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NEW INEQUALITIES FOR THE
ČEBYŠEV FUNCTIONAL INVOLVING
TWO n−TUPLES OF REAL NUMBERS

AND APPLICATIONS

P. CERONE AND S.S. DRAGOMIR

Abstract. New upper and lower bounds

for the unweighted Čebyšev functional
involving two n−tuples of real numbers
are developed and applications for guess-
ing mappings are given.

1. Introduction

For two n−tuples of real numbers, consider the
Čebyšev’s functional

(1.1) Dn (x̄, ȳ) :=
1
n

n∑
i=1

xiyi −
1
n

n∑
i=1

xi ·
1
n

n∑
i=1

yi,

where x̄ := (x1, . . . , xn) , ȳ := (y1, . . . , yn) ∈ Rn.
If x̄, ȳ are synchronous (asynchronous), such that

(1.2) (xi − xj) (yi − yj) ≥ (≤) 0

for each i, j ∈ {1, . . . , n}

then the well known Čebyšev’s inequality

(1.3) Dn (x̄, ȳ) ≥ (≤) 0

holds.
In [9], the following refinement of Čebyšev’s in-

equality (1.3) has been obtained. Namely,

(1.4) Dn (x̄, ȳ)

≥ max {|Dn (|x̄| , ȳ)| , |Dn (x̄, |ȳ|)| , |Dn (|x̄| , |ȳ|)|} ,

provided x̄, ȳ are synchronous and

|x̄| := (|x1| , . . . , |xn|) .

If x ≤ xi ≤ X, y ≤ yi ≤ Y for each i ∈
{1, . . . , n} , then the magnitude of the difference
Dn (x̄, ȳ) may be evaluated by the use of Biernacki,
Pidek and Ryll-Nardzewski’s inequality [1]

|Dn (x̄, ȳ)|(1.5)

≤ 1
n

[n
2

](
1− 1

n

[n
2

])
(X − x) (Y − y)
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=
1
n2

[
n2

4

]
(X − x) (Y − y) ≤ 1

4
(X − x) (Y − y) .

The following results similar to that in (1.5) are
also known

(1.6) |Dn (x̄, ȳ)|

≤



n2−1
12 · max

j=1,n−1
|∆xj | max

j=1,n−1
|∆yj | , [3]

1
2

(
1− 1

n

) n−1∑
i=1

|∆xi|
n−1∑
i=1

|∆yi| , [5]

n2−1
6n

(
n−1∑
j=1

|∆xj |p
) 1

p
(

n−1∑
j=1

|∆yj |q
) 1

q

,

if p > 1, 1
p + 1

q = 1; [4].

The constants 1
12 , 1

2 and 1
6 in (1.6) respectively are

sharp in the sense that they can not be replaced by
smaller constants.

The main aim of this paper is both to point out
other sufficient conditions for the positivity of the
Čebyšev functional and to determine upper bounds
for the magnitude of Dn (·, ·) . Some applications
for the moments of guessing mapping are also men-
tioned.

2. Some Upper Bounds

In dealing with the magnitude of the difference,
Dn (x̄, ȳ) as defined in (1.1), a natural approach is
embodied in the following theorem.
Theorem 1. Let c̄ be the constant n−tuple with
all of its elements equal to c ∈ R. For any two
n−tuples x̄ := (x1, . . . , xn) , ȳ := (y1, . . . , yn) of
real numbers one has the inequalities

0 ≤ |Dn (x̄, ȳ)|(2.1)

≤



1
n
‖ȳ − ȳM‖1 inf

c∈R
‖x̄− c̄‖∞ ;

1
n
‖ȳ − ȳM‖q inf

c∈R
‖x̄− c̄‖p ,

p > 1, 1
p + 1

q = 1;

1
n
‖ȳ − ȳM‖∞ inf

c∈R
‖x̄− c̄‖1 ;

≤



1
n
‖ȳ − ȳM‖1 min {‖x̄‖∞ , ‖x̄− x̄M‖∞} ;

1
n
‖ȳ − ȳM‖q min

{
‖x̄‖p , ‖x̄− x̄M‖p

}
,

p > 1, 1
p + 1

q = 1;

1
n
‖ȳ − ȳM‖∞min {‖x̄‖1 , ‖x̄− x̄M‖1} ;

1



2 P. CERONE AND S.S. DRAGOMIR

where

xM :=
1
n

n∑
k=1

xk, yM :=
1
n

n∑
k=1

yk,

and x̄M , ȳM the vectors with all components equal
to xM , yM . Here, ‖·‖p (p ∈ [1,∞]) are the usual
p−norms on Rn, namely

‖x̄‖∞ := max
i=1,n

|xi| ,

‖x̄‖p :=

(
n∑

i=1

|xi|p
) 1

p

, 1 ≤ p < ∞.

Proof. Firstly, let us observe that for any c ∈ R
one has the identity

Dn (x̄, ȳ) = Dn (x̄− c̄, ȳ − ȳM )(2.2)

=
1
n

n∑
i=1

(xi − c) (yi − yM ) .

Taking the modulus and using Hölder’s inequality,
we have

|Dn (x̄, ȳ)|(2.3)

≤ 1
n

n∑
i=1

|xi − c| |yi − yM |

≤



1
n maxi=1,n |xi − c|

n∑
i=1

|yi − yM | ;

1
n

(
n∑

i=1

|xi − c|p
) 1

p
(

n∑
i=1

|yi − yM |q
) 1

q

,

p > 1, 1
p + 1

q = 1;

1
n

n∑
i=1

|xi − c|maxi=1,n |yi − yM | ;

=



1
n ‖x̄− c̄‖∞ ‖ȳ − ȳM‖1 ;
1
n ‖x̄− c̄‖p ‖ȳ − ȳM‖q ,

p > 1, 1
p + 1

q = 1;
1
n ‖x̄− c̄‖1 ‖ȳ − ȳM‖∞ .

Taking the inf over c ∈ R in (2.3), we deduce the
second inequality in (2.1).

Since

inf
c∈R

‖x̄− c̄‖p ≤


‖x̄‖p

‖x̄− x̄M‖p

for any p ∈ [1,∞] ,

the final part of (2.1) is also proved.

Corollary 1. For any x̄ an n−tuple of real num-
bers one has

(2.4) 0 ≤ Dn (x̄, x̄) =
1
n

n∑
i=1

x2
i −

(
1
n

n∑
i=1

xi

)2

≤



1
n ‖x̄− x̄M‖1 inf

c∈R
‖x̄− c̄‖∞ ,

1
n ‖x̄− x̄M‖q inf

c∈R
‖x̄− c̄‖p ,

p > 1, 1
p + 1

q = 1;
1
n ‖x̄− x̄M‖∞ inf

c∈R
‖x̄− c̄‖1

≤



1
n ‖x̄− x̄M‖1 min {‖x̄‖∞ , ‖x̄− x̄M‖∞} ,

1
n ‖x̄− x̄M‖q min

{
‖x̄‖p , ‖x̄− x̄M‖p

}
,

p > 1, 1
p + 1

q = 1;
1
n ‖x̄− x̄M‖∞min {‖x̄‖1 , ‖x̄− x̄M‖1} ,

Remark 1. For p = q = 2, we know that

inf
c∈R

‖x̄− c̄‖2 = ‖x̄− x̄M‖2(2.5)

=
1
n

n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2
 1

2

= D
1
2
n (x̄, x̄)

to produce the known inequality:

(2.6) [Dn (x̄, ȳ)]2 ≤ Dn (x̄, x̄) Dn (ȳ, ȳ) .

3. Some Positivity Results

To study the positivity of Dn (·, ·) , we intro-
duce the following class of real numbers associated
with two given n−tuples x̄ = (x1, . . . , xn) , and
ȳ = (y1, . . . , yn) , namely,

(3.1) Cn (x̄, ȳ) := {c ∈ R| (xi − c) (yi − yM ) ≥ 0

for each i ∈ {1, . . . , n}}.
For n = 2 and if we assume that y1 < y2, then
the condition (xi − c) (yi − yM ) ≥ 0, i ∈ {1, 2} is
equivalent to (x1 − c) (y1 − y2) ≥ 0

(x2 − c) (y2 − y1) ≥ 0

or to x1 ≤ c ≤ x2.
So, C2 (x̄, ȳ) is nonempty iff x1 ≤ x2.
We will say that the n−tuples (x̄, ȳ) (in this par-

ticular order) are positively correlated, if Cn (x̄, ȳ)
is nonempty.

For instance, for any x̄ ∈ Rn we have (x̄, x̄) are
positively correlated as c = xM ∈ Cn (x̄, x̄) .

The following result providing a refinement of
Čebyšev’s inequality holds.
Theorem 2. Assume that the n−tuples (x̄, ȳ) are
positively correlated. Then one has the inequality:

(3.2) Dn (x̄, ȳ) ≥ max

{
|An| , sup

c∈Cn(x̄,ȳ)

|Bn (c)| ,

sup
c∈Cn(x̄,ȳ)

|Cn (c)|

}
≥ 0,
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where

An :=
1
n

n∑
i=1

|xi| yi −
1
n

n∑
i=1

|xi| ·
1
n

n∑
i=1

yi

Bn (c) :=
1
n

n∑
i=1

|xiyi| − |c| · 1
n

n∑
i=1

|yi|

− 1
n

n∑
i=1

|xi|

∣∣∣∣∣ 1n
n∑

i=1

yi

∣∣∣∣∣+ |c| ·

∣∣∣∣∣ 1n
n∑

i=1

yi

∣∣∣∣∣
and

Cn (c) :=
1
n

n∑
i=1

xi |yi| − c · 1
n

n∑
i=1

|yi|

− 1
n

n∑
i=1

xi

∣∣∣∣∣ 1n
n∑

i=1

yi

∣∣∣∣∣+ c

∣∣∣∣∣ 1n
n∑

i=1

yi

∣∣∣∣∣ .
Proof. Let c ∈ Cn (x̄, ȳ) , then

(xi − c) (yi − yM )(3.3)

= |(xi − c) (yi − yM )|

≥


|(|xi| − |c|) (yi − yM )|

|(|xi| − |c|) (|yi| − |yM |)|

|(xi − c) (|yi| − |yM |)|

for each i ∈ {1, . . . , n} .
Summing over i from 1 to n in (3.3) and using

the generalised triangle inequality, we get

1
n

n∑
i=1

(xi − c) (yi − yM )(3.4)

≥ 1
n



∣∣∣∣ n∑
i=1

(|xi| − |c|) (yi − yM )
∣∣∣∣ ,∣∣∣∣ n∑

i=1

(|xi| − |c|) (|yi| − |yM |)
∣∣∣∣ ,∣∣∣∣ n∑

i=1

(xi − c) (|yi| − |yM |)
∣∣∣∣ .

Since
n∑

i=1

(|xi| − |c|) (yi − yM )

=
n∑

i=1

|xi| yi − |c|
n∑

i=1

yi −
n∑

i=1

|xi| · yM + n |c| yM

=
n∑

i=1

|xi| yi −
n∑

i=1

|xi| · yM = nAn,

n∑
i=1

(|xi| − |c|) (|yi| − |yM |)

=
n∑

i=1

|xiyi| − |c|
n∑

i=1

|yi| − |yM |
n∑

i=1

|xi|+ n |c| |yM |

= nBn (c)

and
n∑

i=1

(xi − c) (|yi| − |yM |)

=
n∑

i=1

xi |yi| − c
n∑

i=1

|yi| − |yM |
n∑

i=1

xi + nc |yM |

= nCn (c) ,

then by the identity (2.2) and the inequality (3.4)
we deduce

(3.5) Dn (x̄, ȳ) ≥


|An|

|Bn (c)|

|Cn (c)|
for any c ∈ Cn (x̄, ȳ) .

Taking the sup in (3.5) for c ∈ Cn (x̄, ȳ) , produces
(3.2).

The following corollaries are natural.
Corollary 2. Assume that x̄, ȳ are such that

(3.6) xi (yi − yM ) ≥ 0 for each i ∈ {1, . . . , n} .

Then, one has the inequality

(3.7) Dn (x̄, ȳ) ≥ max
{
|An| ,

∣∣∣B(1)
n

∣∣∣ , ∣∣∣C(1)
n

∣∣∣} ≥ 0,

where An was defined in Theorem 2 and

B(1)
n :=

1
n

n∑
i=1

|xiyi| −
1
n

n∑
i=1

|xi|

∣∣∣∣∣ 1n
n∑

i=1

yi

∣∣∣∣∣ ,
C(1)

n :=
1
n

n∑
i=1

xi |yi| −
1
n

n∑
i=1

xi

∣∣∣∣∣ 1n
n∑

i=1

yi

∣∣∣∣∣ .
Corollary 3. Assume that x̄, ȳ are such that

(3.8) (xi − xM ) (yi − yM ) ≥ 0

for each i ∈ {1, . . . , n} .

Then, one has the inequality

(3.9) Dn (x̄, ȳ) ≥ max
{
|An| ,

∣∣∣B(2)
n

∣∣∣ , ∣∣∣C(2)
n

∣∣∣} ≥ 0,

where An is as in Theorem 2 and

B(2)
n :=

1
n

n∑
i=1

|xiyi| −

∣∣∣∣∣ 1n
n∑

i=1

xi

∣∣∣∣∣ · 1
n

n∑
i=1

yi

−

∣∣∣∣∣ 1n
n∑

i=1

yi

∣∣∣∣∣ 1
n

n∑
i=1

|xi|+

∣∣∣∣∣ 1n
n∑

i=1

xi

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

yi

∣∣∣∣∣ ,
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C(2)
n :=

1
n

n∑
i=1

xi |yi| −
1
n

n∑
i=1

xi ·
1
n

n∑
i=1

|yi| .

Remark 2. We shall show now that there are pos-
itively correlated sequences (x̄, ȳ) that are not syn-
chronous.

Let a < b and consider y1 = a, y2 = a+b
2 , y3 =

b. The sequence (x1, x2, x3) is positively correlated
with (y1, y2, y3) iff there is a c ∈ R such that

(xi − c)
(

yi −
y1 + y2 + y3

3

)
≥ 0

which is equivalent to:

(3.10) (xi − c)
(

yi −
a + b

2

)
≥ 0, i = 1, 2, 3.

The assumption (3.10) is equivalent to:
(x1 − c) (a− b) ≥ 0

(x2 − c)
(

a+b
2 − a+b

2

)
≥ 0

(x3 − c) (a− b) ≥ 0

so that 
x1 ≤ c,

x2 ∈ R,

c ≤ x3,

c ∈ R.

So, if we assume that x1 < x3 and x2 ∈ R, then
(x1, x2, x3) is positively correlated to (y1, y2, y3) .

If we choose x2 < x1, then (y2 − y1) (x2 − x1) <
0 while (y3 − y1) (x3 − x1) ≥ 0 showing that
(x1, x2, x3) and (y1, y2, y3) are not synchronous.

Remark 3. It remains an open question if there
are synchronous sequences that are not positively
correlated.

4. Some Applications for Moments of
Guessing Mappings

In 1994, J.L. Massey [13] considered the prob-
lem of guessing the value taken on by a discrete
random variable X in one trial of a random exper-
iment by asking questions of the form “Did X take
on its ith possible value?” until the answer is in the
affirmative.

This problem arises for instance when a cryptol-
ogist must try different possible secret keys one at
a time after minimising the possibilities by some
cryptoanalysis.

Consider a random variable X with finite range
X = {x1, . . . , xn} and distribution PX (xk) = pk

for k = 1, 2, . . . , n.

A one-to-one function G : χ → {1, . . . , n} is a
guessing function for X. Thus

(4.1) E (Gm) :=
n∑

k=1

kmpk

is the mth moment of this function, provided we
renumber the xi such that xk is always the kth

guess.
In [13], Massey observed that, E (G) , the aver-

age number of guesses, is minimised by a guessing
strategy that guesses the possible values of X in
decreasing order of probability.

In the same paper [13], Massey proved that for
an optimal guessing strategy

(4.2) E (G) ≥ 1
4
2H(X) + 1

provided H (X) ≥ 2 bits,

where H (X) is the Shannon entropy

(4.3) H (X) = −
n∑

i=1

pi log2 (pi) .

He also showed that E (G) may be arbitrarily large
when H (X) is an arbitrarily small positive num-
ber so that there is no interesting upper bound on
E (G) in terms of H (X) .

In 1996, Arikan [14] proved that any guessing
algorithm for X obeys the lower bound

(4.4) E (Gρ) ≥

[∑n
k=1 p

1
1+ρ

k

]1+ρ

[1 + lnn]ρ
, ρ ≥ 0

where as an optimal guessing algorithm for X sat-
isfies

(4.5) E (Gρ) ≤

[
n∑

k=1

p
1

1+ρ

k

]1+ρ

, ρ ≥ 0.

In 1997, Boztaş [15] proved that for m ≥ 1, and
integer

(4.6) E (Gm) ≤ 1
m + 1

[
n∑

k=1

p
1

1+m

k

]1+m

+
1

m + 1

{(
m + 1

2

)
E
(
Gm−1

)
−
(

m + 1
3

)
E
(
Gm−2

)
+ · · ·+ (−1)m+1

}
provided the guessing strategy satisfies the relation:

(4.7) p
1

1+m

k+1 ≤ 1
k

(
p

1
1+m

1 + · · ·+ p
1

1+m

k

)
,

k = 1, . . . , n− 1.

In 1997, Dragomir and Boztaş [16] obtained, for
any guessing sequence, the following bounds for the
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expectation:

(4.8)
∣∣∣∣E (G)− n + 1

2

∣∣∣∣
≤ (n− 1) (n + 1)

6
max

1≤i<j≤n
|pi − pj | ,

(4.9)
∣∣∣∣E (G)− n + 1

2

∣∣∣∣
≤

√√√√ (n− 1) (n + 1)
(
n ‖p‖2

2 − 1
)

12
,

where ‖p‖2
2 =

∑n
i=1 p2

i and

(4.10)
∣∣∣∣E (G)− n + 1

2

∣∣∣∣
≤
[
n + 1

2

](
n−

[
n + 1

2

])
max

1≤k≤n

∣∣∣∣pk −
1
n

∣∣∣∣ ,
with [x] representing the integer part of x.

For other results on E (Gp) , p > 0 see also [17].
We highlight only the following result which uses
the Grüss inequality, giving for p, q > 0 that

(4.11)
∣∣E (Gp+q

)
− E (Gp) E (Gq)

∣∣
≤ 1

4
(nq − 1) (np − 1) .

The result (4.11) may be complemented in the
following way (see for example [10]).

Theorem 3. With the above assumptions, we have
the inequality

(4.12)
∣∣∣∣E (Gp+q

)
− 1 + nq

2
E (Gp)

− 1 + np

2
E (Gq) +

1 + nq

2
· 1 + np

2

∣∣∣∣
≤ 1

4
(nq − 1) (np − 1) .

for any p, q > 0.

Applications for different particular instances of
p, q > 0 may be provided, but we omit the details.

To obtain other inequalities for the moments of
guessing mappings, we use the following Čebyšev
type inequality

(4.13) Dn (x̄, ȳ) ≥ (≤) 0

provided

(xi − xM ) (yi − yM ) ≥ (≤) 0
for each i ∈ {1, . . . , n} .

with a subscript M denoting the arithmetic mean.
The following result holds.

Theorem 4. Assume that Sn (p) , p > 0 denotes
the sum of pth-power of the first n natural numbers,
that is

Sn (p) :=
n∑

k=1

ip.

If

pi

{
≤ (≥) 1

n , for i ≤
⌊

Sn(p)
n

⌋1/p

≥ (≤) 1
n , otherwise

where bxc represents the integer part of x, then we
have the inequality

E (Gp) ≥ (≤)
1
n

Sn (p) .

The proof follows by the inequality (4.13) on
choosing xi = pi and yi = ip, but we omit the
details.

For particular values of p, one may produce some
interesting particular inequalities.

If p = 1, then we have the inequality

E (G) ≥ (≤)
n + 1

2
provided

pi

 ≤ (≥) 1
n , i ≤

⌊
n+1

2

⌋
≥ (≤) 1

n , otherwise
.

For p = 2, then

E (G) ≥ (≤)
1
6

(n + 1) (2n + 1)

provided

pi

 ≤ (≥) 1
n , i ≤

⌊
1
6 (n + 1) (2n + 1)

⌋1/2

≥ (≤) 1
n , otherwise

.
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