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SOME INTEGRAL AND DISCRETE VERSIONS OF THE GRÜSS
INEQUALITY FOR REAL AND COMPLEX FUNCTIONS AND

SEQUENCES

S.S. DRAGOMIR AND I. GOMM

Abstract. Some particular cases of a recent result in inner product spaces
generalizing Grüss inequality that have potential for applications are provided.

1. Introduction

In [7], the author has proved the following Grüss type inequality for real or
complex inner product spaces.

Theorem 1. Let (X; (·, ·)) be an inner product space over K (K = R, C) and e ∈ X,
‖e‖ = 1. If φ, γ, Φ,Γ are real or complex numbers and x, y are vectors in X such
that the condition

(1.1) Re (Φe− x, x− φe) ≥ 0 and Re (Γe− x, x− γe) ≥ 0

holds, then we have the inequality

(1.2) |(x, y)− (x, e) (e, y)| ≤ 1
4
|Φ− φ| |Γ− γ| .

The constant 1
4 is the best possible in the sense that it cannot be replaced by a

smaller constant.

Some application for positive real linear functionals, and in particular for inte-
grals of real functions and real sequences were presented. Two particular results
for complex functions and sequences were also provided.

In this paper we will emphasize some other applications of Theorem 1 both for
the complex and real case that have potential for applications.

For other, both discrete and integral inequalites, related to Grüss result see the
references enclosed.

2. More on Integral Inequalities

Let (Ω,Σ, µ) be a measure space consisting of a set Ω, a σ−algebra Σ of subsets
of Ω and a countably additive and positive measure µ on Σ with values in R∪{∞} .
Denote L2

ρ (Ω, K) the Hilbert space of all measurable functions f : Ω → K that are
2 − ρ−integrable on Ω, i.e.,

∫
Ω

ρ (s) |f (s)|2 dµ (s) < ∞, where ρ : Ω → [0,∞) is a
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given measurable function on Ω. The inner product (·, ·)ρ : L2
ρ (Ω, K)×L2

ρ (Ω, K) →
K that generates the norm of L2

ρ (Ω, K) is

(2.1) (f, g)ρ :=
∫

Ω

f (s) g (s)ρ (s) dµ (s) .

The following proposition holds.

Proposition 1. Let φ, γ, Φ,Γ ∈ K and h, f, g ∈ L2
ρ (Ω, K) be such that

Re
[
(Φh (x)− f (x))

(
f (x)− φ̄h̄ (x)

)]
≥ 0,(2.2)

Re
[
(Γh (x)− g (x))

(
g (x)− γ̄h̄ (x)

)]
≥ 0

for a.e. x ∈ Ω and

(2.3)
∫

Ω

|h (x)|2 ρ (x) dµ (x) = 1.

Then one has the inequality

(2.4)
∣∣∣∣∫

Ω

ρ (x) f (x) g (x)dµ (x)

−
∫

Ω

ρ (x) f (x) h (x)dµ (x)
∫

Ω

ρ (x) h (x) g (x)dµ (x)
∣∣∣∣

≤ 1
4
|Φ− φ| |Γ− γ| ,

and the constant 1
4 is sharp in (2.4).

Proof. Follows from Theorem 1 applied for the inner product (2.1) on taking into
account that

Re (Φh− f, f − φh)ρ

=
∫

Ω

ρ (x) Re
[
(Φh (x)− f (x))

(
f (x)− φ̄h (x)

)]
dµ (x) ≥ 0

and

Re (Γh− g, g − γh)ρ

=
∫

Ω

ρ (x) Re
[
(Γh (x)− g (x))

(
g (x)− γ̄h (x)

)]
dµ (x) ≥ 0.

The details are omitted.

The following result may be stated as well:

Corollary 1. If z, Z, t, T ∈ K, ρ ∈ L (Ω, R) with
∫
Ω

ρ (x) dµ (x) > 0 and f, g ∈
L2

ρ (Ω, K) are such that

Re
[
(Z − f (x))

(
f (x)− z̄

)]
≥ 0,(2.5)

Re
[
(T − g (x))

(
g (x)− t̄

)]
≥ 0,
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then

(2.6)
∣∣∣∣ 1∫

Ω
ρ (x) dµ (x)

∫
Ω

ρ (x) f (x) g (x)dµ (x)

− 1∫
Ω

ρ (x) dµ (x)

∫
Ω

ρ (x) f (x) dµ (x) · 1∫
Ω

ρ (x) dµ (x)

∫
Ω

ρ (x) g (x)dµ (x)
∣∣∣∣

≤ 1
4
|Z − z| |T − t| .

The constant 1
4 is best in (2.6).

Proof. Follows by Proposition 1 on choosing

h =
1[∫

Ω
ρ (x) dµ (x)

] 1
2
, Φ =

[∫
Ω

ρ (x) dµ (x)
] 1

2

· Z, φ =
[∫

Ω

ρ (x) dµ (x)
] 1

2

· z,

Γ =
[∫

Ω

ρ (x) dµ (x)
] 1

2

· T and γ =
[∫

Ω

ρ (x) dµ (x)
] 1

2

· t.

We omit the details.

Remark 1. If µ (Ω) < ∞ and z, Z, t, T, f, g satisfy (2.5), then

(2.7)
∣∣∣∣ 1
µ (Ω)

∫
Ω

f (x) g (x)dµ (x) − 1
µ (Ω)

∫
Ω

f (x) dµ (x) · 1
µ (Ω)

∫
Ω

g (x)dµ (x)
∣∣∣∣

≤ 1
4
|Z − z| |T − t| .

The constant 1
4 is sharp.

In the particular case where Ω = [a, b] , we may state the following Grüss type
inequality for functions with complex values

(2.8)

∣∣∣∣∣ 1
b− a

∫ b

a

f (x) g (x)dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x)dx

∣∣∣∣∣
≤ 1

4
|Φ− φ| |Γ− γ| ,

provided f, g ∈ L ([a, b] , C) and

Re
[
(Φ− f (x))

(
f (x)− φ̄

)]
≥ 0,(2.9)

Re
[
(Γ− g (x))

(
g (x)− γ̄

)]
≥ 0,(2.10)

for a.e. x ∈ [a, b] .

Remark 2. If K = R, and φ,Φ, γ,Γ ∈ R, then a sufficient condition for (2.2) to
hold is

(2.11) φh (x) ≤ f (x) ≤ Φh (x) and γh (x) ≤ g (x) ≤ Γh (x) for a.e. x ∈ Ω.

In the same manner, a sufficient conditions for (2.3) to hold is

(2.12) z ≤ f (x) ≤ Z and t ≤ g (x) ≤ T for a.e. x ∈ Ω.
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As mentioned in [7], if ρ : Ω ⊆ R → R is a probability density function, i.e.,∫
Ω

ρ (t) dt = 1, then ρ
1
2 ∈ L2 (Ω, R) and obviously

∥∥∥ρ 1
2

∥∥∥
2

= 1. Consequently, if we

assume that f, g ∈ L2 (Ω, R) and

(2.13) aρ
1
2 ≤ f ≤ Aρ

1
2 , bρ

1
2 ≤ g ≤ Bρ

1
2 a.e. on Ω,

where a,A, b,B are given real numbers, then by Proposition 1, one has the Grüss
type inequality

(2.14)
∣∣∣∣∫

Ω

f (t) g (t) dt−
∫

Ω

f (t) ρ
1
2 (t) dt

∫
Ω

g (t) ρ
1
2 (t) dt

∣∣∣∣ ≤ 1
4

(A− a) (B − b) .

We will point out now some examples of the latest inequality.

Example 1. If f, g ∈ L2 (R, R) are such that

a
√

σ · 4
√

2π
e−

1
4 ( x−m

σ )2

≤ f (x) ≤ A
√

σ · 4
√

2π
e−

1
4 ( x−m

σ )2

,(2.15)

b
√

σ · 4
√

2π
e−

1
4 ( x−m

σ )2

≤ g (x) ≤ B
√

σ · 4
√

2π
e−

1
4 ( x−m

σ )2

,

for a.e. x ∈ R, where a,A, b,B ∈ R, m ∈ R, σ > 0, then one has the following
“Normal-Grüss” inequality

(2.16)
∣∣∣∣∫ ∞
−∞

f (x) g (x) dx− 1√
2πσ

∫ ∞
−∞

f (x) e−
1
4 ( x−m

σ )2

dx

×
∫ ∞
−∞

g (x) e−
1
4 ( x−m

σ )2

dx

∣∣∣∣ ≤ 1
4

(A− a) (B − b) .

Example 2. If f, g ∈ L2 (R, R) are such that

a√
2β

e−|
x−α
2β | ≤ f (x) ≤ A√

2β
e−|

x−α
2β |,(2.17)

b√
2β

e−|
x−α
2β | ≤ g (x) ≤ B√

2β
e−|

x−α
2β |,

for a.e. x ∈ R, where a,A, b,B ∈ R, α ∈ R, β > 0, then one has the following
“Laplace-Grüss” inequality

(2.18)
∣∣∣∣∫ ∞
−∞

f (x) g (x) dx− 1
2β

∫ ∞
−∞

f (x) e−|
x−α
2β |dx ·

∫ ∞
−∞

g (x) e−|
x−α
2β |dx

∣∣∣∣
≤ 1

4
(A− a) (B − b) .

Example 3. If f, g ∈ L2 ([0,∞) , R) are such that

a√
Γ (p)

x
p−1
2 e−

x
2 ≤ f (x) ≤ A√

Γ (p)
x

p−1
2 e−

x
2 ,(2.19)

b√
Γ (p)

x
p−1
2 e−

x
2 ≤ g (x) ≤ B√

Γ (p)
x

p−1
2 e−

x
2 ,
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for a.e. x ∈ [0,∞), where a,A, b,B ∈ R, p > 0, then one has the following
“Gamma-Grüss” inequality

(2.20)
∣∣∣∣∫ ∞

0

f (x) g (x) dx− 1
Γ (p)

∫ ∞
0

f (x) x
p−1
2 e−

x
2 dx ·

∫ ∞
0

g (x) x
p−1
2 e−

x
2 dx

∣∣∣∣
≤ 1

4
(A− a) (B − b) .

Example 4. If f, g ∈ L2 ([0, 1] , R) are such that

a√
B (p, q)

x
p−1
2 (1− x)

q−1
2 ≤ f (x) ≤ A√

B (p, q)
x

p−1
2 (1− x)

q−1
2 ,(2.21)

b̃√
B (p, q)

x
p−1
2 (1− x)

q−1
2 ≤ g (x) ≤ B̃√

B (p, q)
x

p−1
2 (1− x)

q−1
2 ,

for a.e. x ∈ [0, 1], where a,A, b̃, B̃ ∈ R, p, q ∈ [1,∞) , then one has the following
“Beta-Grüss” inequality

(2.22)
∣∣∣∣∫ 1

0

f (x) g (x) dx− 1
B (p, q)

∫ 1

0

f (x) x
p−1
2 (1− x)

q−1
2 dx

×
∫ 1

0

g (x) x
p−1
2 (1− x)

q−1
2 dx

∣∣∣∣ ≤ 1
4

(A− a)
(
B̃ − b̃

)
.

3. More on Discrete Inequalities

Consider w = (wi)i∈N a sequence of nonnegative real numbers. Define `2w̄ (K) to
be the Hilbert space of all sequences in K (K = C or K = R) so that

∑∞
i=0 wi |xi|2 <

∞, i.e.,

(3.1) `2w (K) :=

{
x = (xi)i∈M

∣∣∣∣∣
∞∑

i=0

wi |xi|2 < ∞

}
.

The inner product (·, ·)w : `2w (K)× `2w (K) → K defined by

(3.2) (x,y)w :=
∞∑

i=0

wixiyi

generates the norm of `2w (K) .
The following proposition holds.

Proposition 2. Let φ,Φ, γ,Γ ∈ K and z,x,y ∈ `2w̄ (K) be such that

Re
[
(Φzi − xi)

(
xi − φ̄zi

)]
≥ 0,(3.3)

Re [(Γzi − yi) (yi − γ̄zi)] ≥ 0,

for any i ∈ N and

(3.4)
∞∑

i=0

wi |zi|2 = 1.

Then one has the inequality:

(3.5)

∣∣∣∣∣
∞∑

i=0

wixiyi −
∞∑

i=0

wixizi

∞∑
i=0

wiziyi

∣∣∣∣∣ ≤ 1
4
|Φ− φ| |Γ− γ| ,



6 S.S. DRAGOMIR AND I. GOMM

and the constant 1
4 is sharp in (3.5).

Proof. Follows by Theorem 1 applied for the inner product (3.2) on taking into
account that:

Re [(Φz− x) (x− φz)] =
∞∑

i=0

wi Re
[
(Φzi − xi)

(
xi − φ̄zi

)]
≥ 0,

Re [(Γz− y) (y − γz)] =
∞∑

i=0

wi Re [(Γzi − yi) (yi − γ̄zi)] ≥ 0,

and we omit the details.

The following result may be stated as well.
Corollary 2. If x, X, y, Y ∈ K, w is such that

∑∞
i=0 wi > 0 and x,y ∈ L2

w (K) are
such that

Re [(X − xi) (xi − x̄)] ≥ 0,(3.6)
Re [(Y − yi) (yi − ȳ)] ≥ 0 for each i ∈ N,

then

(3.7)

∣∣∣∣∣ 1∑∞
i=0 wi

∞∑
i=0

wixiyi −
1∑∞

i=0 wi

∞∑
i=0

wixi ·
1∑∞

i=0 wi

∞∑
i=0

wiyi

∣∣∣∣∣
≤ 1

4
|X − x| |Y − y| .

The constant 1
4 is sharp.

Proof. Follows by Proposition 2 on choosing

zi =
1

(
∑∞

i=0 wi)
1
2
, Φ =

( ∞∑
i=0

wi

) 1
2

·X, φ =

( ∞∑
i=0

wi

) 1
2

· x,

Γ =

( ∞∑
i=0

wi

) 1
2

· y and γ =

( ∞∑
i=0

wi

) 1
2

· y.

The details are omitted.

Remark 3. In the particular case when x,y ∈ Kn (n ≥ 1) are such that (3.6) holds
for i ∈ {1, . . . , n} , we have the weighted discrete Grüss’ inequality

(3.8)

∣∣∣∣∣ 1
Wn

n∑
i=1

wixiyi −
1

Wn

n∑
i=1

wixi ·
1

Wn

n∑
i=1

wiyi

∣∣∣∣∣ ≤ 1
4
|X − x| |Y − y| ,

where Wn :=
∑n

i=1 wi > 0. In particular, we obtain the unweighted Grüss inequality:

(3.9)

∣∣∣∣∣ 1n
n∑

i=1

xiyi −
1
n

n∑
i=1

xi ·
1
n

n∑
i=1

yi

∣∣∣∣∣ ≤ 1
4
|X − x| |Y − y| .

Remark 4. If K = R and φ,Φ, γ,Γ ∈ R, then a sufficient condition for (3.6) to
hold is

(3.10) φzi ≤ xi ≤ Φzi and γzi ≤ yi ≤ Γzi

for each i ∈ N.
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In a similar fashion, a sufficient condition for (3.6) to hold is

(3.11) x ≤ xi ≤ X and y ≤ yi ≤ Y for each i ∈ N.

Now, if p = (pi)i∈N is a discrete probability distribution, i.e.,
∑∞

i=0 pi = 1, then

ρ
1
2 ∈ `2 (R) and obviously

∥∥∥ρ 1
2

∥∥∥
2

= 1. Consequently, if we assume that x,y ∈ `2 (R)
and

(3.12) ap
1
2
i ≤ xi ≤ Ap

1
2
i and bp

1
2
i ≤ yi ≤ Bp

1
2
i for each i ∈ N,

where a,A, b,B are given real numbers, then by Proposition 2, one has the Grüss
type inequality

(3.13)

∣∣∣∣∣
∞∑

i=0

xiyi −
∞∑

i=0

p
1
2
i xi ·

∞∑
i=0

p
1
2
i yi

∣∣∣∣∣ ≤ 1
4

(A− a) (B − b) .

We will now point out some examples of the latest inequality.
Example 5. If x,y are finite sequences of real numbers such that there exists
a, b, A,B ∈ R with

a
(n

s

) 1
2

p
s
2
s (1− p)

n−s
2 ≤ xs ≤ A

(n

s

) 1
2

p
s
2
s (1− p)

n−s
2 , s = 0, 1, 2, . . . , n;(3.14)

b
(n

s

) 1
2

p
s
2
s (1− p)

n−s
2 ≤ ys ≤ B

(n

s

) 1
2

p
s
2
s (1− p)

n−s
2 , s = 0, 1, 2, . . . , n;(3.15)

and p ∈ (0, 1) , then one has the “Binomial-Grüss” inequality

(3.16)

∣∣∣∣∣
n∑

s=0

xsys − n
n∑

s=0

(n

s

) 1
2
(

p

1− p

) s
2

xs ·
n∑

s=0

(n

s

) 1
2
(

p

1− p

) s
2

ys

∣∣∣∣∣
≤ 1

4
(A− a) (B − b) .

Example 6. If x,y are infinite sequences of real numbers such that there exists
a, b, A,B ∈ R with

a · e−
m
2 m

s
2

√
s!

≤ xs ≤ A
e−

m
2 m

s
2

√
s!

, s = 0, 1, 2, . . . ,(3.17)

b · e−
m
2 m

s
2

√
s!

≤ ys ≤ B
e−

m
2 m

s
2

√
s!

, s = 0, 1, 2, . . . ,(3.18)

then one has the “Poisson-Grüss” inequality

(3.19)

∣∣∣∣∣
∞∑

s=0

xsys −
1

em

∞∑
s=0

m
s
2

√
s!

xs ·
∞∑

s=0

m
s
2

√
s!

ys

∣∣∣∣∣ ≤ 1
4

(A− a) (B − b) .
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