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ON A NEW GENERALIZATION OF MARTINS’ INEQUALITY

FENG QI

Abstract. Let n, m ∈ N and {ai}n+m
i=1 be an increasing, logarithmically con-

cave, positive, and nonconstant sequence such that the sequence
{
i
[ai+1

ai
−

1
]}n+m−1

i=1
is increasing. Then the following inequality between ratios of the

power means and of the geometic means holds:(
1

n

n∑
i=1

ar
i

/
1

n + m

n+m∑
i=1

ar
i

)1/r

<
n
√

an!
n+m
√

an+m!
,

where r is a positive number, ai! denotes the sequence factorial defined by∏n
i=1 ai. The upper bound is the best possible.

1. Introduction

It is well-known that the following inequality

n

n + 1
<

(
1
n

n∑
i=1

ir
/

1
n + 1

n+1∑
i=1

ir

)1/r

<
n
√

n!
n+1
√

(n + 1)!
(1)

holds for r > 0 and n ∈ N. We call the left-hand side of this inequality Alzer’s
inequality [1], and the right-hand side Martins’s inequality [7].

Alzer’s inequality has invoked the interest of several mathematicians, we refer
the reader to [5, 9, 16, 18] and the references therein.

Recently, F. Qi and L. Debnath in [15] proved that: Let n, m ∈ N and {ai}∞i=1

be an increasing sequence of positive real numbers satisfying

(k + 2)ar
k+2 − (k + 1)ar

k+1

(k + 1)ar
k+1 − kar

k

≥
(

ak+2

ak+1

)r

(2)

for a given positive real number r and k ∈ N. Then

an

an+m
≤
(

(1/n)
∑n

i=1 ar
i

(1/(n + m))
∑n+m

i=1 ar
i

)1/r

. (3)

The lower bound of (3) is the best possible.
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2 F. QI

In [12, 13, 14, 19, 20, 21], F. Qi and others proved the following inequalities and
other more general results:

n + k + 1
n + m + k + 1

<

(
n+k∏

i=k+1

i

)1/n/(
n+m+k∏
i=k+1

i

)1/(n+m)

≤
√

n + k

n + m + k
, (4)

a(n + k + 1) + b

a(n + m + k + 1) + b
<

[∏n+k
i=k+1(ai + b)

] 1
n

[∏n+m+k
i=k+1 (ai + b)

] 1
n+m

≤

√
a(n + k) + b

a(n + m + k) + b
, (5)

where n, m ∈ N, k is a nonnegative integer, a a positive constant, and b a nonegative
constant. The equalities in (4) and (5) is valid for n = 1 and m = 1.

In [17], the following monotonicity results for the gamma function were obtained:
The function

[Γ(x + y + 1)/Γ(y + 1)]1/x

x + y + 1
(6)

is decreasing in x ≥ 1 for fixed y ≥ 0. Then, for positive real numbers x and y, we
have

x + y + 1
x + y + 2

≤ [Γ(x + y + 1)/Γ(y + 1)]1/x

[Γ(x + y + 2)/Γ(y + 1)]1/(x+1)
. (7)

In [11, 15], F. Qi proved that: Let n and m be natural numbers, k a nonnegative
integer. Then

n + k

n + m + k
<

(
1
n

n+k∑
i=k+1

ir
/

1
n + m

n+m+k∑
i=k+1

ir

)1/r

, (8)

where r is a given positive real number. The lower bound is the best possible.
In [4, 18], some more general results for the lower bound of ratio of power means(

1
n

∑n
i=1 ar

i

/
1

n+m

∑n+m
i=1 ar

i

)1/r for positive sequence {ai}i∈N were obtained.
An open problem in [10, 11] asked for the validity of the following inequality:(

1
n

n+k∑
i=k+1

ir
/

1
n + m

n+m+k∑
i=k+1

ir

)1/r

<
n
√

(n + k)!/k!
n+m
√

(n + m + k)!/k!
, (9)

where r > 0, n, m ∈ N, k ∈ Z+.
Let {ai}i∈N be a positive sequence. If ai+1ai−1 ≥ a2

i for i ≥ 2, we call {ai}i∈N
a logarithmically convex sequence; if ai+1ai−1 ≤ a2

i for i ≥ 2, we call {ai}i∈N a
logarithmically concave sequence. See [8, p. 284].

In [3], the open problem mentioned above was solved and generalized affirma-
tively: Let {ai}n+m

i=1 be an increasing, logarithmically concave, positive, and non-
constant sequence satisfying (a`+1/a`)` ≥ (a`/a`−1)`−1 for any positive integer
` > 1, then

(
1
n

∑n
i=1 ar

i

/
1

n+m

∑n+m
i=1 ar

i

)1/r
< n
√

an!
/

n+m
√

an+m!, where r is a posi-
tive number, n, m ∈ N, and ai! denotes the sequence factorial

∏n
i=1 ai. The upper

bound is best possible.
The purpose of this paper is to give a new generalization of inequality (9) as

follows.
Theorem 1. Let n, m ∈ N and {ai}n+m

i=1 be an increasing, logarithmically concave,
positive, and nonconstant sequence such that the sequence

{
i
[ai+1

ai
− 1
]}n+m−1

i=1
is
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increasing. Then the following inequality between ratios of the power means and of
the geometic means holds:(

1
n

n∑
i=1

ar
i

/
1

n + m

n+m∑
i=1

ar
i

)1/r

<
n
√

an!
n+m
√

an+m!
, (10)

where r is a positive number and ai! denotes the sequence factorial
∏n

i=1 ai. The
upper bound is the best possible.

As an easy consequence of Theorem 1 by taking {ai}n+m
i=1 = {(i + k + b)α}n+m

i=1

for a positive constant α, we have

Corollary 1. Let α be a positive real number, k a nonnegative integer and b a real
number such that k + b > 0, and m,n ∈ N. If the sequence{

i

[(
1 +

1
i + k + b

)α

− 1
]}n+m−1

i=1

(11)

is increasing, then for any real number r > 0, we have(
1
n

∑n+k
i=k+1[(i + b)α]r

1
n+m

∑n+m+k
i=k+1 [(i + b)α]r

)1/r

<

n

√∏n+k
i=k+1(i + b)α

n+m

√∏n+m+k
i=k+1 (i + b)α

. (12)

The upper bound is the best possible.

Remark 1. By letting α = 1 and b = 0 in (12), we recover inequality (9).
Taking α = 2 in Corollary 1 leads to the following

Corollary 2. Let k be a nonnegative integer, and b a real number such that k+b ≥
1
2 , and m,n ∈ N. Then, for any real number r > 0, we have

(
1
n

∑n+k
i=k+1[(i + b)2]r

1
n+m

∑n+m+k
i=k+1 [(i + b)2]r

)1/r

<

n

√∏n+k
i=k+1(i + b)2

n+m

√∏n+m+k
i=k+1 (i + b)2

. (13)

The upper bound is the best possible.

Considering {ai}i∈N =
{
eiα}

i∈N in Theorem 1 and standard argument gives us
the following

Corollary 3. Let m,n ∈ N. If the constant 0 < α < 1 such that inequality

e(1+x)α − exα

xα−1 − (1 + x)α−1
≥ αxe(1+x)α

(14)

holds with x on [1,∞), then, for any real number r > 0, we have(
1
n

∑n
i=1 eiαr

1
n+m

∑n+m
i=1 eiαr

)1/r

< exp
[

1
n

n∑
i=1

iα − 1
n + m

n+m∑
i=1

iα
]
. (15)

The upper bound is the best possible.
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2. Lemmas

To prove our main results, the following lemmas are neccessary.
Lemma 1. Let n, m ∈ N, and {ai}n+m+1

i=1 a nonconstant positive sequence such
that the sequence

{
i
[ai+1

ai
− 1
]}n+m

i=1
is increasing, then the sequence{

i
√

ai!
ai+1

}n+m

i=1

(16)

is decreasing. As a simple consequence, we have the following
n
√

an!
n+m
√

an+m!
>

an+1

an+m+1
, (17)

where an! denotes the sequence factorial defined by
∏n

i=1 ai.

Proof. For 1 ≤ i ≤ n + m− 1, the monotonicity of the sequence (16) is equivalent
to the following

i
√

ai!
ai+1

≥
i+1
√

ai+1!
ai+2

, (18)

⇐⇒

(
i∏

k=1

ak

ai+1

)1/i

≥

(
i+1∏
k=1

ak

ai+2

)1/(i+1)

,

⇐⇒ 1
i

i∑
k=1

ln
ak

ai+1
≥ 1

i + 1

i+1∑
k=1

ln
ak

ai+2
,

⇐⇒ i

i + 1

i+1∑
k=1

ln
ak

ai+2
≤

i∑
k=1

ln
ak

ai+1
. (19)

Since lnx is concave on (0,∞), by definition of concaveness, it follows that, for
1 ≤ k ≤ i,

k

i + 1
ln

ak+1

ai+2
+

i− k + 1
i + 1

ln
ak

ai+2

≤ ln

(
k

i + 1
· ak+1

ai+2
+

i− k + 1
i + 1

· ak

ai+2

)
(20)

= ln
(

kak+1 + (i− k + 1)ak

(i + 1)ai+2

)
.

Since the sequence
{
i
[ai+1

ai
−1
]}n+m

i=1
is increasing, we have, for 1 ≤ i ≤ n+m−1

and 1 ≤ k ≤ i, the following
(i + 1)ai+2

ai+1
− (i + 1) ≥ iai+1

ai
− i,

⇐⇒ (i + 1)ai+2

ai+1
− (i + 1) ≥ kak+1

ak
− k,

⇐⇒ kak+1 + (i− k + 1)ak

ak
≤ (i + 1)ai+2

ai+1
,

⇐⇒ kak+1 + (i− k + 1)ak

(i + 1)ai+2
≤ ak

ai+1
.
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Combining the last line above with (20) yields

k

i + 1
ln

ak+1

ai+2
+

i− k + 1
i + 1

ln
ak

ai+2
≤ ln

ak

ai+1
. (21)

Summing up on both sides of (21) with k from 1 to i and simplifying reveals
inequality (19). The monotonicity follows.

Since {ai}n+m+1
i=1 is a nonconstant positive sequence, there exists at least one

number 1 ≤ i0 ≤ n + m − 1 such that ai0 6= ai0+1. The function lnx is strictly
concave on (0,∞). Then, for any i such that i0 ≤ i ≤ n + m− 1, we have

i0
i + 1

ln
ai0+1

ai+2
+

i− i0 + 1
i + 1

ln
ai0

ai+2

< ln

(
i0

i + 1
· ai0+1

ai+2
+

i− i0 + 1
i + 1

· ai0

ai+2

)

= ln
(

i0ai0+1 + (i− i0 + 1)ai0

(i + 1)ai+2

)
≤ ln

ai0

ai+1
,

(22)

notice that the last line follows from the sequence
{
i
[ai+1

ai
−1
]}n+m

i=1
being increasing.

Therefore, for any i such that i0 ≤ i ≤ n+m−1, inequality (18) is strict. Inequality
(17) is proved.

The proof is complete. �

Lemma 2. Let n > 1 be a positive integer and {ai}n
i=1 an increasing nonconstant

positive sequence such that
{
i
[ai+1

ai
− 1
]}n−1

i=1
is increasing. Then the sequence{

ai

(ai!)
1/i

}n

i=1

(23)

is increasing, and, for any positive integer ` satisfying 1 ≤ ` < n,

a`

an
<

(a`!)
1/`

(an!)1/n
, (24)

where an! denotes the sequence factorial
∏n

i=1 ai.

Proof. For 1 ≤ ` ≤ n− 1, the monotonicity of the sequence (23) is equivalent to
a`

(a`!)
1/`

≤ a`+1

(a`+1!)
1/(`+1)

,

⇐⇒

(∏̀
j=1

aj

a`

) 1
`

≥

(
`+1∏
j=1

aj

a`+1

) 1
`+1

,

⇐⇒ 1
`

`−1∑
j=1

ln
aj

a`
≥ 1

` + 1

∑̀
j=1

ln
aj

a`+1
,

⇐⇒
`−1∑
j=1

ln
aj

a`
≥ `

` + 1

∑̀
j=1

ln
aj

a`+1
. (25)
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Since lnx is concave on (0,∞), by definition of concaveness, it follows that, for
1 ≤ j ≤ `,

j

` + 1
ln

aj+1

a`+1
+

`− j + 1
` + 1

ln
aj

a`+1

≤ ln
(

j

` + 1
· aj+1

a`+1
+

`− j + 1
` + 1

· aj

a`+1

)
(26)

= ln
(

jaj+1 + (`− j + 1)aj

(` + 1)a`+1

)
.

Straightforward computation gives us∑̀
j=1

[
j

` + 1
ln

aj+1

a`+1
+

`− j + 1
` + 1

ln
aj

a`+1

]

=
`

` + 1

∑̀
j=1

ln
aj

a`+1
+
∑̀
j=1

[
j

` + 1
ln

aj+1

a`+1

]
−
∑̀
j=1

j − 1
` + 1

ln
aj

a`+1

=
`

` + 1

∑̀
j=1

ln
aj

a`+1
+

`+1∑
j=2

[
j − 1
` + 1

ln
aj

a`+1

]
−
∑̀
j=1

j − 1
` + 1

ln
aj

a`+1

=
`

` + 1

∑̀
j=1

ln
aj

a`+1
.

(27)

From combining of (25), (26) and (27), it suffices to prove for 1 ≤ j ≤ `

jaj+1 + (`− j + 1)aj

(` + 1)a`+1
≤ aj

a`
,

⇐⇒ jaj+1 + (`− j + 1)aj

aj
≤ (` + 1)a`+1

a`
,

⇐⇒ jaj+1

aj
+ `− j + 1 ≤ (` + 1)a`+1

a`
,

⇐⇒ (` + 1)
[a`+1

a`
− 1
]
≥ j
[aj+1

aj
− 1
]
. (28)

Since the sequences {ai}n
i=1 and

{
i
[ai+1

ai
− 1
]}n−1

i=1
are increasing, the inequality

(28) holds.
Moreover, the sequence {ai}n

i=1 is nonconstant positive, then there exists at least
one number 1 ≤ i1 ≤ n − 1 such that ai1 6= ai1+1. The function lnx is strictly
concave on (0,∞). Then, for any ` such that i1 < ` ≤ n− 1, we have

i1
` + 1

ln
ai1+1

a`+1
+

`− i1 + 1
` + 1

ln
ai1

a`+1

< ln
(

i1
` + 1

· ai1+1

a`+1
+

`− i1 + 1
` + 1

· ai1

a`+1

)
= ln

(
i1ai1+1 + (`− i1 + 1)ai1

(` + 1)a`+1

)
≤ ln

ai1

a`
.

(29)
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Therefore, for any ` such that i1 + 1 ≤ ` < n, inequality (25) is strict, and

a`

a`+1
<

(a`!)
1/`

(a`+1!)
1/(`+1)

, (30)

and then inequality (24) is strict. The proof is complete. �

Remark 2. Some problems similar to Lemma 1 and Lemma 2 were discussed in [19]
by the author and B.-N. Guo.

The methods proving Lemma 1 and Lemma 2 had been used in [18] and others.
Lemma 3 (König’s inequality [2, p. 149] and [7, 22]). Let {ai}n

i=1 and {bi}n
i=1 be

decreasing nonnegative n-tuples such that
k∏

i=1

bi ≤
k∏

i=1

ai, 1 ≤ k ≤ n, (31)

then, for r > 0, we have
k∑

i=1

br
i ≤

k∑
i=1

ar
i , 1 ≤ k ≤ n. (32)

Remark 3. Lemma 3 is a well-known result due to König used to give a proof of
Weyl’s inequality (cf. Corollary 1.b.8 of [6, p. 24]).

3. Proofs of Theorem 1

Inequality (10) holds for n = 1 by the power mean inequality and its case of
equality.

For n ≥ 2, inequality (10) is equivalent to(
1
n

n∑
i=1

ar
i

/
1

n + 1

n+1∑
i=1

ar
i

)1/r

<
n
√

an!
n+1
√

an+1!
, (33)

which is equivalent to

1
n

n∑
i=1

(
ai

n
√

an!

)r

<
1

n + 1

n+1∑
i=1

(
ai

n+1
√

an+1!

)r

. (34)

Set

bjn+1 = bjn+2 = · · · = bjn+n =
an+1−j

n+1
√

an+1!
, 0 ≤ j ≤ n; (35)

cj(n+1)+1 = cj(n+1)+2 = · · · = cj(n+1)+(n+1) =
an−j
n
√

an!
, 0 ≤ j ≤ n− 1. (36)

Direct calculation yields
n(n+1)∑

i=1

br
i =

n∑
j=0

n∑
k=1

br
jn+k

= n
n∑

j=0

(
an+1−j

n+1
√

an+1!

)r

= n
n+1∑
i=1

(
ai

n+1
√

an+1!

)r

(37)
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and
n(n+1)∑

i=1

cr
i = (n + 1)

n∑
i=1

(
ai

n
√

an!

)r

. (38)

Since {ai}n+1
i=1 is increasing, the sequence {bi}n(n+1)

i=1 and {ci}n(n+1)
i=1 are decreas-

ing. Therefore, by Lemma 3, to obtain inequality (34), it is sufficient to prove
inequality

bm! ≥ cm! (39)
for 1 ≤ m ≤ n(n + 1).

It is easy to see that bn(n+1)! = cn(n+1)! = 1. Thus, inequality (39) is equivalent
to

n(n+1)∏
i=m

bi ≤
n(n+1)∏

i=m

ci (40)

for 2 ≤ m ≤ n(n + 1).
For 0 ≤ ` ≤ n and 0 ≤ j ≤ n− 2, we have 2 ≤ (n− `)n + (n− j) = (n− `)(n +

1) + (`− j) ≤ n(n + 1). Then
n(n+1)∏

i=(n−`)n+(n−j)

bi =
(a`+1)j+1(a`!)n

(an+1!)
`n+j+1

n+1

; (41)

n(n+1)∏
i=(n−`)(n+1)+(`−j)

ci =
(a`)n−`+j+2(a`−1!)n+1

(an!)
`n+j+1

n

, ` > j; (42)

n(n+1)∏
i=(n−`)(n+1)+(`−j)

ci =
n(n+1)∏

i=(n−`−1)(n+1)+(n+1+`−j)

ci

=
(a`+1)j−`+1(a`!)n+1

(an!)
`n+j+1

n

, ` ≤ j;

(43)

where a0 = 1.
The last term in (43) is bigger than the right term in (42), so, without loss of

generality, we can assume j < `. Therefore, from formulae (41) and (42), inequality
(40) is reduced to

(a`+1)j+1(a`!)n(an+1!)
`−j−1

n+1

(an+1!)`
≤ (a`)n−`+j+2(a`−1!)n+1

(an!)`(an!)
j+1

n

, (44)

that is
(a`+1)j+1(an+1!)

`−j−1
n+1

(a`!)(a`)j−`+1
≤ (an+1)`(an!)

−`
n

(an!)
j−`+1

n

, (45)

this is further equivalent to

(a`+1)j+1(an+1!)
`−j−1

n+1

a`!(a`)j−`+1(an!)
`−j−1

n

≤ (an+1)`

(an!)
`
n

, (46)

which can be rearranged as(
a`+1

a`
·

n
√

an!
n+1
√

an+1!

) j+1
`

≤
√̀

a`!
a`

· an+1

n+1
√

an+1!
, j + 1 ≤ ` ≤ n. (47)
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Utilizing Lemma 2 and the logarithmical concaveness of the sequence {ai}n+1
i=1

yields
n
√

an!
n+1
√

an+1!
>

an

an+1
≥ a`

a`+1
. (48)

Since j+1
` ≤ 1 and a`+1

a`
·

n√an!
n+1
√

an+1!
> 1 by (48), thus, to obtain (47), it suffices

to prove
a`+1

n
√

an! < an+1

√̀
a`!, (49)

this follows from Lemma 1.
Since the sequence {ai}n+m

i=1 is nonconstant, the inequality (10) is strict.
By the L’Hospital rule, easy calculation produces

lim
r→∞

(
1
n

n∑
i=1

ar
i

/
1

n + m

n+m∑
i=1

ar
i

)1/r

=
n
√

an!
n+m
√

an+m!
, (50)

thus, the upper bound is the best possible. The proof is complete.
Remark 4. Recently, some new inequalities for the ratios of the mean values of
functions were established in [23].
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