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KY FAN INEQUALITY AND BOUNDS FOR DIFFERENCES OF MEANS

PENG GAO

Abstract. We prove an equivalent relation between Ky Fan-typed inequalities and certain bounds
for the differences of means. We also generalize a result of H. Alzer, S. Ruscheweyh and L. Salinas.

1. Introduction

Let Pn,r(x) be the generalized weighted power means: Pn,r(x) = (
∑n

i=1 ωix
r
i )

1
r , where ωi >

0, 1 ≤ i ≤ n with
∑n

i=1 ωi = 1 and x = (x1, x2, · · · , xn). Here Pn,0(x) denotes the limit of Pn,r(x)
as r → 0+. We shall write Pn,r for Pn,r(x) when there is no risk of confusion.

In this paper, we always assume 0 < x1 ≤ x2 ≤ · · · ≤ xn. To any given x we associate
x′ = (1− x1, 1− x2, · · · , 1− xn) and write An = Pn,1, Gn = Pn,0,Hn = Pn,−1. When 1− xi ≥ 0 for
all i, we define A

′
n = Pn,1(x′) and similarly for G

′
n,H

′
n. We also let σn =

∑n
i=1 ωi[xi −An]2 .

The following counterpart of the arithmetic mean-geometric mean inequality, due to Ky Fan,
was first published in the monograph Inequalities by Beckenbach and Bellman [7]:
Theorem 1.1. For xi ∈ (0, 1/2],

(1.1)
A′

n

G′
n

≤ An

Gn

with equality holding if and only if x1 = · · · = xn.
In this paper we consider the validity of the following additive Ky Fan-typed inequalities(with

x1 < xn < 1):

(1.2)
x1

1− x1
<

P ′
n,r − P ′

n,s

Pn,r − Pn,s
<

xn

1− xn

Note by a change of variables, xi → 1 − xi, the left-hand side inequality is equivalent to the
right-hand side inequality in (1.2). One can deduce(see[9]) theorem 1.1 from the case r = 1, s =
0, xn ≤ 1/2 in (1.2) , which is a result of H. Alzer[5]. P.Gao[9] later proved the validity of (1.2) for
r = 1,−1 ≤ s < 1, xn ≤ 1/2.

What’s worth mentioning is a nice result of P. Mercer[12], who showed the validity of r = 1, s = 0
in (1.2) is a consequence of a result of D.I. Cartwright and M.J. Field[8], who established the validity
of r = 1, s = 0 for the following bounds for the differences between power means(r > s):

(1.3)
r − s

2x1
σn ≥ Pn,r − Pn,s ≥

r − s

2xn
σn

where the constant (r − s)/2 is best possible(see [10]).
We point out that inequalities (1.2) and (1.3) do not hold for all r > s. We refer the reader to

the survey article[2] and the references therein for an account of Ky Fan’s inequality and to the
articles [4],[5],[10],[11] for other interesting refinements and extensions of (1.3).

Mercer’s result reveals a close relation between (1.3) and (1.2) and it is our main goal in the paper
to prove that the validities of (1.3) and (1.2) are equivalent for fixed r and s. As a consequence of
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this result, we will give a characterization of the validity of (1.3) for r = 1 or s = 1. A solution of
an open problem from [11] is also given.

Among numerous sharpenings of Ky Fan’s inequality in the literature, we have the following
inequalities connecting the three classical means(with ωi = 1/n here):

(1.4) (
Hn

H ′
n

)n−1 An

A′
n

≤ (
Gn

G′
n

)n ≤ (
An

A′
n

)n−1 Hn

H ′
n

The right-hand side inequality of (1.4) is due to P.F.Wang and W.L.Wang[14] and the left-hand
side inequality was proved recently by H. Alzer, S. Ruscheweyh and L. Salinas[6].

It is natural to ask whether one can extend the above inequality to the weighted case and by
using the same idea as in [6], we will show this indeed is true in section 5.

2. The Main Theorem

Theorem 2.1. For fixed r > s, the following inequalities are equivalent:
(i). inequality (1.2) for xn ≤ 1/2; (ii). inequality (1.2); (iii). inequality (1.3).

Proof. (iii) ⇒ (ii) follows from a similar argument as given in [12], (ii) ⇒ (i) is trivial, so it suffices
to show (i)⇒ (iii):

Fix r > s, assuming (1.2) holds for xn ≤ 1/2. Without loss of generality, we can assume
x1 < xn. For a given x = (x1, x2, · · · , xn), let y = (εx1, εx2, · · · , εxn). We can choose ε small so
that εxn ≤ 1/2 and now apply the right-hand side inequality (1.2) for y, we get

(2.1) xn(Pn,r(x)− Pn,s(x)) >
1− εxn

ε2
(Pn,r(y′)− Pn,s(y′))

By letting ε tend to 0, it is easy to verify the limit of the expression on the right-hand side of
(2.1) is (r − s)σn/2. We can consider the left-hand side of (2.1) by a similar argument and this
completes the proof. �

3. An Application of Theorem 2.1

Lemma 3.1. If inequality (1.3) holds for r > s then 0 ≤ r + s ≤ 3.

Proof. Let n = 2, write ω1 = 1− q, ω2 = q, x1 = 1 and x2 = 1 + t with t ≥ −1. Let

D(t; r, s, q) =
r − s

2

2∑
i=1

wi[xi −A2]2 − P2,r + P2,s

For t ≥ 0 then D(t; r, s, q) ≥ 0 implies the validity of the left-hand side inequality of (1.3) while
for −1 ≤ t ≤ 0, D(t; r, s, q) ≤ 0 implies the validity of the right-hand side inequality of (1.3).

Using the Taylor series expansion of D(t; r, s, q) around t = 0, it is readily seen that D(0; r, s, q) =
D(1)(0; r, s, q) = D(2)(0; r, s, q) = 0. Thus by the Lagrangian remainder term of the Taylor expan-
sion:

D(t; r, s, q) =
D(3)(θt; r, s, q)

3!
t3

with 0 < θ < 1.
Since

lim
t→0+

D(3)(θt; r, s, q) = D(3)(0; r, s, q)

a necessary condition for (1.3) to hold is D(3)(0; r, s, q) > 0 for 0 ≤ q ≤ 1. Calculation yields

D(3)(0; r, s, q) = (r − s)q(q − 1)((3− 2r − 2s)q − (3− r − s))

It is easy to check that this is equivalent to 0 ≤ r + s ≤ 3. �
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Theorem 3.1. If r = 1, inequality (1.3) holds if and only if −1 ≤ s < 1. If s = 1, inequality (1.3)
holds if and only if 1 < r < 2.

Proof. A result of P.Gao[9] shows the validity of (1.2) for r = 1,−1 ≤ s < 1, xn ≤ 1/2 and a similar
result of him[10] shows the validity of (1.2) for s = 1, 1 < r ≤ 2, xn ≤ 1/2. Thus it follows from
theorem 2.1 that (1.3) holds for r = 1,−1 ≤ s < 1 and s = 1, 1 < r ≤ 2. This proves the “if” part
of the statement and the “only if” part follows from the previous lemma. �

We note here a special case of the above corollary answers an open problem of A. M. Mercer[11],
namely, we have shown:

(3.1)
1
x1

σn ≥ An −Hn ≥
1
xn

σn

4. Two Lemmas

Lemma 4.1. Let x, b, u, v be real numbers with 0 < x ≤ b, u ≥ 1, v ≥ 1, then f(u, v, x, b) ≤ 0 where

(4.1) f(u, v, x, b) =
u + v − 1
ux + vb

+
1

x2(u/x + v/b)
− 1

x
− u + v − 2

b2(u + v)2
v(x− b)

with equality holding if and only if x = b or u = v = 1.

Proof. Let x < b and u > 1, v > 1. We have

f(u, v, x, b) = v(b− x)(− (u− 1)b + (v − 1)x
x(bv + ux)(bu + vx)

+
(u− 1) + (v − 1)

b2(u + v)2
)

<
v(b− x)

xb2(u + v)2
[((u− 1) + (v − 1))x− (u− 1)b− (v − 1)x]

= −v(u− 1)(b− x)2

xb2(u + v)2
< 0

Since b2(u + v)2 > (bv + ux)(bu + vx). Thus we conclude that f(u, v, x, b) < 0 for 0 < x ≤ b, u ≥
1, v ≥ 1. �

Lemma 4.2. Let x, a, b, u, v, s be real numbers with 0 < x ≤ a ≤ b, u ≥ 1, v ≥ 1, u + v ≥ 2 and
0 ≤ s ≤ v, then

u + v − 1
ux + sa + (v − s)b

+
1

x2(u/x + s/a + (v − s)/b)
− 1

x

− u + v − 2
b2(u + v)2

(s(x− a) + (v − s)(x− b)) ≤ 0(4.2)

with equality holding if and only if one of the following cases is true: 1. x = a = b; 2. a = b, u =
v = 1; 3. s = 0, u = v = 1; 4. s = 0, x = b; 5. s = 0, x = a; 6. s = u = v = 1.

Proof. Let M = {(s, a) ∈ R2|0 ≤ s ≤ v, x ≤ a ≤ b}. Furthermore, we define H(s, a) as the
expression on the left-hand side of (4.2), where (s, a) ∈ M . It suffices to show H(s, a) < 0. We
denote the absolute minimum of H by m = (s0, a0). If m is an interior point of M , then we obtain

0 =
1
s

∂H

∂a
− 1

a− b

∂H

∂s
|(s,a)=(s0,a0) =

a− b

x2a2b(u/x + s/a + (v − s)/b)2
< 0

Hence, m is a boundary point of M , so that we get

m ∈ {(s0, x), (s0, b), (0, a0), (v, a0)}
Using lemma 4.1 we obtain

H(s0, x) = f(u + s0, v − s0, x, b) < 0
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H(s0, b) = H(0, a0) = f(u, v, x, b) < 0

H(v, a0) = f(u, v, x, a0) < 0

Thus, we get: if (s, a) ∈ M , then H(s, a) ≤ 0. The conditions for equality can be easily checked by
using lemma 4.1.

�

5. A sharpening of Ky Fan’s inequality

In this section we prove the following theorem:
Theorem 5.1. For 0 < x1 ≤ · · · ≤ xn, q = min{ωi}

1− 2q

2x2
1

σn ≥ (1− q) ln An + q lnHn − lnGn≥
1− 2q

2x2
n

σn(5.1)

1− 2q

2x2
1

σn ≥ lnGn − q lnAn − (1− q) ln Hn≥
1− 2q

2x2
n

σn(5.2)

with equality holding if and only if q = 1/2 or x1 = · · · = xn.

Proof. The proof uses the ideas in [6]. We will prove the right-hand side inequality of (5.1) and
the proofs for other inequalities are similar. Fix 0 < x = x1, xn = b with x1 < xn, we define

fn(xn, q) = (1− q) ln An + q lnHn − lnGn −
1− 2q

2x2
n

σn

where we regard An, Gn,Hn as functions of xn = (x1, · · · , xn).
We then have

gn(x2, · · · , xn−1) :=
1
ω1

∂fn

∂x1
=

1− q

An
+

qHn

x2
1

− 1
x1

− 1− 2q

x2
n

(x1 −An)

We want to show gn ≤ 0. Let D = {(x2, · · · , xn−1) ∈ Rn−2|0 < x ≤ x2 ≤ · · · ≤ xn−1 ≤ b}. Let
a = (a2, · · · , an−1) ∈ D be the absolute minimum of gn. Next, we show that

(5.3) a = (x, · · · , x, a, · · · , a, b, · · · , b) with x < a < b

where the numbers x, a, and b appear r, s, and t times, respectively, with r, s, t ≥ 0, r+s+t = n−2.
Suppose not, this implies two components of a have different values and are interior points of D.

We denote these values by ak and al. Partial differentiation leads to

(5.4)
B

a2
i

+ C = 0

for i = k, l, where

B = q
H2

n

x2
1

, C = −1− q

A2
n

+
1− 2q

x2
n

Since z 7→ B/z2 + C is strictly monotonic for z > 0, (5.4) yields ak = al. This contradicts our
assumption that ak 6= al. Thus (5.3) is valid and it suffices to show gn ≤ 0 for the case n = 2, 3.

When n = 2, by setting x1 = x, x2 = b, ω1/q = u, ω2/q = v, we can identify g2/q as (4.1) and
the result follows from lemma 4.1.

When n = 3, by setting x1 = x, x2 = a, x3 = b, ω1/q = u, ω2/q = s, ω3/q = v− s, we can identify
g3/q as (4.2) and the result follows from lemma 4.2.

Thus we have shown that gn = ∂fn

∂xn
≤ 0 with equality holding if and only if n = 1 or n = 2, q =

1/2. By letting x1 tend to x2, we have

fn(xn, q) ≥ fn−1(xn−1, q) ≥ fn−1(xn−1, q
′)
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where xn−1 = (x2, · · · , xn) with weights ω1 + ω2, · · · , ωn−1, ωn and q′ = min{ω1 + ω2, · · · , ωn}.
Here we have used the following inequality, which is a consequence of (3.1)(see [9]):

lnAn − lnHn ≥
1
x2

n

σn

It then follows by induction that fn > fn−1 > · · · > f2 = 0 when q = 1/2 in f2 or else
fn > fn−1 > · · · > f1 = 0 and this completes the proof. �

We note the above theorem gives a sharpening of Sierpiński’s inequality[13], originally states for
the unweighted case(ωi = 1/n) as:

Hn−1
n An ≤ Gn ≤ An−1

n Hn

The following corollary gives refinements of (1.4):
Corollary 5.1. For 0 < x1 ≤ · · · ≤ xn < 1, q = min{ωi}

(
A

′(1−q)
n H

′q
n

G′
n

)
(1−x1)2

x2
1 ≥ A1−q

n Hq
n

Gn
≥ (

A
′(1−q)
n H

′q
n

G′
n

)
(1−xn)2

x2
n(5.5)

(
G′

n

A
′q
n H

′(1−q)
n

)
(1−x1)2

x2
1 ≥ Gn

Aq
nH1−q

n

≥ (
G′

n

A
′q
n H

′(1−q)
n

)
(1−xn)2

x2
n(5.6)

with equality holding if and only if x1 = x2 = · · · = xn or q = 1/2.

Proof. This is a direct consequence of theorem 5.1, following from a similar argument as in [12]. �

6. Conclusion Remarks

We note that if for xn ≤ 1/2 one has

(
x1

1− x1
)β <

P ′
n,r − P ′

n,s

Pn,r − Pn,s
< (

xn

1− xn
)α

then β ≥ 1, α ≤ 1, otherwise by letting ε tend to 0 in (2.1), we will get contradictions.
It was conjectured that an additive companion of (1.4) is true(see [1]):

(6.1) n(Gn −G′
n) ≤ (n− 1)(An −A′

n) + Hn −H ′
n

In [3], H. Alzer asked if the above conjecture is true, whether there exists a weighted version or
not. Based on what we’ve got in this paper, it is natural to give the following conjecture of the
weighed version of (6.1):
Conjecture 6.1. For 0 < x1 ≤ · · · ≤ xn ≤ 1/2, q = min{ωi}
(6.2) Gn −G′

n ≤ (1− q)(An −A′
n) + q(Hn −H ′

n)

Recently, H. Alzer, S. Ruscheweyh and L. Salinas[6] asked the following question: What is the
largest number α = α(n) and what is the smallest number β = β(n) such that

α(An −A′
n) + (1− α)(Hn −H ′

n) ≤ Gn −G′
n ≤ β(An −A′

n) + (1− β)(Hn −H ′
n)

for all xi ∈ (0, 1/2](j = 1, · · · , n)?
We note here α ≤ 0, since the left-hand side inequality above can be written as:

(6.3) αAn + (1− α)Hn −Gn ≤ αA′
n + (1− α)H ′

n −G′
n

By a similar argument as in the proof of theorem 2.1, replacing (x1, · · · , xn) by (εx1, · · · , εxn)
and letting ε tend to 0 in (6.3), we find that (6.3) implies:

(6.4) αAn + (1− α)Hn −Gn ≤ 0

for any x. If we further let x1 tend to 0 in (6.4), we get

αAn ≤ 0
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which implies α ≤ 0.
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