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MONOTONICITY OF SEQUENCES INVOLVING GEOMETRIC
MEANS OF POSITIVE SEQUENCES WITH LOGARITHMICAL
CONVEXITY

FENG QI AND BAI-NI GUO

ABSTRACT. Let f be a positive function such that z[f(z +1)/f(z) — 1] is
increasing on [1,00), then the sequence { ¥/T[—, f(i)/f(n + 1)}20:1 is de-
creasing. If f is a logarithmically concave and positive function defined on
[1,00), then the sequence { ¥/T[1—; f(3)//f(n) } __, is increasing.

As consequences of these monotonicities, the lower and upper bounds for

the ratio \/H:l PARRAC / ntm HZ""kkrlm (7) of the geometric mean sequence

{ \/H:L+kk+l } ) are obtained, where k is a nonnegative integer and m

a natural number. Some applications are given.

1. INTRODUCTION

It is known that, for n € N, the following double inequality were given in [0]:

n

n n!

< <1,
n+1l " /(1)

(1)

which can be reaaranged as

1
™

[C(1+7)]7 < [D(2+ )7 (2)

and

L+ [P+
r r+1

3)
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In [1], the left inequality in (1) was refined by

n 1 — 1w v vn!
< | =) i ;" < — 4
n—+1 (n;Z /n—Fl;Z) n+1/(n+1)! (

for all positive real numbers r. Both bounds are the best possible.

~—

Using analytic method and Stirling’s formula, in [10, 14, 16, 17], for n,m € N

and k being a nonnegative integer, the author and others proved the following

inequalities:
1/n 1/(n+m
ntk+1 ntk \ Y ntmeek \ )< n+k
n+m+k+1< H ! H ’ “Van+m+k’ (5)
i=k—+1 i=k+1

the equality in (5) is valid for n = 1 and m = 1, which extend and refine those in
(1).

There is a rich literature on refinements, extensions, and generalizations of the
inequalities in (4), for examples, [2, 8, 9, 13, 19] and references therein. Note that
the inequalities in (4) are direct consequences of a conjecture which states that the
function (£ 0 i" /A5 S Y7 is decreasing with r. Please refer to [18].

In [11], using the ideas and method in [3, 5, 15] and the mathematical induction,

the following inequalities were obtained.

Theorem A. Let k be a nonnegative integer, n and m positive integers, and o €

[0,1] a constant. Then

1/n
n+k .
n+k+1+a < [Hi:k—i-l(z_"a)} - [ n+k+a ©)
n+m+k+1+a ntm4k }1/<“+m>— n+m+k+a

[Hi:k-H (i + )

Ifn =1 and m = 1, then the equality in the right hand side inequality of (6) holds.

In [12], Theorem A was generalized to the following

Theorem B. For all nonnegative integers k and natural numbers n and m, we

have

1

n+k . n
an+k+1)+b {Hi:kﬂ(mﬂLb)} <\/ a(n+k)+b
aln+m+k+1)+b ntm , wm  \a(n+m+k)+b’
20 i+ 0] ™

(7)

where a is a positive constant, and b is a nonegative constant. The equality in (7)

is valid forn =1 and m = 1.
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In [1], the following monotonicity results for the gamma function were estab-
lished: The function [I'(1 4 1)]* decreases with 2 > 0 and z[['(1 + 2)]* increases

with & > 0, which recover the inequalities in (1) which refer to integer values of

1
7. These are equivalent to the function [['(1 + z)]* being increasing and W

being decreasing on (0, 00), respectively. In addition, it was proved that the func-

tion z' 7Y [['(1 4 1)®] decreases for 0 < = < 1, where v = 0.57721566 - - - denotes the

[C(ta)]=
=7

Euler’s constant, which is equivalent to being increasing on (1, 00).

In [14], the following monotonicity result was obtained: The function

[[(z+y+1)/T(y+1)]/"
rz+y+1

(®)

is decreasing in > 1 for fixed y > 0. Then, for positive real numbers = and y, we

have

r+y+1l_ [Cl+y+1)/Ty+D]V"

tt+y+2 - T(@+y+2)/Ty+ /@D 9)

Inequality (9) extends and generalizes inequality (5), since I'(n + 1) = nl.

Definition 1 ([7, p. 7]). A positive function f: I — R, I an interval in R, is said
to be logarithmically convex (log-convex, multiplicatively convex) if In f is convex,

or equivalently if for all z,y € I and all « € [0, 1],

flaz +(1—a)y) < f*(2) 7 (y). (10)

It is said to be logarithmically concave (log-concave) if the inequality in (10) is

reversed.

Remark 1. By f = expln f, it follows that a logarithmically convex function is
convex (but not conversely). This directly follows from (10), of course, since by the

arithmetic-geometric inequality we have

@) ) < af(z)+ (1 —a)f(y).

J. Pecari¢ told the author that a concave positive function is a logarithmically
concave one affirmatively.
In this article, we will further generalize the inequlaities in (7) and obtain the

following



4 F. QI AND B.-N. GUO

Theorem 1. Let f be an increasing, logarithmically conver and positive function

defined on [1,00). Then the sequence

(v=go)” w

is decreasing. As a consequence, we have the following

VITEE L £ o fntk+) 1)
T, p (i) T fn+m+k+1)
1=k+

where m 1s a natural number and k a nonnegative integer.

Corollary 1. Let {a;}2; be an increasing, logarithmically convex, and positive

' o0
vap!
{ - } (13)
(p41
n=1
is decreasing. As a consequence, we have the following

Vay! S _On+1
- )
"+m\'/ CLn+m! An4+m-+1

where m is a natural number and a,! is the sequence factorial defined by [];_, a;.

sequence, then the sequence

(14)

Theorem 2. Let f be a logarithmically concave and positive function defined on

VI f))
{ 7 } "

is increasing. As a consequence, we have the following

n n+k
Hz h1 f f(n+k)
(16)
ntm n+m+k n +m + k?
z k+1

where m is a natural number and k a nonnegative integer. The equality in (16) is

[1,00). Then the sequence

valid forn =1 and m = 1.

Corollary 2. Let {a;}52, be a logarithmically concave and positive sequence. Then

' o0
Vvap! } (
17)
{ n n=1
is increasing. Therefore, we have

Yay! an,
b
n+m /an+m Gptm

the sequence
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where m is a natural number and a,! is the sequence factorial defined by [}, a;.
The equality in (18) is valid forn =1 and m = 1.

At last, in Section 3, some applications of Theorem 1 and Theorem 2 are given
and an open problem is proposed.
Remark 2. It is well known that the left hand side term in (12) or (16) is a ratio

of two geometric means of sequence {f(7)}52;.

2. PROOFS OF THEOREM 1 AND THEOREM 2

Proof of Theorem 1. The monotonicity of the sequence (11) and inequality (12) are

n . 1/n n+1 . 1/(n+1)
f(i) f(i)
(,_1 f(n+1)> 2 <1:[1 f(n+2)> )

2

equivalent to the following

LR () S B < N ()
A E;lnf(n+1)2n+1;mf(n+2)’
n X~ f6) - f(@)
= n+1;1nf(n+2)§;1nm' (19)

Since Inz is concave on (0, 00), by definition of concaveness, it follows that, for
1<t <n,
i nf(i—i—l) n—z’—i—ln f@@)
n+1" f(n+2) n+1 f(n+2)

i fi+1) nm—i+t1  f(0)
Sln(owrl'f(rm%)+ nt1 'f(n+2)> (20)

i ifi+ 1)+ (n—i+1)f(%)
1< (n+1)f(n+2) )

Since f is logarithmically convex, we have f(n)f(n +2) > [f(n + 1)]2. Hence,

for all 1 <14 < mn, from the function f being increasing, we have

P f(n+2) ~ [Fn+ 0P >~ fn)[fn+1) — Fn -+ 2)
- s e
= (ntDf(n+2) ?2"1”1; D 1) > W —n (21)
o e MO
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if+1)+mn—i+1)f(E) _ (m+1)f(n+2)

= Ii6) =T+ )
ifG+1)+(n—i+1)f(©) f@@)
= (n+ 1) f(n+2) = Fn+1)

Combining the last line above with (20) yields

i fG+1) n—i+1 f@) f@@)
n+11nf(n+2) + n+1 1nf(n—|—2) Slnf(n—i—l)'

(22)

Summing up on both sides of (22) from 1 to n and simplifying reveals inequality

(19). The proof is complete. O

Proof of Theorem 2. The monotonicity of the sequence (15) and inequality (16) are

equivalent to the following

VITL ) VLS 6
NG

n+1

1 ¢ : 1 ‘
= E;lnf(z) - m;lnf(z) <

In f(n) —In f(n+1)]

| —

n+1

— (1 + i) Do fi) =Y mfi) < ”; 0 f(n) ~In f(n + 1)]

n+1 n—1 1 & .
oI f(n) - — 1nf(n+1)2;lz:;lnf(z). (23)

For n = 1, the equality in (23) holds.
Suppose inequality (23) is valid for some n > 1. Since, by the inductive hypoth-

esis
! nflnf(z’)— " lﬁ:lnf(i) L/t l)
n—i—liz1 T n41 n n+1
n |n+1 n—1 Inf(n+1)
< 1 — 1 1 _—
e E A e I A n+1
-2
:glnf(n)fn fn+1),
by induction, it is sufficient to prove
n— n+

%lnf(n)— 221nf(n+1)§ 22lnf(n+1)—glnf(n+2)
= nln f(n) <2nln f(n+1) —nln f(n + 2)
= In[f(n) f(n +2)] < In f2(n+ 1)
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— fn)f(n+2) < fA(n+1),

this follows from the logarithmic concaveness of the function f. The proof is com-

plete. O

Remark 3. If the function f in Theorem 1 is differentiable, then we can give the
following proof of Theorem 1 by Cauchy’s mean value theorem and mathematical

induction.

Proof of Theorem 1 under condition such that f being differentiable. The monotonic-

ity of the sequence (11) and inequality (12) are equivalent to

n n+1
%Zlnf(z) Zlnf >Inf(n+1)—Inf(n+2)
— mef ~Inf(n+1)>(n+1)[Inf(n+1)—Inf(n+2)]
= (n+2)lnf(n+1)—(n+1)Inf(n+2) < Zlnf (24)

For n = 1, inequality (24) can be rewritten as f(1)[f(3)]> > [f(2)]3. Since f is
logarithmically convex and increasing, we have f(1)f(3) > [f(2)]? and f(3) > f(2),
respectively. Therefore, inequality (24) holds for n = 1.

Suppose inequality (24) is valid for some n > 1. Then, by inductive hypothesis,
we have

o 1 J 0 fn+1
n+121nf {n21nf(z)}+(n+1)

i=1

n
>
“n+1

=mn+1)nfn+1)—nlnf(n+2).

fln+1)
n+1

(n+2)Inf(n+1)— (n+1)Inf(n+2)] +

hence, by induction, it is sufficient to prove the following
m+1)Inf(n+1)—nlnf(n+2) > (n+3)Inf(n+2)— (n+2)In f(n+3),
which can be rearranged as

(n+1)nfin+1)—Inf(n+2)]>(n+2)nf(n+2)—Inf(n+3)],
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further, since f is increasing,

Inf(n+2)—Inf(n+1)  n+2
Inf(n+3)—Inf(n+2) " n+1

IN

(25)

Using Cauchy’s mean values applied to g(z) = Inf(n + 1 + z) and h(z) =
In f(n+ 2+ z) for x € [0,1] in inequality (25), it follows that there exists a point
¢ € (0,1) such that

ffin+14+¢& f(n+2+¢) n+ 2

fn+1+€) f(n+2+¢) Sl

Since the positive function f is logarithmically convex and differentiable, then

[In f(z)] = J;l((gf)) is increasing. Thus

flln+1+§) < fln+2+¢)
fn+1+8) = f(n+2+¢)’
and then
F4148 [42+48 | _n+?
fln+148 ffn+2+¢ — n+1
Inequality (25) follows. The proof is complete. a

3. APPLICATIONS

3.1. The affine function f(z) = axz +b for 2 > —2, where a > 0 and b € R are
constants, is positive and logarithmically concave. From Theorem 2 applied to this

affine function, the right hand side inequality in (7) follows.

3.2. From procedure of the proof of Theorem 1 and noticing inequality (21), we

can establish the following more general results.

Theorem 3. Let f be a positive function such that z[% — 1] is increasing on

[1,00), then the sequence (11) decreases and inequality (12) holds.

Corollary 3. Let {a;}2, be a positive sequence such that {z[% — 1]}21 18

increasing, then the sequence (13) decreases and inequality (14) holds.

3.3.  The left hand side inequality in (7) follows from Corollary 3.
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3.4. Applying Theorem 3 or Corollary 3 to f(x) = T'(x+1) or a; = i! respectively

yields
ntl—i n n+k .
Hz;z (i + k) G . Hi:k—i-l(z!)
n+m, - ntm+l—i
(n+E+1)0 1 (26)
T ntmtk+1) [N (n+k+1+4)
Similarly, we have
Va1 el L (kg o
+\/m T (n+m+k+ 1)
YIS (DY k1) o
I ey - Bemr kDR
n n+k .
= 21— 1 I n
VIEE @00 paew -+ o0

n+n\L/HZL:+kn}rJ1rk((2Z _ 1)”) - [2(Tl +m + k) + 1]”

Where n and m are natural numbers and k a nonnegative integer.

3.5. In Corollary 1, considering the sequence {lna;}$2; is increasing, convex, and
positive, we obtain the following

Corollary 4. Let {a;}32, be an increasing convex positive sequence and A, =
%Z;;l a; an arithmetic mean. Then the sequence A, — an41 decreases. This gives

a lower bound for difference of two arithmetic means:

An - An+m Z anJrl - an+m+1a (30)
where m is a natural number.

3.6. In Corollary 2, considering the sequence {lna;}$2, is concave and positive,
we have

Corollary 5. Let {a;}32, be a concave positive sequence and A, = 237" a; an
arithmetic mean. Then the sequence A, — %+ increases. This implies an upper

bound for difference of two aithmetic means:

Ap — Apim < W’ (31)

where m is a natural number.
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3.7. For real numbers b > 1 and ¢ > 0 such that b > 2c¢, the function 22 + bz + ¢

is logarithmically concave and satisfies conditions of Theorem 3, then we have

n+k .
(n+k+12+bn+k+1)+c \/Hz+k+1 > +bi+c)

5 <
m+m+k+1)2+bn+m+k+1) +c n+r</1—[?+ﬁ1rk bt o)

< m+k)Z2+bn+k)+c
“V(n+m+E)2+bn+m+k)+c

(32)
where m is a natural number and k£ a nonnegative integer.

4. OPEN PROBLEM

In the final, we pose the following open problem.

Open Problem. For any positive real number z, define z! = z(z—1) - - - {z}, where
{z} = z—[2—1], and [z] denotes Gauss function whose value is the largest integer

not more than z. Let x > 0 and y > 0 be real numbers, then

r+1

w+y+1 ”{/x—l—y w+y

(33)
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