

where σn,t,β(x) =
∑n

i=1 ωi[x
β
i −P β

n,t(x)]2 and Cu,v,β = u−v
2β2 . Similar inequalities are also considered

and the results are applied to inequalities of Ky Fan’s type.

1. Introduction

Let Pn,r(x) be the generalized weighted power means: Pn,r(x) = (
∑n

i=1 ωix
r
i )

1
r , where ωi >

0, 1 ≤ i ≤ n with
∑n

i=1 ωi = 1 and x = (x1, x2, · · · , xn). Here Pn,0(x) denotes the limit of Pn,r(x)
as r → 0+. In this paper, we always assume 0 < x1 ≤ x2 ≤ · · · ≤ xn and write σn,t,β(x) =∑n

i=1 ωi[x
β
i − P β

n,t(x)]2 and denote σn,t as σn,t,1.
We let An(x) = Pn,1(x), Gn(x) = Pn,0(x),Hn(x) = Pn,−1(x) and we shall write Pn,r for Pn,r(x),

An for An(x) and similarly for other means when there is no risk of confusion.
We consider upper and lower bounds for the differences of the generalized weighted means in the

following forms(β 6= 0):

(1.1) max{
Cu,v,β

x2β−α
1

,
Cu,v,β

x2β−α
n

}σn,w′,β ≥
Pα

n,u − Pα
n,v

α
≥ min{

Cu,v,β

x2β−α
1

,
Cu,v,β

x2β−α
n

}σn,w,β

where Cu,v,β = u−v
2β2 . If we set x1 = · · · = xn−1 6= xn, then we conclude from Lim

x1→xn

(Pα
n,u −

Pα
n,v)/(ασn,w,β) = (u−v)/(2β2x2β−α

n ) that Cu,v,β is best possible. Here we define (P 0
n,u−P 0

n,v)/0 =
ln(Pn,u/Pn,v), the limit of (Pα

n,u − Pα
n,v)/α as α → 0.

In what follows we will refer to (1.1) as (u, v, α, β, w, w′). D.I. Cartwright and M.J. Field[8] first
proved the case (1, 0, 1, 1, 1, 1). H. Alzer[4] proved (1, 0, 1, 1, 1, 0) and[5] (1, 0, α, 1, 1, 1) with α ≤ 1.
A.M. Mercer[13] proved the right-hand side inequality with smaller constants for α = β = u =
1, v = −1, w = ±1.

There is a close relation between (1.1) and the following Ky Fan’s inequality, first published in the
monograph Inequalities by Beckenbach and Bellman [7](In this section, we set A′n = 1−An, G′

n =∏n
i=1(1− xi)ωi . For general definitions, see the beginning of section 3):

Theorem For xi ∈ [0, 1/2],

(1.2)
A′n
G′

n

≤ An

Gn

with equality holding if and only if x1 = · · · = xn.
Observed by P. Mercer[15], the validity of (1, 0, 1, 1, 1, 1) leads to the following refinement of the

additive Ky Fan’s inequality:
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Theorem Let 0 < a ≤ xi ≤ b < 1 (1 ≤ i ≤ n;n ≥ 2), a 6= b,

(1.3)
a

1− a
<

A′n −G′
n

An −Gn
<

b

1− b

Thus by a result of P. Gao[9], it provides the following refinement of Ky Fan’s inequality, first
proved by Alzer[6]:

(An/Gn)(a/(1−a))2 ≤ A′n/G′
n ≤ (An/Gn)(b/(1−b))2

For an account of Ky Fan’s inequality, we refer the reader to the survey article[2] and the
references therein.

Since additive Ky Fan’s inequality for generalized weighted means is a consequence of (1.1) and
it doesn’t always hold(see [9]), it follows that (1.1) does not hold for arbitrarily (u, v, α, β, w,w′).

Our main result in this paper will be a theorem that shows the validity of (1.1) for some
α, β, u, v, w, w′ and we will apply the result in section 3 to get further refinements and general-
izations of inequalities of Ky Fan’s type.

One can obtain further refinements of (1.1) and recently, A.M. Mercer proved the following
theorem[14]:
Theorem If x1 6= xn, n ≥ 2, then

(1.4)
Gn − x1

2x1(An − x1)
σn,1 > An −Gn >

xn −Gn

2xn(xn −An)
σn,1

We will give a generalization of the above theorem in section 2.

2. The Main Theorem

Theorem 2.1. (1, s
r , 1, γ

r , t
r , t′

r ), r 6= s, r 6=0, γ 6= 0 holds for the following three cases: 1. s
γ ≤

r
γ ≤

2, 1 ≥ t
γ , t′

γ ≥ s
γ ≥ r

γ − 1; 2. r
γ ≥ 2, r

γ − 1 ≥ s
γ ≥ t

γ , t′

γ ≥ 1; 3. r
γ ≤ s

γ ≤ t
γ , t′

γ ≤ 1. with equality
holding if and only if x1 = · · · = xn for all the cases.

Proof. Let γ = 1, r 6= s and we will show (1.1) holds for the following three cases:
1. s ≤ r ≤ 2, 1 ≥ t, t′ ≥ s ≥ r − 1; 2. r ≥ 2, r − 1 ≥ s ≥ t, t′ ≥ 1; 3. r ≤ s ≤ t, t′ ≤ 1.
For case 1, consider the right-hand side inequality of (1.1) and let

(2.1) Dn(x) = An − Pn, s
r
− r(r − s)

2x
2
r
−1

n

n∑
i=1

ωi(x
1
r
i − P

1
r

n, t
r

)2

We want to show Dn ≥ 0 here. We can assume x1 < x2 < · · · < xn and prove by induction, the
case n = 1 is clear so we will start with n > 1 variables assuming the inequality holds for n − 1
variables. Then

(2.2)
1
ωn

∂Dn

∂xn
= 1− [(

Pn, s
r

xn
)

1
r ]r−s − (r − s)(1− (

Pn, t
r

xn
)1/r) + S

where

S =
(2− r)(r − s)

2ωnx
2
r
−2

n

n∑
i=1

ωi(x
1
r
i − P

1
r

n, t
r

)2 + (r − s)
P

1−t
r

n, t
r

x
2−t

r
n

(P
1
r

n, 1
r

− P
1
r

n, t
r

)

Thus when s ≤ r ≤ 2, t ≤ 1, S ≥ 0.
Now by the mean value theorem

1− [(
Pn, s

r

xn
)

1
r ]r−s = (r − s)ηr−s−1(1− (

Pn, s
r

xn
)1/r) ≥ (r − s)(1− (

Pn, s
r

xn
)1/r)
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for r ≥ s ≥ r − 1 with min{1, (
Pn, s

r
xn

)1/r} ≤ η ≤ max{1, (
Pn, s

r
xn

)1/r}, which implies

1− [(
Pn, s

r

xn
)

1
r ]r−s − (r − s)(1− (

Pn, t
r

xn
)1/r) ≥ (r − s)[(

Pn, t
r

xn
)

1
r − (

Pn, s
r

xn
)

1
r ]

which is positive if s ≤ t.
Thus for s ≤ r ≤ 2, 1 ≥ t ≥ s ≥ r − 1, ∂Dn

∂xn
≥ 0 and by letting xn tend to xn−1, we have

Dn ≥ Dn−1(with weights ω1, · · · , ωn−2, ωn−1 + ωn) and thus the right-hand side inequality of (1.1)
holds by induction. It is also easy to see the equality holds if and only if x1 = · · · = xn.

Now consider the left-hand side inequality of (1.1) and write

(2.3) En(x) = An − Pn, s
r
− r(r − s)

2x
2
r
−1

1

n∑
i=1

ωi(x
1
r
i − P

1
r

n, t′
r

)2

1
ω1

∂En
∂x1

has an expression similar to (2.2) with xn ↔ x1, ωn ↔ ω1, t ↔ t′. It is then easy to see
under the same condition, ∂En

∂x1
≥ 0. Thus the left-hand side inequality of (1.1) holds by a similar

induction process with the equality holding if and only if x1 = · · · = xn.
Similarly, we can show Dn(x) ≤ 0, En(x) ≥ 0 for case 2 and 3 with equality holding if and only

if x1 = · · · = xn for all the cases.
Now for an arbitrary γ, a change of variables y → y/γ for y = r, s, t, t′ in the above cases leads

to the desired conclusion. �

In what follows our results often include the cases r = 0 or s = 0 and we will leave the proofs of
these special cases to the reader since they are similar to what we give in the paper.
Corollary 2.1. For r > s, min{1, r − 1} ≤ s ≤ max{1, r − 1} and min{1, s} ≤ t, t′ ≤ max{1, s},
(r, s, r, 1, t, t′) holds. For s ≤ r ≤ t, t′ ≤ 1, (r, s, s, 1, t, t′) holds, with equality holding if and only if
x1 = · · · = xn for all the cases.

Proof. This follows from taking γ = 1 in theorem 2.1 and another change of variables: x1 →
min{xr

1, x
r
n}, xn → max{xr

1, x
r
n} and xi = xr

i for 2 ≤ i ≤ n− 1 if n ≥ 3 and exchanging r and s for
the case s > r. �

We remark here since σn,t′ = σn,t +(2An−Pn,t−Pn,t′)(Pn,t−Pn,t′), we have σn,1 ≤ σn,t for t 6= 1
and σn,t ≤ σn,t′ for t′ ≤ t ≤ 1, σn,t ≥ σn,t′ for t ≥ t′ ≥ 1. Thus the optimal choices for the set {t, t′}
will be {1, s} for the case (r, s, r, 1, t, t′) and {1, r} for the case (r, s, s, 1, t, t′).

Our next two propositions give relations between differences of means with different powers:
Proposition 2.1. For l − r ≥ t− s ≥ 0, l 6= t, xi ∈ [a, b], a > 0,

(2.4) |(r − s)
(l − t)

| 1
al−r

≥ |
(P r

n,r − P r
n,s)/r

(P l
n,l − P l

n,t)/l
| ≥ |(r − s)

(l − t)
| 1
bl−r

except the trivial cases: r = s or (l, t) = (r, s), the equality holds if and only if x1 = · · · = xn, where
we define 0/0 = xr−l

i for any i.

Proof. This is a generalization of a result A.M. Mercer[12]. We may assume x1 = a, xn = b and
consider

D(x) = P r
n,r − P r

n,s −
r(r − s)

l(l − t)xl−r
n

(P l
n,l − P l

n,t)

E(x) = P r
n,r − P r

n,s −
r(r − s)

l(l − t)xl−r
1

(P l
n,l − P l

n,t)

We will show Dn · En ≤ 0 and we suppose r − s ≥ 0 here, the case r − s ≤ 0 is similar. We have

x1−r
n

rωn

∂Dn

∂xn
= 1− (

Pn,s

xn
)r−s − r − s

l − t
(1− [(

Pn,t

xn
)r−s]

l−t
r−s ) + S
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where

S =
(r − s)(l − r)
l(l − t)xl−2

n ωn

(P l
n,l − P l

n,t) ≥ 0

Now by the mean value theorem

1− [(
Pn,t

xn
)r−s]

l−t
r−s =

l − t

r − s
ηl−t−r+s(1− (

Pn,t

xn
)r−s)

where Pn,t

xn
< η < 1 and

x1−r
n

rωn

∂Dn

∂xn
≥ 1− (

Pn,s

xn
)r−s − (1− (

Pn,t

xn
)r−s) ≥ 0

since t ≥ s.
Similarly, we have x1−r

1
rω1

∂En
∂x1

≥ 0 and by a similar induction process as the one in the proof of
theorem 2.1, we have Dn · En ≤ 0 and this completes the proof. �

By taking l = 2, t = 0, r = 1, s = −1 in the corollary, we get the following inequality:

(2.5)
1

2x1
(P 2

n,2 −G2
n) ≥ An −Hn ≥

1
2xn

(P 2
n,2 −G2

n)

and the right-hand side inequality above gives a refinement of a result of A.M. Mercer[13].
Proposition 2.2. For r > s, α > β,

(2.6) xβ−α
1 ≥ P β−α

n,s ≥ (P β
n,r − P β

n,s)/β

(Pα
n,r − Pα

n,s)/α
≥ P β−α

n,r ≥ xβ−α
n

with equality holding if and only if x1 = · · · = xn, where we define 0/0 = xβ−α
i for any i.

Proof. By the mean value theorem,

P β
n,r − P β

n,s = (Pα
n,r)

β/α − (Pα
n,s)

β/α =
β

α
ηβ−α(Pα

n,r − Pα
n,s)

where Pn,s < η < Pn,r and (2.6) follows. �

Apply (2.6) to the case (1, 0, 1, 1, 1, 1), we see (1, 0, α, 1, 1, 1) holds with α ≤ 1, a result of Alzer[5].
At the end of this section, we give the following generalization of (1.4) and we leave to the reader

for other similar refinements.
Theorem 2.2. If x1 6= xn, n ≥ 2, then for 1 > s ≥ 0

(2.7)
P 1−s

n,s − x1−s
1

2x1−s
1 (An − x1)

σn,1 > An − Pn,s >
x1−s

n − P 1−s
n,s

2x1−s
n (xn −An)

σn,1

Proof. We will prove the right-hand inequality and the left-hand side inequality is similar. let

Dn(x) = (xn −An)(An − Pn,s)−
x1−s

n − P 1−s
n,s

2x1−s
n

σn,1

We want to show by induction that Dn ≥ 0. We have
∂Dn

∂xn
= (1− ωn)(An − Pn,s)−

1− s

2xn
(
Pn,s

xn
)1−s(1− (

xn

Pn,s
)sωn)σn,1

≥ (1− ωn)(An − Pn,s −
1− s

2xn
σn,1) ≥ 0

where the last inequality holds by theorem 2.1. Thus by a similar induction process as the one
in the proof of theorem 2.1, we have Dn ≥ 0. Since not all the xi’s are equal, we get the desired
result. �
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Corollary 2.2. For 1 > s ≥ 0,

(2.8)
1− s

2x1

Pn,s

An
σn,1 ≥ An − Pn,s ≥

1− s

2xn
σn,s

with equality holding if and only if x1 = · · · = xn.

Proof. By theorem 2.2, we only need to show P 1−s
n,s −x1−s

1

2x1−s
1 (An−x1)

≤ 1−s
2x1

Pn,s

An
and this is easily verified by

using the mean value theorem. �

3. Applications to Inequalities of Ky Fan’s type

Let f(x, y) be a real function, we regard y as an implicit function defined by f(x, y) = 0 and
for y = (y1, · · · , yn), let f(xi, yi) = 0, 1 ≤ i ≤ n. We write P ′

n,r = Pn,r(y) with A
′
n = P ′

n,1, G
′
n =

P ′
n,0,H

′
n = P ′

n,−1. Furthermore, we denote x1 = a > 0, xn = b so that xi ∈ [a, b] with yi ∈
[a′, b′], a′ > 0 and require f ′x, f ′y exist for xi ∈ [a, b], yi ∈ [a′, b′].

To simplify expressions, we define:

(3.1) ∆r,s,α =
Pα

n,r(y)− Pα
n,s(y)

Pα
n,r(x)− Pα

n,s(x)

with ∆r,s,0 = (ln Pn,r(y)
Pn,s(y) )/(ln Pn,r(x)

Pn,s(x) ) and in order to include the case of equality for various inequal-
ities in our discussion, we define 0/0 = 1 from now on.

In this section, we apply our results above to inequalities of Ky Fan’s type. Let f(x, y) be an
arbitrary function satisfying those conditions in the first paragraph of this section and we show
how to get inequalities of Ky Fan’s type in general:

Suppose (1.1) holds for some α > 0, r > s, β = 1, t = t′ = 1 , write σn,1(y) = σ′n,1 and apply
(1.1) to sequences x,y and then take their quotients, we get:

aσ′n,1

b′σn,1
≤ ∆r,s,α ≤

bσ′n,1

a′σn,1

Since σ′n,1 =
∑n

i=1 wi(
∑n

k=1 wk(yi − yk))2,by the mean value theorem

yi − yk = −f ′x
f ′y

(ξ, y(ξ))(xi − xk)

for some ξ ∈ (a, b). Thus min
a≤x≤b

|f
′
x

f ′y
|2σn,1 ≤ σ′n,1 ≤ max

a≤x≤b
|f

′
x

f ′y
|2σn,1, which implies

a

b′
min

a≤x≤b
|f
′
x

f ′y
|2 ≤ ∆r,s,α ≤

b

a′
max
a≤x≤b

|f
′
x

f ′y
|2

Now, we apply the above argument to a special case and get

Corollary 3.1. Let f(x, y) = cxp + dyp− 1, 0 < c ≤ d, p ≥ 1, xi ∈ [0, (c + d)−
1
p ]. For s ∈ [0, 2], α =

max{s, 1}

(3.2) ∆1,s,α ≤ 1

with equality holding if and only if x1 = · · · = xn.

Proof. This follows from corollary 2.1 by choosing proper r, s there. �

From now on we will concentrate on the case f(x, y) = x + y − 1 and all the discussions below
can be applied to an arbitrary function f(x, y) by using the argument above and we will leave it
to the reader for those generalizations.
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Corollary 3.2. Let f(x, y) = x + y − 1, 0 < a < b < 1 and xi ∈ [a, b](i = 1, · · · , n), n ≥ 2. Then
for r > s,min{1, r − 1} ≤ s ≤ max{1, r − 1}

(3.3) max{( b

1− b
)2−r, (

a

1− a
)2−r} > ∆r,s,r > min{( b

1− b
)2−r, (

a

1− a
)2−r}

For s < r ≤ 1,

(3.4) max{( b

1− b
)2−s, (

a

1− a
)2−s} > ∆r,s,s > min{( b

1− b
)2−s, (

a

1− a
)2−s}

Proof. Apply corollary 2.1 to sequences x,y with t = t′ = 1 and take their quotients, by noticing
σn,1(x) = σn,1(y). �

As a special case of the above corollary, by taking r = 0, s = −1, we get the following refinement
of the Wang-Wang inequality[17]:

(3.5) (Gn/Hn)(a/(1−a))2 ≤ G′
n/H ′

n ≤ (Gn/Hn)(b/(1−b))2

We can use corollary 2.2 to get further refinements of inequalities of Ky Fan’s type. Since
σn,s = σn,1 + (An − Pn,s)2, we can rewrite the right-hand side inequality in (2.8) as

(3.6) (Pn,1(x)− Pn,s(x))(1− 1− s

2b
(Pn,1(x)− Pn,s(x))) ≥ 1− s

2b
σn,1

Apply (2.8) to y and taking the quotient with (3.6), we get

Pn,1(y)− Pn,s(y)
(Pn,1(x)− Pn,s(x))(1− 1−s

2b (Pn,1(x)− Pn,s(x)))
≤

bσ′n,1

a′σn,1

P ′
n,s

A′n
=

b

a′
P ′

n,s

A′n

Similarly,
(Pn,1(y)− Pn,s(y))(1− 1−s

2a′ (Pn,1(y)− Pn,s(y)))
Pn,1(x)− Pn,s(x)

≥ a

b′
An

Pn,s

Combining these with a result in [9], we obtain the following refinement of Ky Fan’s inequality:
Corollary 3.3. Let 0 < a < b < 1 and xi ∈ [a, b](i = 1, · · · , n), n ≥ 2. Then for α ≤ 1, 0 ≤ s < 1

(3.7) (
b

1− b
)2−α

P ′
n,s

A′n
B > ∆1,s,α > (

a

1− a
)2−α An

Pn,s
A

where A = (1− 1−s
2a′ (Pn,1(y)− Pn,s(y)))−1, B = 1− 1−s

2b (Pn,1(x)− Pn,s(x))

We note here when α = 1, s = 0, b ≤ 1
2 , the left-hand side inequality of (3.7) yields

(3.8)
A′n −G′

n

An −Gn
<

b

1− b

G′
n

A′n
(A′n + Gn)

a refinement of the following two results of H. Alzer[1]: A′n/G′
n ≤ (1 − Gn)/(1 − An), which is

equivalent to (A′n −G′
n)/(An −Gn) < G′

n/A′n and [3]: A′n −G′
n ≤ (An −Gn)(A′n + Gn).

Next, we give a result that relates to Levinson’s generalization of Ky Fan’s inequality, first we
generalize of a lemma of A.M.Mercer[12]:
Lemma 3.1. Let J(x) be the smallest closed interval that contains all of xi and let y ∈ J(x) and
f(x), g(x) ∈ C2(J(x)) be two twice continuously differentiable functions, then

(3.9)
∑n

i=1 ωif(xi)− f(y)− (
∑n

i=1 ωixi − y)f ′(y)∑n
i=1 ωig(xi)− g(y)− (

∑n
i=1 ωixi − y)g′(y)

=
f ′′(ξ)
g′′(ξ)

for some ξ ∈ J(x), provided that the denominator of the left-hand side is nonzero.
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Proof. The proof is very similar to the one given in [12], we write

(Qf)(t) =
n∑

i=1

wif(txi + (1− t)y)− f(y)− t(A− y)f ′(y)

and consider W (t) = (Qf)(t) −K(Qg)(t) where K is the left-hand side expression in (3.9). Then
following the same argument as in [12], we see the lemma holds. �

By taking g(x) = x2, y = Pn,t in the lemma, we get:
Corollary 3.4. Let f(x) ∈ C2[a, b] with m = min

a≤x≤b
f ′′(x),M = max

a≤x≤b
f ′′(x). Then

(3.10)
M

2
σn,t ≥

n∑
i=1

ωif(xi)− f(
n∑

i=1

ωixi)− (An − Pn,t)f ′(Pn,t) ≥
m

2
σn,t

If moreover f ′′′(x) exists for x ∈ [a, b] with f ′′′(x) > 0 or f ′′′(x) < 0 for x ∈ [a, b] then the equality
holds if and only if x1 = · · · = xn.

The case t = 1 in the above corollary was treated by A.M.Mercer[11]. Note for an arbitrary f(x),
equality can hold even if the condition x1 = · · · = xn is not satisfied, for example, for f(x) = x2,
we have the following identity:

∑n
i=1 ωix

2
i − (

∑n
i=1 ωixi)2 =

∑n
i=1 ωi(xi −

∑n
k=1 ωkxk)2.

Corollary 3.4 can be regarded as a refinement of Jensen’s inequality and it leads to the following
well-known Levinson’s inequality for 3-convex functions [10]:
Corollary 3.5. Let xi ∈ (0, a]. If f ′′′(x) ≥ 0 in (0,2a), then

(3.11)
n∑

i=1

ωif(xi)− f(
n∑

i=1

ωixi) ≤
n∑

i=1

ωif(2a− xi)− f(
n∑

i=1

ωi(2a− xi))

If f ′′′(x) > 0 on (0, 2a) then equality holds if and only if x1 = · · · = xn.

Proof. Take t = 1 in (3.10) and apply corollary 3.4 to (x1, · · · , xn) and (2a−x1, · · · , 2a−xn). Since
f ′′′(x) ≥ 0 in (0,2a), it follows max

0≤x≤a
f ′′(x) ≤ min

a≤x≤2a
f ′′(x) and the corollary is proved. �

Now we establish an inequality relating different ∆r,s,α’s:
Corollary 3.6. For l − r ≥ t− s ≥ 0, l 6= t, r 6= s, (l, t) 6= (r, s), xi ∈ [a, b], yi ∈ [a, b], n ≥ 2,

(3.12) (
b

a′
)l−r > |∆r,s,r

∆l,t,l
| > (

a

b′
)l−r

Proof. Apply (2.4) to both x and y and take their quotients. �

Notice by this corollary, one can give another proof of inequality (3.5), namely, using the above
corollary for l = 1, t = 0, s = −1, r = 0.

4. A few comments

A variant of (1.1) is the following conjecture by A.M. Mercer[13](r > s, t, t′ = r, s):

(4.1) max{ r − s

2x2−r
1

,
r − s

2x2−r
n

}σn,t′ ≥
Pn,r − Pn,s

P 1−r
n,r

≥ min{ r − s

2x2−r
1

,
r − s

2x2−r
n

}σn,t

The conjecture presented here has been reformulated(one can compare it with the original one
in [13]), since here (r − s)/2 is best possible constant by the same argument as above.

Note when r = 1, (4.1) coincides with (1.1) and thus the conjecture in general is false.
There are many other kinds of expressions of the bounds for the difference between the arithmetic

and geometric means, we refer the reader to Chapter II of the book Classical and new inequalities
in analysis [16].
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In [12], A.M.Mercer showed

(4.2)
P 2

n,2 −G2
n

4x1
≥ An −Gn ≥

P 2
n,2 −G2

n

4xn

He also pointed out the above inequality is not comparable to either of the inequalities in (1.1)
with α = β = u = 1, v = 0, t = t′ = 0, 1. We note (4.2) can be obtained from (1.1) by averaging
the case α = β = u = t = t′ = 1, v = 0 with the following trivial bound:

A2
n −G2

n

2x1
≥ An −Gn ≥

A2
n −G2

n

2xn

Thus the incomparability of (4.2) and (4.1) with r = 1, s = 0, t = 1 reflects the fact P 2
n,2 −A2

n and
A2

n −G2
n are in general not comparable.

We also note when replacing Cu,v,β by a smaller constant, we sometimes can get trivial bound.
For example, for s ≤ 1/2, the following inequality holds:

An − Pn,s ≥
1
2

n∑
k=1

ωk(x
1/2
k −A1/2

n )2 ≥ 1
8xn

n∑
k=1

ωk(xk −An)2

where the first inequality is equivalent to P
1/2
n,1/2A

1/2
n ≥ Pn,s and for the second inequality we apply

the mean value theorem to (x1/2
k −A

1/2
n )2 = (1

2ξ
−1/2
k (xk−An))2 ≥ 1

4xn
(xk−An)2 with ξk in between

xk and An.
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