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MONOTONICITY OF SEQUENCES INVOLVING GEOMETRIC
MEANS OF POSITIVE SEQUENCES WITH LOGARITHMICAL

CONVEXITY

FENG QI AND BAI-NI GUO

Abstract. Let f be a positive function such that x
[
f(x + 1)/f(x) − 1

]
is

increasing on [1,∞), then the sequence
{

n
√∏n

i=1 f(i)
/
f(n + 1)

}∞
n=1

is de-

creasing. If f is a logarithmically concave and positive function defined on

[1,∞), then the sequence
{

n
√∏n

i=1 f(i)
/√

f(n)
}∞

n=1
is increasing.

As consequences of these monotonicities, the lower and upper bounds for

the ratio n
√∏n+k

i=k+1 f(i)
/

n+m
√∏n+k+m

i=k+1 f(i) of the geometric mean sequence{
n
√∏n+k

i=k+1 f(i)

}∞
n=1

are obtained, where k is a nonnegative integer and m

a natural number. Some applications are given.

1. Introduction

It is known that, for n ∈ N, the following double inequality were given in [6]:

n

n + 1
<

n
√

n!
n+1
√

(n + 1)!
< 1, (1)

which can be reaaranged as

[Γ(1 + r)]
1
r < [Γ(2 + r)]

1
r+1 (2)

and

[Γ(1 + r)]
1
r

r
>

[Γ(2 + r)]
1

r+1

r + 1
. (3)
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In [1], the left inequality in (1) was refined by

n

n + 1
<

(
1
n

n∑
i=1

ir
/

1
n + 1

n+1∑
i=1

ir

)1/r

<
n
√

n!
n+1
√

(n + 1)!
(4)

for all positive real numbers r. Both bounds are the best possible.

Using analytic method and Stirling’s formula, in [10, 14, 16, 17], for n, m ∈ N

and k being a nonnegative integer, the author and others proved the following

inequalities:

n + k + 1
n + m + k + 1

<

(
n+k∏

i=k+1

i

)1/n/(
n+m+k∏
i=k+1

i

)1/(n+m)

≤
√

n + k

n + m + k
, (5)

the equality in (5) is valid for n = 1 and m = 1, which extend and refine those in

(1).

There is a rich literature on refinements, extensions, and generalizations of the

inequalities in (4), for examples, [2, 8, 9, 13, 19] and references therein. Note that

the inequalities in (4) are direct consequences of a conjecture which states that the

function
(

1
n

∑n
i=1 ir

/
1

n+1

∑n+1
i=1 ir

)1/r is decreasing with r. Please refer to [18].

In [11], using the ideas and method in [3, 5, 15] and the mathematical induction,

the following inequalities were obtained.

Theorem A. Let k be a nonnegative integer, n and m positive integers, and α ∈

[0, 1] a constant. Then

n + k + 1 + α

n + m + k + 1 + α
<

[∏n+k
i=k+1(i + α)

]1/n

[∏n+m+k
i=k+1 (i + α)

]1/(n+m)
≤
√

n + k + α

n + m + k + α
. (6)

If n = 1 and m = 1, then the equality in the right hand side inequality of (6) holds.

In [12], Theorem A was generalized to the following

Theorem B. For all nonnegative integers k and natural numbers n and m, we

have

a(n + k + 1) + b

a(n + m + k + 1) + b
<

[∏n+k
i=k+1(ai + b)

] 1
n

[∏n+m+k
i=k+1 (ai + b)

] 1
n+m

≤

√
a(n + k) + b

a(n + m + k) + b
, (7)

where a is a positive constant, and b is a nonegative constant. The equality in (7)

is valid for n = 1 and m = 1.
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In [4], the following monotonicity results for the gamma function were estab-

lished: The function [Γ(1 + 1
x )]x decreases with x > 0 and x[Γ(1 + 1

x )]x increases

with x > 0, which recover the inequalities in (1) which refer to integer values of

r. These are equivalent to the function [Γ(1 + x)]
1
x being increasing and [Γ(1+x)]

1
x

x

being decreasing on (0,∞), respectively. In addition, it was proved that the func-

tion x1−γ [Γ(1+ 1
x )x] decreases for 0 < x < 1, where γ = 0.57721566 · · · denotes the

Euler’s constant, which is equivalent to [Γ(1+x)]
1
x

x1−γ being increasing on (1,∞).

In [14], the following monotonicity result was obtained: The function

[Γ(x + y + 1)/Γ(y + 1)]1/x

x + y + 1
(8)

is decreasing in x ≥ 1 for fixed y ≥ 0. Then, for positive real numbers x and y, we

have

x + y + 1
x + y + 2

≤ [Γ(x + y + 1)/Γ(y + 1)]1/x

[Γ(x + y + 2)/Γ(y + 1)]1/(x+1)
. (9)

Inequality (9) extends and generalizes inequality (5), since Γ(n + 1) = n!.

Definition 1 ([7, p. 7]). A positive function f : I → R, I an interval in R, is said

to be logarithmically convex (log-convex, multiplicatively convex) if ln f is convex,

or equivalently if for all x, y ∈ I and all α ∈ [0, 1],

f(αx + (1− α)y) ≤ fα(x)f1−α(y). (10)

It is said to be logarithmically concave (log-concave) if the inequality in (10) is

reversed.

Remark 1. By f = exp ln f , it follows that a logarithmically convex function is

convex (but not conversely). This directly follows from (10), of course, since by the

arithmetic-geometric inequality we have

fα(x)f1−α(y) ≤ αf(x) + (1− α)f(y).

J. Pečarić told the author that a concave positive function is a logarithmically

concave one affirmatively.

In this article, we will further generalize the inequlaities in (7) and obtain the

following
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Theorem 1. Let f be an increasing, logarithmically convex and positive function

defined on [1,∞). Then the sequence{
n
√∏n

i=1 f(i)
f(n + 1)

}∞
n=1

(11)

is decreasing. As a consequence, we have the following

n

√∏n+k
i=k+1 f(i)

n+m

√∏n+m+k
i=k+1 f(i)

≥ f(n + k + 1)
f(n + m + k + 1)

, (12)

where m is a natural number and k a nonnegative integer.

Corollary 1. Let {ai}∞i=1 be an increasing, logarithmically convex, and positive

sequence, then the sequence {
n
√

an!
an+1

}∞
n=1

(13)

is decreasing. As a consequence, we have the following
n
√

an!
n+m
√

an+m!
≥ an+1

an+m+1
, (14)

where m is a natural number and an! is the sequence factorial defined by
∏n

i=1 ai.

Theorem 2. Let f be a logarithmically concave and positive function defined on

[1,∞). Then the sequence {
n
√∏n

i=1 f(i)√
f(n)

}∞
n=1

(15)

is increasing. As a consequence, we have the following

n

√∏n+k
i=k+1 f(i)

n+m

√∏n+m+k
i=k+1 f(i)

≤

√
f(n + k)

f(n + m + k)
, (16)

where m is a natural number and k a nonnegative integer. The equality in (16) is

valid for n = 1 and m = 1.

Corollary 2. Let {ai}∞i=1 be a logarithmically concave and positive sequence. Then

the sequence {
n
√

an!
√

an

}∞
n=1

(17)

is increasing. Therefore, we have
n
√

an!
n+m
√

an+m!
≤
√

an

an+m
, (18)
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where m is a natural number and an! is the sequence factorial defined by
∏n

i=1 ai.

The equality in (18) is valid for n = 1 and m = 1.

At last, in Section 3, some applications of Theorem 1 and Theorem 2 are given

and an open problem is proposed.

Remark 2. It is well known that the left hand side term in (12) or (16) is a ratio

of two geometric means of sequence {f(i)}∞i=1.

2. Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. The monotonicity of the sequence (11) and inequality (12) are

equivalent to the following(
n∏

i=1

f(i)
f(n + 1)

)1/n

≥

(
n+1∏
i=1

f(i)
f(n + 2)

)1/(n+1)

,

⇐⇒ 1
n

n∑
i=1

ln
f(i)

f(n + 1)
≥ 1

n + 1

n+1∑
i=1

ln
f(i)

f(n + 2)
,

⇐⇒ n

n + 1

n+1∑
i=1

ln
f(i)

f(n + 2)
≤

n∑
i=1

ln
f(i)

f(n + 1)
. (19)

Since lnx is concave on (0,∞), by definition of concaveness, it follows that, for

1 ≤ i ≤ n,

i

n + 1
ln

f(i + 1)
f(n + 2)

+
n− i + 1

n + 1
ln

f(i)
f(n + 2)

≤ ln

(
i

n + 1
· f(i + 1)
f(n + 2)

+
n− i + 1

n + 1
· f(i)
f(n + 2)

)

= ln
(

if(i + 1) + (n− i + 1)f(i)
(n + 1)f(n + 2)

)
.

(20)

Since f is logarithmically convex, we have f(n)f(n + 2) ≥ [f(n + 1)]2. Hence,

for all 1 ≤ i ≤ n, from the function f being increasing, we have

f(n)f(n + 2)− [f(n + 1)]2 ≥ 1
n

f(n)[f(n + 1)− f(n + 2)]

⇐⇒ (n + 1)f(n + 2)
f(n + 1)

− 1 ≥ nf(n + 1)
f(n)

⇐⇒ (n + 1)f(n + 2)
f(n + 1)

− (n + 1) ≥ nf(n + 1)
f(n)

− n (21)

⇐⇒ (n + 1)f(n + 2)
f(n + 1)

− (n + 1) ≥ if(i + 1)
f(i)

− i
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⇐⇒ if(i + 1) + (n− i + 1)f(i)
f(i)

≤ (n + 1)f(n + 2)
f(n + 1)

⇐⇒ if(i + 1) + (n− i + 1)f(i)
(n + 1)f(n + 2)

≤ f(i)
f(n + 1)

.

Combining the last line above with (20) yields

i

n + 1
ln

f(i + 1)
f(n + 2)

+
n− i + 1

n + 1
ln

f(i)
f(n + 2)

≤ ln
f(i)

f(n + 1)
. (22)

Summing up on both sides of (22) from 1 to n and simplifying reveals inequality

(19). The proof is complete. �

Proof of Theorem 2. The monotonicity of the sequence (15) and inequality (16) are

equivalent to the following

n
√∏n

i=1 f(i)√
f(n)

≤
n+1

√∏n+1
i=1 f(i)√

f(n + 1)

⇐⇒ 1
n

n∑
i=1

ln f(i)− 1
n + 1

n+1∑
i=1

ln f(i) ≤ 1
2
[
ln f(n)− ln f(n + 1)

]
⇐⇒

(
1 +

1
n

) n∑
i=1

ln f(i)−
n+1∑
i=1

ln f(i) ≤ n + 1
2
[
ln f(n)− ln f(n + 1)

]
⇐⇒ n + 1

2
ln f(n)− n− 1

2
ln f(n + 1) ≥ 1

n

n∑
i=1

ln f(i). (23)

For n = 1, the equality in (23) holds.

Suppose inequality (23) is valid for some n > 1. Since, by the inductive hypoth-

esis

1
n + 1

n+1∑
i=1

ln f(i) =
n

n + 1

[
1
n

n∑
i=1

ln f(i)

]
+

ln f(n + 1)
n + 1

≤ n

n + 1

[
n + 1

2
ln f(n)− n− 1

2
ln f(n + 1)

]
+

ln f(n + 1)
n + 1

=
n

2
ln f(n)− n− 2

2
f(n + 1),

by induction, it is sufficient to prove

n

2
ln f(n)− n− 2

2
ln f(n + 1) ≤ n + 2

2
ln f(n + 1)− n

2
ln f(n + 2)

⇐⇒ n ln f(n) ≤ 2n ln f(n + 1)− n ln f(n + 2)

⇐⇒ ln[f(n)f(n + 2)] ≤ ln f2(n + 1)
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⇐⇒ f(n)f(n + 2) ≤ f2(n + 1),

this follows from the logarithmic concaveness of the function f . The proof is com-

plete. �

Remark 3. If the function f in Theorem 1 is differentiable, then we can give the

following proof of Theorem 1 by Cauchy’s mean value theorem and mathematical

induction.

Proof of Theorem 1 under condition such that f being differentiable. The monotonic-

ity of the sequence (11) and inequality (12) are equivalent to

1
n

n∑
i=1

ln f(i)− 1
n + 1

n+1∑
i=1

ln f(i) ≥ ln f(n + 1)− ln f(n + 2)

⇐⇒ 1
n

n∑
i=1

ln f(i)− ln f(n + 1) ≥ (n + 1)
[
ln f(n + 1)− ln f(n + 2)

]
⇐⇒ (n + 2) ln f(n + 1)− (n + 1) ln f(n + 2) ≤ 1

n

n∑
i=1

ln f(i). (24)

For n = 1, inequality (24) can be rewritten as f(1)[f(3)]2 ≥ [f(2)]3. Since f is

logarithmically convex and increasing, we have f(1)f(3) ≥ [f(2)]2 and f(3) ≥ f(2),

respectively. Therefore, inequality (24) holds for n = 1.

Suppose inequality (24) is valid for some n > 1. Then, by inductive hypothesis,

we have

1
n + 1

n+1∑
i=1

ln f(i) =
n

n + 1

[
1
n

n∑
i=1

ln f(i)
]

+
f(n + 1)

n + 1

≥ n

n + 1
[
(n + 2) ln f(n + 1)− (n + 1) ln f(n + 2)

]
+

f(n + 1)
n + 1

= (n + 1) ln f(n + 1)− n ln f(n + 2).

hence, by induction, it is sufficient to prove the following

(n + 1) ln f(n + 1)− n ln f(n + 2) ≥ (n + 3) ln f(n + 2)− (n + 2) ln f(n + 3),

which can be rearranged as

(n + 1)[ln f(n + 1)− ln f(n + 2)] ≥ (n + 2)[ln f(n + 2)− ln f(n + 3)],
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further, since f is increasing,

ln f(n + 2)− ln f(n + 1)
ln f(n + 3)− ln f(n + 2)

≤ n + 2
n + 1

. (25)

Using Cauchy’s mean values applied to g(x) = ln f(n + 1 + x) and h(x) =

ln f(n + 2 + x) for x ∈ [0, 1] in inequality (25), it follows that there exists a point

ξ ∈ (0, 1) such that

f ′(n + 1 + ξ)
f(n + 1 + ξ)

· f(n + 2 + ξ)
f ′(n + 2 + ξ)

≤ n + 2
n + 1

.

Since the positive function f is logarithmically convex and differentiable, then

[ln f(x)]′ = f ′(x)
f(x) is increasing. Thus

f ′(n + 1 + ξ)
f(n + 1 + ξ)

≤ f ′(n + 2 + ξ)
f(n + 2 + ξ)

,

and then

f ′(n + 1 + ξ)
f(n + 1 + ξ)

· f(n + 2 + ξ)
f ′(n + 2 + ξ)

≤ 1 <
n + 2
n + 1

.

Inequality (25) follows. The proof is complete. �

3. Applications

3.1. The affine function f(x) = ax + b for x > − b
a , where a > 0 and b ∈ R are

constants, is positive and logarithmically concave. From Theorem 2 applied to this

affine function, the right hand side inequality in (7) follows.

3.2. From procedure of the proof of Theorem 1 and noticing inequality (21), we

can establish the following more general results.

Theorem 3. Let f be a positive function such that x
[ f(x+1)

f(x) − 1
]

is increasing on

[1,∞), then the sequence (11) decreases and inequality (12) holds.

Corollary 3. Let {ai}∞i=1 be a positive sequence such that
{
i
[ai+1

ai
− 1

]}∞
i=1

is

increasing, then the sequence (13) decreases and inequality (14) holds.

3.3. The left hand side inequality in (7) follows from Corollary 3.
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3.4. Applying Theorem 3 or Corollary 3 to f(x) = Γ(x+1) or ai = i! respectively

yields

∏n
i=2(i + k)

n+1−i
n∏n+m

i=2 (i + k)
n+m+1−i

n+m

=
n

√∏n+k
i=k+1(i!)

n+m

√∏n+m+k
i=k+1 (i!)

≥ (n + k + 1)!
(n + m + k + 1)!

=
1∏m

i=1(n + k + 1 + i)
. (26)

Similarly, we have

n

√∏n+k
i=k+1(i!!)

n+m

√∏n+m+k
i=k+1 (i!!)

≥ (n + k + 1)!!
(n + m + k + 1)!!

, (27)

n

√∏n+k
i=k+1((2i)!!)

n+m

√∏n+m+k
i=k+1 ((2i)!!)

≥ [2(n + k + 1)]!!
[2(n + m + k + 1)]!!

, (28)

n

√∏n+k
i=k+1((2i− 1)!!)

n+m

√∏n+m+k
i=k+1 ((2i− 1)!!)

≥ [2(n + k) + 1]!!
[2(n + m + k) + 1]!!

. (29)

Where n and m are natural numbers and k a nonnegative integer.

3.5. In Corollary 1, considering the sequence {ln ai}∞i=1 is increasing, convex, and

positive, we obtain the following

Corollary 4. Let {ai}∞i=1 be an increasing convex positive sequence and An =
1
n

∑n
i=1 ai an arithmetic mean. Then the sequence An−an+1 decreases. This gives

a lower bound for difference of two arithmetic means:

An −An+m ≥ an+1 − an+m+1, (30)

where m is a natural number.

3.6. In Corollary 2, considering the sequence {ln ai}∞i=1 is concave and positive,

we have

Corollary 5. Let {ai}∞i=1 be a concave positive sequence and An = 1
n

∑n
i=1 ai an

arithmetic mean. Then the sequence An − an

2 increases. This implies an upper

bound for difference of two aithmetic means:

An −An+m ≤ an − an+m

2
, (31)

where m is a natural number.
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3.7. For real numbers b ≥ 1 and c ≥ 0 such that b2 > 2c, the function x2 + bx + c

is logarithmically concave and satisfies conditions of Theorem 3, then we have

(n + k + 1)2 + b(n + k + 1) + c

(n + m + k + 1)2 + b(n + m + k + 1) + c
≤

n

√∏n+k
i=k+1(i2 + bi + c)

n+m

√∏n+m+k
i=k+1 (i2 + bi + c)

≤

√
(n + k)2 + b(n + k) + c

(n + m + k)2 + b(n + m + k) + c
, (32)

where m is a natural number and k a nonnegative integer.

4. Open Problem

In the final, we pose the following open problem.

Open Problem. For any positive real number z, define z! = z(z−1) · · · {z}, where

{z} = z − [z − 1], and [z] denotes Gauss function whose value is the largest integer

not more than z. Let x > 0 and y ≥ 0 be real numbers, then

x + 1
x + y + 1

≤
x
√

x!
x+y
√

(x + y)!
≤
√

x

x + y
. (33)
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