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SUPERADDITIVITY OF SOME FUNCTIONALS ASSOCIATED
TO JENSEN�S INEQUALITY FOR CONVEX FUNCTIONS ON

LINEAR SPACES WITH APPLICATIONS

S.S. DRAGOMIR

Abstract. Some new results related to Jensen�s celebrated inequality for con-
vex functions de�ned on convex sets in linear spaces are given. Applications
for norm inequalities in normed linear spaces and f -divergences in Information
Theory are provided as well.

1. Introduction

The Jensen inequality for convex functions plays a crucial role in the Theory of
Inequalities due to the fact that other inequalities such as the generalised triangle
inequality, the arithmetic mean-geometric mean inequality, Hölder and Minkowski
inequalities, Ky Fan�s inequality etc. can be obtained as particular cases of it.
Let C be a convex subset of the linear space X and f a convex function on C:

If I denotes a �nite subset of the set N of natural numbers, xi 2 C; pi � 0 for i 2 I
and PI :=

P
i2I pi > 0; then

(1.1) f

 
1

PI

X
i2I

pixi

!
� 1

PI

X
i2I

pif (xi) ;

is well known in the literature as Jensen�s inequality.
We introduce the following notations (see also [16]):

F (C;R) : = the linear space of all real functions on C;

F+ (C;R) : = ff 2 F (C;R) : f (x) > 0 for all x 2 Cg ;
Pf (N) : = fI � N: I is �niteg ;
J (R) : =

�
p = fpigi2N ; pi 2 R are such that PI 6= 0 for all I 2 Pf (N)

	
;

and

J+ (R) : = fp 2 J (R) : pi � 0 for all i 2 Ng ;
J� (C) : =

�
x = fxigi2N : xi 2 C for all i 2 N

	
and

Conv (C;R) := the cone of all convex functions de�ned on C;

respectively.
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2 S.S. DRAGOMIR

In [16] the authors considered the following functional associated with the Jensen
inequality:

(1.2) J (f; I; p; x) :=
X
i2I

pif (xi)� PIf
 
1

PI

X
i2I

pixi

!
where f 2 F (C;R) ; I 2 Pf (N) ; p 2 J+ (R) ; x 2 J� (C). They established some
quasi-linearity and monotonicity properties and applied the obtained results for
norm and means inequalities.
The following result concerning the properties of the functional J (f; I; �; x) as a

function of weights holds (see [16, Theorem 2.4]):

Theorem 1. Let f 2 Conv (C;R) ; I 2 Pf (N) and x 2 J� (C) :
(i) If p; q 2 J+ (R) then

(1.3) J (f; I; p+ q; x) � J (f; I; p; x) + J (f; I; q; x) (� 0)
i.e., J (f; I; �; x) is superadditive on J+ (R);
(ii) If p; q 2 J+ (R) with p � q; meaning that pi � qi for each i 2 N, then

(1.4) J (f; I; p; x) � J (f; I; q; x) (� 0)
i.e., J (f; I; �; x) is monotonic nondecreasing on J+ (R).

The behavior of this functional as an index set function is incorporated in the
following (see [16, Theorem 2.1]):

Theorem 2. Let f 2 Conv (C;R) ; p 2 J+ (R) and x 2 J� (C) :
(i) If I;H 2 Pf (N) with I \H = ?; then

(1.5) J (f; I [H; p; x) � J (f; I; p; x) + J (f;H; p; x) (� 0)
i.e., J (f; �; p; x) is superadditive as an index set function on Pf (N);
(ii) If I;H 2 Pf (N) with H � I; then

(1.6) J (f; I; p; x) � J (f;H; p; x) (� 0)
i.e., J (f; �; p; x) is monotonic nondecreasing as an index set function on Pf (N) :

As pointed out in [16], the above Theorem 2 is a generalisation of the Vasíc-
Mijalkovíc result for convex functions of a real variable obtained in [26] and therefore
creates the possibility to obtain vectorial inequalities as well.
For applications of the above results to logarithmic convex functions, to norm

inequalities, in relation with the arithmetic mean-geometric mean inequality and
with other classical results, see [16].
Motivated by the above results, we introduce in the present paper a more general

functional, establish its main properties and use it for some particular cases that
provide inequalities of interest. Applications for norm inequalities in normed linear
spaces and f -divergences in Information Theory are provided as well.

2. Some Superadditivity Properties for the Weights

We consider the more general functional

(2.1) D (f; I; p; x; �) := PI�

"
1

PI

X
i2I

pif (xi)� f
 
1

PI

X
i2I

pixi

!#
;
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where f 2 Conv (C;R) ; I 2 Pf (N) ; p 2 J+ (R) ; x 2 J� (C) and � : [0;1) ! R
is a function whose properties will determine the behavior of the functional D as
follows. Obviously, for � (t) = t we recapture from D the functional J considered
in [16].
First of all we observe that, by Jensen�s inequality, the functional D is well

de�ned and positive homogeneous in the third variable, i.e.,

D (f; I; �p; x; �) = �D (f; I; p; x; �) ;

for any � > 0 and p 2 J+ (R) :
The following result concerning the superadditivity and monotonicity of the func-

tional D as a function of weights holds:

Theorem 3. Let f 2 Conv (C;R) ; I 2 Pf (N) and x 2 J� (C) : Assume that
� : [0;1)! R is monotonic nondecreasing and concave where is de�ned.
(i) If p; q 2 J+ (R) then

(2.2) D (f; I; p+ q; x; �) � D (f; I; p; x; �) +D (f; I; q; x; �)

i.e., D is superadditive as a function of weights;
(ii) If p; q 2 J+ (R) with p � q; meaning that pi � qi for each i 2 N and

� : [0;1)! [0;1) then

(2.3) D (f; I; p; x; �) � D (f; I; q; x; �) (� 0)

i.e., D is monotonic nondecreasing as a function of weights.

Proof. (i). Let p; q 2 J+ (R) : By the convexity of the function f on C we have

1

PI +QI

X
i2I

(pi + qi) f (xi)� f
 

1

PI +QI

X
i2I

(pi + qi)xi

!
(2.4)

=
PI

�
1
PI

P
i2I pif (xi)

�
+QI

�
1
QI

P
i2I qif (xi)

�
PI +QI

� f

0@PI
�
1
PI

P
i2I pixi

�
+QI

�
1
QI

P
i2I qixi

�
PI +QI

1A
�
PI

�
1
PI

P
i2I pif (xi)

�
+QI

�
1
QI

P
i2I qif (xi)

�
PI +QI

�
PIf

�
1
PI

P
i2I pixi

�
+QIf

�
1
QI

P
i2I qixi

�
PI +QI

=
PI

h
1
PI

P
i2I pif (xi)� f

�
1
PI

P
i2I pixi

�i
PI +QI

+
QI

h
1
QI

P
i2I qif (xi)� f

�
1
QI

P
i2I qixi

�i
PI +QI

:
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Since � is monotonic nondecreasing and concave, then by (2.4) we have

�

"
1

PI +QI

X
i2I

(pi + qi) f (xi)� f
 

1

PI +QI

X
i2I

(pi + qi)xi

!#

�
PI�

h
1
PI

P
i2I pif (xi)� f

�
1
PI

P
i2I pixi

�i
PI +QI

+
QI�

h
1
QI

P
i2I qif (xi)� f

�
1
QI

P
i2I qixi

�i
PI +QI

;

which, by multiplication with PI +QI > 0 produces the desired result (2.2).
(ii). If p � q; then by (i) we have

D (f; I; p; x; �) = D (f; I; (p� q) + q; x; �)
� D (f; I; p� q; x; �) +D (f; I; p; x; �)
� D (f; I; p; x; �)

since D (f; I; p� q; x; �) � 0: �

Corollary 1. Let f 2 Conv (C;R) ; I 2 Pf (N) and x 2 J� (C) : Assume that
� : [0;1)! [0;1) is monotonic nondecreasing and concave where is de�ned.
If there exists the numbers M � m � 0 such that Mq � p � mq; then we have

MQI�

"
1

QI

X
i2I

qif (xi)� f
 
1

QI

X
i2I

qixi

!#
(2.5)

� PI�
"
1

PI

X
i2I

pif (xi)� f
 
1

PI

X
i2I

pixi

!#

� mQI�
"
1

QI

X
i2I

qif (xi)� f
 
1

QI

X
i2I

qixi

!#
:

In particular

M

m
�

"
1

QI

X
i2I

qif (xi)� f
 
1

QI

X
i2I

qixi

!#
(2.6)

� �
"
1

PI

X
i2I

pif (xi)� f
 
1

PI

X
i2I

pixi

!#

� m

M
�

"
1

QI

X
i2I

qif (xi)� f
 
1

QI

X
i2I

qixi

!#
:

Now, if we denote by

S (1) :=
�
p 2 J+ (R) : pi � 1 for all i 2 N

	
;

then we can state the following result as well:

Corollary 2. Let f 2 Conv (C;R) ; I 2 Pf (N) and x 2 J� (C) : Assume that
� : [0;1) ! [0;1) is monotonic nondecreasing and concave where is de�ned.



SUPERADDITIVITY OF SOME FUNCTIONALS 5

Then we have the bound

(2.7) sup
p2S(1)

(
PI�

"
1

PI

X
i2I

pif (xi)� f
 
1

PI

X
i2I

pixi

!#)

= card(I)�

"
1

card(I)

X
i2I

f (xi)� f
 

1

card(I)

X
i2I

xi

!#
;

where card(I) denotes the cardinal of the �nite set I:

Remark 1. If we consider the concave and monotonic increasing function � (t) =
ln t and assume that f 2 Conv (C;R) and x 2 J� (C) are selected such that
1
PI

P
i2I pif (xi) > f

�
1
PI

P
i2I pixi

�
for any I 2 Pf (N) with card (I) � 2 and

p 2 J+ (R) (notice that is enough to assume that f is strictly convex and x is not
constant) then by the superadditivity of the functional

D (f; I; p; x; ln) : = PI ln

"
1

PI

X
i2I

pif (xi)� f
 
1

PI

X
i2I

pixi

!#
= lnK (f; I; p; x)

where

(2.8) K (f; I; p; x) :=

"
1

PI

X
i2I

pif (xi)� f
 
1

PI

X
i2I

pixi

!#PI
we deduce that K (f; I; �; x) is supermultiplicative, i.e., it satis�es the property
(2.9) K (f; I; p+ q; x) � K (f; I; p; x)K (f; I; q; x)
for any p; q 2 J+ (R) :
The proof is obvious by the monotonicity and the positive homogeneity of the

functional D (f; I; �; x; ln) :
Notice that the inequality (2.9) has been obtain in a di¤erent way by Agarwal &

Dragomir in [1].
Another important example of concave and monotonic increasing function is

� (t) = ts with s 2 (0; 1]: In this situation the functional

(2.10) Ds (f; I; p; x) :=

"
P s�1I

X
i2I

pif (xi)� P sI f
 
1

PI

X
i2I

pixi

!#s
� 0

is superadditive and monotonic nondecreasing as a function of the weights p:
It might be useful for applications to observe that the superadditivity property is

translated into the following version of the Jensen�s inequality

(2.11)

"
(PI +QI)

s�1X
i2I

(pi + qi) f (xi)� (PI +QI)s f
�P

i2I (pi + qi)xi

PI +QI

�#s

�
"
P s�1I

X
i2I

pif (xi)� P sI f
 
1

PI

X
i2I

pixi

!#s

+

"
Qs�1I

X
i2I

qif (xi)�QsIf
 
1

QI

X
i2I

qixi

!#s
(� 0) ;
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where p; q 2 J+ (R) :
The property of monotonicity provides the following double inequality for p; q 2

J+ (R) such that Mq � p � mq and M � m � 0 :

M

"
Qs�1I

X
i2I

qif (xi)�QsIf
 
1

QI

X
i2I

qixi

!#s
(2.12)

�
"
P s�1I

X
i2I

pif (xi)� P sI f
 
1

PI

X
i2I

pixi

!#s

� m
"
Qs�1I

X
i2I

qif (xi)�QsIf
 
1

QI

X
i2I

qixi

!#s
:

This inequality has the following equivalent form

M1=s

"
Qs�1I

X
i2I

qif (xi)�QsIf
 
1

QI

X
i2I

qixi

!#
(2.13)

� P s�1I

X
i2I

pif (xi)� P sI f
 
1

PI

X
i2I

pixi

!

� m1=s

"
Qs�1I

X
i2I

qif (xi)�QsIf
 
1

QI

X
i2I

qixi

!#
:

Finally, from the Corollary 2 we also have the bound

(2.14) sup
p2S(1)

(
P s�1I

X
i2I

pif (xi)� P sI f
 
1

PI

X
i2I

pixi

!)

= [card(I)]
s�1X

i2I
f (xi)� [card(I)]s f

 
1

card(I)

X
i2I

xi

!
:

For a function 	 : (0;1)! (0;1) we consider now the functional

(2.15) D (f; I; p; x; �;	)

:=
X
i2I

	(pi) �

"
1P

i2I 	(pi)

X
i2I

	(pi) f (xi)� f
 

1P
i2I 	(pi)

X
i2I

	(pi)xi

!#

where f 2 Conv (C;R) ; I 2 Pf (N) ; p 2 J+ (R) ; x 2 J� (C) : Now, if we denote by
	(p) the sequence f	(pi)gi2N, then we observe that

D (f; I; p; x; �;	) = D (f; I;	(p) ; x; �) :

The following result may be stated:

Corollary 3. Let f 2 Conv (C;R) ; I 2 Pf (N) and x 2 J� (C) : Assume that � :
[0;1) ! [0;1) is monotonic nondecreasing and concave. If 	 : (0;1) ! (0;1)
is concave, then D (f; I; �; x; �;	) is also concave on J+ (R) :
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Proof. Utilising the properties of monotonicity, superadditivity and positive homo-
geneity of the functional D (f; I; �; x; �) we have successively

D (f; I; tp+ (1� t) q; x; �;	) = D (f; I;	(tp+ (1� t) q) ; x; �)
� D (f; I; t	(p) + (1� t)	 (q) ; x; �)
� D (f; I; t	(p) ; x; �) +D (f; I; (1� t)	 (q) ; x; �)
= tD (f; I;	(p) ; x; �) + (1� t)D (f; I;	(q) ; x; �)
= tD (f; I; p; x; �;	) + (1� t)D (f; I; p; x; �;	)

for any p; q 2 J+ (R) and t 2 [0; 1] ; which proves the statement. �

3. Some Superadditivity Properties for the Index

The following result concerning the superadditivity and monotonicity of the func-
tional D as an index set function holds:

Theorem 4. Let f 2 Conv (C;R) ; p 2 J+ (R) and x 2 J� (C) : Assume that
� : [0;1)! R is monotonic nondecreasing and concave where is de�ned.
(i) If I;H 2 Pf (N) with I \H = ?; then

(3.1) D (f; I [H; p; x; �) � D (f; I; p; x; �) +D (f;H; p; x; �)

i.e., D (f; �; p; x; �) is superadditive as an index set function on Pf (N);
(ii) If I;H 2 Pf (N) with H � I and � : [0;1)! [0;1); then

(3.2) D (f; I; p; x; �) � D (f;H; p; x; �) (� 0)

i.e., D (f; �; p; x; �) is monotonic nondecreasing as an index set function on Pf (N) :

Proof. (i). Let I;H 2 Pf (N) with I \H = ?: By the convexity of the function f
on C we have

1

PI[H

X
k2I[H

pkf (xk)� f
 

1

PI[H

X
k2I[H

pkxk

!
(3.3)

=
PI

�
1
PI

P
i2I pif (xi)

�
+ PH

�
1
PH

P
j2H pjf (xj)

�
PI + PH

� f

0@PI
�
1
PI

P
i2I pixi

�
+ PH

�
1
PH

P
j2H pjxj

�
PI + PH

1A
�
PI

�
1
PI

P
i2I pif (xi)

�
+ PH

�
1
PH

P
j2H pjf (xj)

�
PI + PH

�
PIf

�
1
PI

P
i2I pixi

�
+ PHf

�
1
PH

P
j2H pjxj

�
PI + PH

=
PI

h
1
PI

P
i2I pif (xi)� f

�
1
PI

P
i2I pixi

�i
PI + PH

+
PH

h
1
PH

P
j2H pjf (xj)� f

�
1
PH

P
j2H pjxj

�i
PI + PH

:
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Since � is monotonic nondecreasing and concave, then by (3.3) we have

�

"
1

PI[H

X
k2I[H

pkf (xk)� f
 

1

PI[H

X
k2I[H

pkxk

!#

�
PI�

h
1
PI

P
i2I pif (xi)� f

�
1
PI

P
i2I pixi

�i
PI + PH

+
PH�

h
1
PH

P
j2H pjf (xj)� f

�
1
PH

P
j2H pjxj

�i
PI + PH

;

which, by multiplication with PI + PH > 0 produces the desired result (3.2).
(ii). If I;H 2 Pf (N) with H � I; then

D (f; I; p; x; �) = D (f; (I nH) [H; p; x; �)
� D (f; I nH; p; x; �) +D (f;H; p; x; �) � D (f;H; p; x; �) (� 0)

since D (f; I nH; p; x; �) � 0: �

For the special case I = In := f1; :::; ng we write Dn (f; p; x; �) instead of
D (f; In; p; x; �) ; i.e.,

(3.4) Dn (f; p; x; �) = Pn�

"
1

Pn

nX
i=1

pif (xi)� f
 
1

Pn

nX
i=1

pixi

!#

where Pn = PIn =
Pn

i=1 pi > 0:
The following particular case is of interest:

Corollary 4. Let f 2 Conv (C;R) ; p 2 J+ (R) and x 2 J� (C) : Assume that
� : [0;1) ! [0;1) is monotonic nondecreasing and concave where is de�ned.
Then

(3.5) max
IvIn

D (f; I; p; x; �) = Dn (f; p; x; �) � 0;

(3.6) Dn (f; p; x; �)

� max
1�i<j�n

�
(pi + pj) �

�
pif (xi) + pjf (xj)

pi + pj
� f

�
pixi + pjxj
pi + pj

���
� 0

and

(3.7) Dn (f; p; x; �) � Dn�1 (f; p; x; �) � ::: � D2 (f; p; x; �) � 0:

The proof is obvious by the monotonicity property of the functionalD (f; �; p; x; �)
as an index set function.
If we use the superadditivity property, then we can state the following result as

well:
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Corollary 5. Let f 2 Conv (C;R) ; p 2 J+ (R) and x 2 J� (C) : Assume that
� : [0;1)! R is monotonic nondecreasing and concave where is de�ned. Then

(3.8) P2n�

"
1

P2n

2nX
i=1

pif (xi)� f
 
1

P2n

2nX
i=1

pixi

!#

�
nX
i=1

p2i�

"
1Pn

i=1 p2i

nX
i=1

p2if (x2i)� f
 

1Pn
i=1 p2i

nX
i=1

p2ix2i

!#

+
nX
i=1

p2i�1�

"
1Pn

i=1 p2i�1

nX
i=1

p2i�1f (x2i�1)� f
 

1Pn
i=1 p2i�1

nX
i=1

p2i�1x2i�1

!#
and

(3.9) P2n+1�

"
1

P2n+1

2n+1X
i=1

pif (xi)� f
 

1

P2n+1

2n+1X
i=1

pixi

!#

�
nX
i=1

p2i�

"
1Pn

i=1 p2i

nX
i=1

p2if (x2i)� f
 

1Pn
i=1 p2i

nX
i=1

p2ix2i

!#

+
nX
i=1

p2i+1�

"
1Pn

i=1 p2i+1

nX
i=1

p2i+1f (x2i+1)� f
 

1Pn
i=1 p2i+1

nX
i=1

p2i+1x2i+1

!#
:

Remark 2. If we consider the functional de�ned in (2.7), namely

K (f; I; p; x) :=

"
1

PI

X
i2I

pif (xi)� f
 
1

PI

X
i2I

pixi

!#PI
then by Theorem 4 we have that

(3.10) K (f; I [H; p; x) � K (f; I; p; x) �K (f;H; p; x)

for any I;H 2 Pf (N) with I \H = ? meaning that the functional K (f; �; p; x) is
supermultiplicative as an index set mapping.
This fact obviously imply the following multiplicative inequalities of interest:

(3.11)

"
1

P2n

2nX
i=1

pif (xi)� f
 
1

P2n

2nX
i=1

pixi

!#P2n

�
"

1Pn
i=1 p2i

nX
i=1

p2if (x2i)� f
 

1Pn
i=1 p2i

nX
i=1

p2ix2i

!#Pn
i=1 p2i

�
"

1Pn
i=1 p2i�1

nX
i=1

p2i�1f (x2i�1)� f
 

1Pn
i=1 p2i�1

nX
i=1

p2i�1x2i�1

!#Pn
i=1 p2i�1

and where f 2 Conv (C;R) ; p 2 J+ (R) and x 2 J� (C) :
Moreover, if we consider the functional de�ned in (2.10) by

Ds (f; I; p; x) :=

"
P s�1I

X
i2I

pif (xi)� P sI f
 
1

PI

X
i2I

pixi

!#s
� 0
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where s 2 (0; 1] and introduce the associated functional

(3.12) Fs (f; I; p; x) := P
s�1
I

X
i2I

pif (xi)� P sI f
 
1

PI

X
i2I

pixi

!
;

then by denoting

(3.13) Fs;n (f; p; x) := Fs (f; In; p; x) = P
s�1
n

nX
i=1

pif (xi)� P snf
 
1

Pn

nX
i=1

pixi

!
where In = f1; :::; ng ; we have that the sequence fFs;n (f; p; x)gn�2 is nondecreasing
and the following bounds are valid

(3.14) max
IvIn

Fs (f; I; p; x) = Fs;n (f; p; x)

and

(3.15) Fs;n (f; p; x)

� max
1�i<j�n

(
pif (xi) + pjf (xj)

(pi + pj)
1�s � (pi + pj)s f

�
pixi + pjxj
pi + pj

�)
� 0:

4. Applications for Norm Inequalities

Let (X; k�k) be a real or complex normed linear space. It is well known that
the function fp : X ! R; fp (x) = kxkp ; p � 1 is convex on X: Assume that
p = (p1; :::; pn) and q = (q1; :::; qn) are probability distributions with all qj nonzero.
In [11] we obtained the following re�nements of the generalised triangle inequality:

(4.1) max
1�i�n

�
pi
qi

�24 nX
j=1

qj kxjkp �


nX
j=1

qjxj


p35 � nX

j=1

pj kxjkp �


nX
j=1

pjxj


p

� min
1�i�n

�
pi
qi

�24 nX
j=1

qj kxjkp �


nX
j=1

qjxj


p35 (� 0)

and

(4.2) max
1�i�n

fpig

24 nX
j=1

kxjkp � n1�p

nX
j=1

xj


p35 � nX

j=1

pj kxjkp �


nX
j=1

pjxj


p

� min
1�i�n

fpig

24 nX
j=1

kxjkp � n1�p

nX
j=1

xj


p35 (� 0)

for all p � 1:
We remark that, for p = 1 one may get out of the previous results the following

inequalities that are intimately related with the generalised triangle inequality in
normed spaces:
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(4.3) max
1�i�n

�
pi
qi

�24 nX
j=1

qj kxjk �


nX
j=1

qjxj


35 � nX

j=1

pj kxjk �


nX
j=1

pjxj


� min

1�i�n

�
pi
qi

�24 nX
j=1

qj kxjk �


nX
j=1

qjxj


35 (� 0) ;

(4.4) max
1�i�n

fpig

24 nX
j=1

kxjk �


nX
j=1

xj


35 � nX

j=1

pj kxjk �


nX
j=1

pjxj


� min

1�i�n
fpig

24 nX
j=1

kxjk �


nX
j=1

xj


35 (� 0) :

If in (4.4) we take

pj :=
1

kxjk
=

nX
k=1

1

kxkk
with xj 6= 0 for all j 2 f1; :::; ng ;

then, by rearranging the inequality, we get the result:

(4.5) max
1�j�n

fkxjkg

24n�

nX
j=1

xj
kxjk


35 � nX

j=1

kxjk �


nX
j=1

xj


� min

1�j�n
fkxjkg

24n�

nX
j=1

xj
kxjk


35 :

We note that the inequality (4.5) has been obtained in a di¤erent way by M.
Kato. K.-S. Saito & T. Tamura in [17] where an analysis of the equality case for
strictly convex spaces has been performed as well.
We can state the following result that provides a generalization of the inequality

(4.1) above:

Proposition 1. Let (X; k�k) be a normed linear space, x = (x1; :::; xn) an n-tuple
of vectors in X; p = (p1; :::; pn) and q = (q1; :::; qn) are probability distributions with
all qj nonzero. If t � 1 and � : [0;1) ! [0;1) is monotonic nondecreasing and
concave where is de�ned, then we have

(4.6) max
1�i�n

�
pi
qi

�
�

24 nX
i=1

qi kxikt �

nX
i=1

qixi


t
35

� �

24 nX
i=1

pi kxikt �

nX
i=1

pixi


t
35

� min
1�i�n

�
pi
qi

�
�

24 nX
i=1

qi kxikt �

nX
i=1

qixi


t
35
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and, in particular,

(4.7) n max
1�i�n

fpig�

24n�1 nX
i=1

kxikt � n�t

nX
i=1

xi


t
35

� �

24 nX
i=1

pi kxikt �

nX
i=1

qixi


t
35

� n min
1�i�n

fpig�

24n�1 nX
i=1

kxikt � n�t

nX
i=1

xi


t
35 :

The proof follows from Corollary 1 and the details are omitted.
Now, if p = (p1; :::; pn) are positive weights with Pn =

Pn
i=1 pi > 0 and x =

(x1; :::; xn) is an n-tuple of vectors in X; then by de�ning the functional

(4.8) Dn (t; k�k ; p; x; �) = Pn�

24P�1n nX
i=1

pi kxikt � P�tn


nX
i=1

pixi


t
35

we can state the following result as well:

Proposition 2. If t � 1 and � : [0;1)! [0;1) is monotonic nondecreasing and
concave where is de�ned, then we have

(4.9) Dn (t; k�k ; p; x; �)

� max
1�i<j�n

(
(pi + pj)�

"
pi kxikt + pj kxjkt

pi + pj
�
pixi + pjxjpi + pj

t
#)

� 0

and

(4.10) Dn (t; k�k ; p; x; �) � Dn�1 (t; k�k ; p; x; �) � ::: � D2 (t; k�k ; p; x; �) � 0:

The proof follows from Corollary 4 and the details are omitted.

5. Applications for f-Divergences

Given a convex function f : [0;1)! R, the f�divergence functional

(5.1) If (p; q) =
nX
i=1

qif

�
pi
qi

�
;

was introduced by Csiszár [3]-[4] as a generalized measure of information, a �dis-
tance function� on the set of probability distribution Pn: The restriction here to
discrete distributions is only for convenience, similar results hold for general distri-
butions. As in Csiszár [3]-[4] , we interpret unde�ned expressions by

f (0) = lim
t!0+

f (t) ; 0 f
�
0
0

�
= 0;

0 f
�
a
0

�
= lim

"!0+
"f
�
a
"

�
= a lim

t!1
f(t)
t ; a > 0:

The following results were essentially given by Csiszár and Körner [5].

Proposition 3. (Joint Convexity) If f : [0;1) ! R is convex, then If (p; q) is
jointly convex in p and q.
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Proposition 4. (Jensen�s inequality) Let f : [0;1)! R be convex. Then for any

p; q 2 [0;1)n with Pn :=
nP
i=1

pi > 0, Qn :=
nP
i=1

qi > 0, we have the inequality

(5.2) If (p; q) � Qnf
�
Pn
Qn

�
:

If f is strictly convex, equality holds in (5.2) i¤
p1
q1
=
p2
q2
= ::: =

pn
qn
:

It is natural to consider the following corollary.

Corollary 6. (Nonnegativity) Let f : [0;1)! R be convex and normalized, i.e.,

(5.3) f (1) = 0:

Then for any p; q 2 [0;1)n with Pn = Qn, we have the inequality
(5.4) If (p; q) � 0:
If f is strictly convex, equality holds in (5.4) i¤

pi = qi for all i 2 f1; :::; ng .

In particular, if p; q are probability vectors, then Corollary 6 shows that, for
strictly convex and normalized f : [0;1)! R that

(5.5) If (p; q) � 0 and If (p; q) = 0 i¤ p = q.

We now give some examples of divergence measures in Information Theory which
are particular cases of f�divergences.
Kullback-Leibler distance ([20]). The Kullback-Leibler distance D (�; �) is

de�ned by

D (p; q) :=
nX
i=1

pi log

�
pi
qi

�
:

If we choose f (t) = t ln t, t > 0, then obviously

If (p; q) = D (p; q) :

Variational distance (l1�distance). The variational distance V (�; �) is de�ned
by

V (p; q) :=
nX
i=1

jpi � qij :

If we choose f (t) = jt� 1j, t 2 [0;1), then we have
If (p; q) = V (p; q) :

Hellinger discrimination ([2]). The Hellinger discrimination is de�ned byp
2h2 (�; �), where h2 (�; �) is given by

h2 (p; q) :=
1

2

nX
i=1

(
p
pi �

p
qi)

2
:

It is obvious that if f (t) = 1
2

�p
t� 1

�2
, then

If (p; q) = h
2 (p; q) :
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Triangular discrimination ([24]). We de�ne triangular discrimination be-
tween p and q by

�(p; q) =
nX
i=1

jpi � qij2

pi + qi
:

It is obvious that if f (t) = (t�1)2
t+1 , t 2 (0;1), then

If (p; q) = � (p; q) :

Note that
p
�(p; q) is known in the literature as the Le Cam distance.

�2�distance. We de�ne the �2�distance (chi-square distance) by

D�2 (p; q) :=
nX
i=1

(pi � qi)2

qi
:

It is clear that if f (t) = (t� 1)2, t 2 [0;1), then

If (p; q) = D�2 (p; q) :

Rényi�s divergences ([23]). For � 2 Rn f0; 1g ; consider

�� (p; q) :=

nX
i=1

p�i q
1��
i :

It is obvious that if f (t) = t� (t 2 (0;1)) ; then

If (p; q) = �� (p; q) :

Rényi�s divergences R� (p; q) := 1
�(��1) ln [�� (p; q)] have been introduced for all

real orders � 6= 0; � 6= 1 (and continuously extended for � = 0 and � = 1) in [21],
where the reader may �nd many inequalities valid for these divergences, without,
as well as with, some restrictions for p and q:
For other examples of divergence measures, see the paper [18] and the books [21]

and [25], where further references are given.
For a function f : (0;1) ! R we denote by f# the function de�ned on (0;1)

by the equation f# (x) := f
�
1
x

�
: With this notation we have

(5.6) If# (p; q) =
nX
i=1

qif
#

�
pi
qi

�
=

nX
i=1

qif

�
qi
pi

�
:

By the use of Corollary 1 we can state the following result for the f -divergences.

Proposition 5. Let f : [0;1)! R be convex and normalized and p; q two probabil-
ity distributions such that R := maxi2f1;:::;ng

n
pi
qi

o
<1 and r := mini2f1;:::;ng

n
pi
qi

o
>

0: If � : [0;1)! [0;1) is monotonic nondecreasing and concave where is de�ned,
then we have

(5.7) R�
�
If# (p; q)� f

�
D�2 (q; p) + 1

��
� � [If (q; p)]
� r�

�
If# (p; q)� f

�
D�2 (q; p) + 1

��
:
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Proof. Utilising the inequality (2.5) we have

(5.8) R�

"
nX
i=1

qif

�
qi
pi

�
� f

 
nX
i=1

q2i
pi

!#
� �

"
nX
i=1

pif

�
qi
pi

�
� f (1)

#

� r�
"

nX
i=1

qif

�
qi
pi

�
� f

 
nX
i=1

q2i
pi

!#
:

Since
nX
i=1

q2i
pi
= D�2 (q; p) + 1;

then by (5.8) we deduce the desired result (5.7). �

Finally, by the use of Corollary 4 we also have the following lower bound for the
f -divergence:

Proposition 6. Let f : [0;1) ! R be convex and normalized and p; q two proba-
bility distributions. If � : [0;1)! [0;1) is monotonic nondecreasing and concave
where is de�ned, then we have:

(5.9) � [If (q; p)]

� max
1�i<j�n

8<:(pi + pj)�
24pif

�
qi
pi

�
+ pjf

�
qj
pj

�
pi + pj

� f
�
qi + qj
pi + pj

�359=; � 0:

Remark 3. If one chooses di¤erent examples of convex functions generating the
particular divergences mentioned at the beginning of the section, that one can obtain
various inequalities of interest. However the details are not presented here.
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