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A CONCEPT OF SYNCHRONICITY ASSOCIATED WITH
CONVEX FUNCTIONS IN LINEAR SPACES AND

APPLICATIONS

S.S. DRAGOMIR

Abstract. A concept of synchronicity associated with convex functions in
linear spaces and a µCeby�ev type inequality are given. Applications for norms,
semi-inner products and for convex functions of several real variables are also
given.

1. Introduction

The Jensen inequality for convex functions plays a crucial role in the Theory of
Inequalities due to the fact that other inequalities such as that arithmetic mean-
geometric mean inequality, Hölder and Minkowski inequalities, Ky Fan�s inequality
etc. can be obtained as particular cases of it.
Let C be a convex subset of the linear space X and f a convex function on C: If

p = (p1; : : : ; pn) is a probability sequence and x = (x1; : : : ; xn) 2 Cn; then

(1.1) f

 
nX
i=1

pixi

!
�

nX
i=1

pif (xi) ;

is well known in the literature as Jensen�s inequality.
For re�nements of the Jesen inequality and applications related to Ky Fan�s

inequality, the arithmetic mean-geometric mean inequality, the generalised triangle
inequality, the f -divergence measures etc. see [1]-[7].
Assume that f : X ! R is a convex function on the real linear space X. Since

for any vectors x; y 2 X the function gx;y : R ! R; gx;y (t) := f (x+ ty) is convex
it follows that the following limits exist

r+(�)f (x) (y) := lim
t!0+(�)

f (x+ ty)� f (x)
t

and they are called the right(left) Gâteaux derivatives of the function f in the point
x over the direction y:
It is obvious that for any t > 0 > s we have

(1.2)
f (x+ ty)� f (x)

t
� r+f (x) (y) = inf

t>0

�
f (x+ ty)� f (x)

t

�
� sup

s<0

�
f (x+ sy)� f (x)

s

�
= r�f (x) (y) �

f (x+ sy)� f (x)
s
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2 S.S. DRAGOMIR

for any x; y 2 X and, in particular,

(1.3) r�f (u) (u� v) � f (u)� f (v) � r+f (v) (u� v)

for any u; v 2 X: We call this the gradient inequality for the convex function f: It
will be used frequently in the sequel in order to obtain various results related to
Jensen�s inequality.
The following properties are also of importance:

(1.4) r+f (x) (�y) = �r�f (x) (y) ;

and

(1.5) r+(�)f (x) (�y) = �r+(�)f (x) (y)

for any x; y 2 X and � � 0:
The right Gâteaux derivative is subadditive while the left one is superadditive,

i.e.,

(1.6) r+f (x) (y + z) � r+f (x) (y) +r+f (x) (z)

and

(1.7) r�f (x) (y + z) � r�f (x) (y) +r�f (x) (z)

for any x; y; z 2 X .
Some natural examples can be provided by the use of normed spaces.
Assume that (X; k�k) is a real normed linear space. The function f : X ! R,

f (x) := 1
2 kxk

2 is a convex function which generates the superior and the inferior
semi-inner products

hy; xis(i) := lim
t!0+(�)

kx+ tyk2 � kxk2

t
:

For a comprehensive study of the properties of these mappings in the Geometry of
Banach Spaces see the monograph [6].
For the convex function fp : X ! R, fp (x) := kxkp with p > 1; we have

r+(�)fp (x) (y) =

8<: p kxkp�2 hy; xis(i) if x 6= 0

0 if x = 0

for any y 2 X:
If p = 1; then we have

r+(�)f1 (x) (y) =

8<: kxk�1 hy; xis(i) if x 6= 0

+ (�) kyk if x = 0

for any y 2 X:
This class of functions will be used to illustrate the inequalities obtained in the

general case of convex functions de�ned on an entire linear space.
In the recent paper [9] the following re�nement and reverse of the Jensen in-

equality in terms of the gradient have been obtained:
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Theorem 1. Let f : X ! R be a convex function de�ned on a linear space X: Then
for any n-tuple of vectors x = (x1; :::; xn) 2 Xn and any probability distribution
p = (p1; :::; pn) 2 Pn we have the inequality

(1.8)
nX
k=1

pkr�f (xk) (xk)�
nX
k=1

pkr�f (xk)
 

nX
i=1

pixi

!

�
nX
i=1

pif (xi)� f
 

nX
i=1

pixi

!

�
nX
k=1

pkr+f
 

nX
i=1

pixi

!
(xk)�r+f

 
nX
i=1

pixi

! 
nX
i=1

pixi

!
� 0:

A particular case of interest is for f (x) = kxkp where (X; k�k) is a normed linear
space. Then for any p � 1; for any n-tuple of vectors x = (x1; :::; xn) 2 Xn and
any probability distribution p = (p1; :::; pn) 2 Pn with

Pn
i=1 pixi 6= 0 we have the

inequality

(1.9)
nX
i=1

pi kxikp �






nX
i=1

pixi







p

� p






nX
i=1

pixi







p�2

24 nX
k=1

pk

*
xk;

nX
j=1

pjxj

+
s

�






nX
i=1

pixi







2
35 � 0:

If p � 2 the inequality holds for any n-tuple of vectors and probability distribution.
Also, for any p � 1; for any n-tuple of vectors x = (x1; :::; xn) 2 Xn n f(0; :::; 0)g

and any probability distribution p = (p1; :::; pn) 2 Pn we have the inequality

(1.10) p

"
nX
k=1

pk kxkkp �
nX
k=1

pk kxkkp�2
*

nX
i=1

pixi; xk

+
i

#

�
nX
i=1

pi kxikp �






nX
i=1

pixi







p

:

Motivated by the above results we introduce in this paper a class of sequences
associated with convex functions in linear spaces and establish a µCeby�ev type
inequality and some new inequalities for convex functions. Applications for norms,
semi-inner products and for convex functions of several real variables are also given.

2. rf�Synchronicity

Consider f : X ! R a convex function on the linear spaceX:We also assume that
u = (u1; : : : ; un) and v = (v1; : : : ; vn) are two n�tuples of vectors with ui; vi 2 X;
i 2 f1; : : : ; ng :

De�nition 1. We say that v is rf�synchronous with u if

(2.1) r�f (uk) (vk � vj) � r+f (uj) (vk � vj)

for any k; j 2 f1; : : : ; ng : If the inequality is reversed in (2.1) for each k; j 2
f1; : : : ; ng ; then we say that v is rf�asynchronous with u:
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We notice that in general, if v is rf�asynchronous with u; this does not imply
that u is rf�synchronous with v:
As general examples of such convex functions we can consider f (x) = kxkp ;

p � 1 where (X; k�k) is a normed linear space. Since (see Introduction)

r�f (x) (y) = p kxkp�2 hy; xii for x; y 2 X with x 6= 0;

r�f (0) (y) =

8<: 0 if p > 1

�kyk if p = 1
; for y 2 X;

r+f (x) (y) = p kxkp�2 hy; xis for x; y 2 X with x 6= 0;

r+f (0) (y) =

8<: 0 if p > 1

kyk if p = 1
; for y 2 X;

where h�; �is is the superior semi-inner product and h�; �ii is the inferior semi-inner
product, then we can de�ne the following concepts of synchronicity for the two
n�tuples of vectors u = (u1; : : : ; un) and v = (v1; : : : ; vn) :
Let p � 1 and u; v 2 Xn be as above. We say that v is p�r�synchronous with

u if

(2.2) kukkp�2 hvk � vj ; ukii � kujk
p�2 hvk � vj ; ujis

for any k; j 2 f1; : : : ; ng :
We observe that for p 2 [1; 2) we should assume that uk 6= 0 for k 2 f1; : : : ; ng :

For p = 2; the equation (2.2) reduces to

(2.3) hvk � vj ; ukii � hvk � vj ; ujis for any k; j 2 f1; : : : ; ng :

If (X; k�k) is a smooth normed space, meaning that the norm is Gâteaux di¤er-
entiable on any x 2 X; x 6= 0 and if we denote by [�; �] the semi-inner product gen-
erating the norm k�k (see [6, pp. 19-20]), then the fact that v is p�r�synchronous
with u means that

(2.4) kukkp�2 [vk � vj ; uk] � kujkp�2 [vk � vj ; uj ]

for any k; j 2 f1; : : : ; ng : For p = 2; we have

(2.5) [vk � vj ; uk] � [vk � vj ; uj ] for any k; j 2 f1; : : : ; ng :

Moreover, if the norm k�k is generated by an inner product h�; �i ; then v is p �
r�synchronous with u means that

(2.6)
D
vk � vj ; kukkp�2 uk � kujkp�2 vj

E
� 0 for any k; j 2 f1; : : : ; ng

while for p = 2; it reduces to

(2.7) hvk � vj ; uk � uji � 0 for any k; j 2 f1; : : : ; ng ;

which is the concept of synchronous sequences in inner product spaces that has
been introduced in [13]. For some inequalities for synchronous sequences in inner
product spaces, see [13] and [14].
As some natural examples of synchronous sequences in inner product spaces, we

can consider the sequences fxigi2N and fAxigi2N where A : X ! X is a positive
linear operator on X; i.e., hAx; xi � 0 for any x 2 X:
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For a convex function f : X ! R we de�ne ~rf (�) (�) as

(2.8) ~rf (x) (y) := 1

2
[r�f (x) (y) +r+f (x) (y)] ;

where x; y 2 X:
We observe that for f as above, we have the homogeneity property :

(2.9) ~rf (x) (�y) = � ~rf (x) (y) for any x; y 2 X;
and any � 2 R.
The following inequality for r� f�synchronous sequences holds.

Theorem 2. Assume that v is r� f�synchronous with u and p = (p1; : : : ; pn) is
a probability distribution. Then

(2.10)
nX
i=1

pi ~rf (ui) (vi) �
nX

i;j=1

pipj ~rf (ui) (vj) :

Proof. Since r+ (�) (�) is subadditive in the second variable, then we have
(2.11) r+f (ui) (vi � vj) � r+f (ui) (vi)�r+f (ui) (vj)
for any i; j 2 f1; : : : ; ng :
Also, by the fact that r� (�) (�) is superadditive in the second variable, we have

that

(2.12) r�f (ui) (vi)�r�f (ui) (vj) � r�f (ui) (vi � vj)
for all i; j 2 f1; : : : ; ng :
Now, by (2.11), (2.12) and by the de�nition of r� f�synchronicity, we deduce

that
r�f (ui) (vi)�r�f (ui) (vj) � r+f (ui) (vi)�r+f (ui) (vj) ;

which is equivalent with

(2.13) r�f (ui) (vi) +r+f (ui) (vj) � r+f (ui) (vi) +r�f (ui) (vj)
for all i; j 2 f1; : : : ; ng :
Therefore, by multiplying (2.13) with pipj � 0 and summing over i and j from

1 to n; we get

(2.14)
nX
i=1

pir�f (ui) (vi) +
nX
j=1

pjr+f (ui) (vj)

�
nX

i;j=1

pipjr+f (ui) (vi) +
nX

i;j=1

pipjr�f (ui) (vj) :

Now, observe that
nX
j=1

pjr+f (uj) (vj) =
nX
i=1

pir+f (ui) (vi)

and
nX

i;j=1

pipjr+f (uj) (vi) =
nX

i;j=1

pipjr+f (ui) (vj) ;

which, by (2.14) divided by 2, provides the desired result (2.10). �
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Corollary 1. With the assumptions of Theorem 2 and, if in addition ~rf (ui) (�)
is additive for any i 2 f1; : : : ; ng ; then we have

(2.15)
nX
i=1

pi ~rf (ui) (vi) �
nX

i;j=1

pipj ~rf (ui)

0@ nX
j=1

pjuj

1A :
Remark 1. If f is Gâteaux di¤erentiable at the points ui; i 2 f1; : : : ; ng ; then
~rf (ui) (�) = rf (ui) (�) and is therefore linear on X: With this assumption, the
inequality (2.15) holds with r instead of ~r: Moreover, there are examples of convex
functions de�ned on linear spaces for which ~rf (x) (�) is linear for any x 6= 0 without
the function f being Gâteaux di¤erentiable at that point (see [6, pp. 44-45]).

Following [15], we consider the g�semi-inner product h�; �ig : X�X ! R de�ned
by

hy; xig :=
1

2
[hy; xii + hy; xis] ; x; y 2 X:

Utilising this notation, we have the following conditional inequality for semi-inner
products and norms in normed linear spaces.

Proposition 1. Let (X; k�k) be a normed linear space, u = (u1; : : : ; un), v =
(v1; : : : ; vn) 2 Xn and p � 1: If

(2.16) kukkp�2 hvk � vj ; ukii � kujk
p�2 hvk � vj ; ujis

for any k; j 2 f1; : : : ; ng ; then

(2.17)
nX
k=1

pk kukkp�2 hvk; ukig �
nX

k;j=1

pkpj kukkp�2 hvj ; ukig

for any p a probability distribution. If p � 2; then we should have in (2.16) all
uk 6= 0: If p = 2 and
(2.18) hvk � vj ; ukii � hvk � vj ; ujis
for any k; j 2 f1; : : : ; ng ; then

(2.19)
nX
k=1

pk hvk; ukig �
nX

k;j=1

pkpj hvj ; ukig ;

for any p a probability distribution.

As a particular case of interest, we state the following result that holds in inner
product spaces.

Corollary 2. Let (X; h�; �i) be a real inner product space, u = (u1; : : : ; un), v =
(v1; : : : ; vn) 2 Xn and p � 1: If

(2.20)
D
vk � vj ; kukkp�2 uk � kujkp�2 vj

E
� 0

for any k; j 2 f1; : : : ; ng ; then

(2.21)
nX
k=1

pk kukkp�2 hvk; uki �
*

nX
j=1

pjuj ;
nX
k=1

pk kukkp�2 uk

+
for any p a probability distribution.
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Remark 2. We observe that if the n�tuples u and v above are synchronous, i.e.,

(2.22) hvk � vj ; uk � uji � 0 for any j; k 2 f1; : : : ; ng ;

then we have the following µCeby�ev type inequality

(2.23)
nX
k=1

pk hvk; uki �
*

nX
k=1

pkvk;
nX
k=1

pkuk

+
:

This result was �rst obtained in [13].

3. Inequalities for Convex Functions

The following result for convex functions may be stated:

Theorem 3. Let f : X ! R be a convex function on the linear space X and
x; y 2 Xn: Let p be a probability distribution so that

Pn
i=1 pixi =

Pn
i=1 piyi: If x�y

is ~r � f�synchronous with y and ~rf (yi) (�) is additive for each i 2 f1; : : : ; ng ;
then we have the inequality:

(3.1)
nX
i=1

pif (xi) �
nX
i=1

pif (yi) :

Proof. Since f is convex, then for any x; y 2 X we have

(3.2) f (x)� f (y) � r+f (y) (x� y) � ~rf (y) (x� y) :

Then from (3.2) we have the inequality:

(3.3) f (xi)� f (yi) � ~rf (yi) (xi � yi)

for each i 2 f1; : : : ; ng :
Now, if we multiply (3.3) with pi � 0 and then sum over i from 1 to n; we get

(3.4)
nX
i=1

pif (xi)�
nX
i=1

pif (yi) �
nX
i=1

pi ~rf (yi) (xi � yi) :

Now, if we use Corollary 1 for ui = yi and vi = xi � yi; i 2 f1; : : : ; ng ; we deduce
the inequality

nX
i=1

pi ~rf (yi) (xi � yi) �
nX
i=1

pi ~rf (yi)
 

nX
i=1

pi (xi � yi)
!

(3.5)

=
nX
i=1

pi ~rf (yi) (0) = 0:

Combining (3.4) with (3.5), we deduce the desired inequality (3.1). �

Remark 3. It is clear that if f is Gâteaux di¤erentiable at all the points yi; i 2
f1; : : : ; ng ; then ~rf (yi) (�) = rf (yi) (�) ; i 2 f1; : : : ; ng ; which are linear on X:

In the case of Gâteaux di¤erentiable functions, we can state the following result
as well.
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Theorem 4. Let f : X ! R be a convex and Gâteaux di¤erentiable function on
the linear space X: Assume that x; y 2 Xn and p is a probability distribution. If
x� y is ~r� f�synchronous with y and

nX
i=1

pixi �
nX
i=1

piyi 2
n\
i=1

ker (rf (yi) (�)) ;

then

(3.6)
nX
i=1

pif (xi) �
nX
i=1

pif (yi) :

The proof is as in that of Theorem 3 when in (3.5) we take into account that

rf (yi)
 

nX
i=1

pixi �
nX
i=1

piyi

!
= 0

for all i 2 f1; : : : ; ng since
nX
i=1

pixi �
nX
i=1

piyi 2
n\
i=1

ker (rf (yi) (�)) :

The following result in smooth normed linear spaces may be stated.

Proposition 2. Let (X; k�k) be a smooth normed linear space and let [�; �] be the
semi-inner product that generates its norm k�k : If x; y 2 Xn and p � 1 are such
that

(3.7) kykkp�2 [xk � yk � xj + yj ; yk] � kyjkp�2 [xk � yk � xj + yj ; yj ]
for any k; j 2 f1; : : : ; ng ; then for any probability distribution p with the property
that

(3.8)
nX
j=1

pjxj =
nX
j=1

pjyj

we have the inequality

(3.9)
nX
k=1

pk kxkkp �
nX
k=1

pk kykkp :

If p 2 [1; 2) we shall assume that yk 6= 0 for k 2 f1; : : : ; ng :
If p = 2 and

(3.10) [xk � yk � xj + yj ; yk] � [xk � yk � xj + yj ; yj ]
for any k; j 2 f1; : : : ; ng ; then for any probability distribution p satisfying (3.8),
we have

(3.11)
nX
k=1

pk kxkk2 �
nX
k=1

pk kykk2 :

The case of inner product spaces is incorporated in:

Corollary 3. Let (X; h�; �i) be an inner product space. If x; y 2 Xn and p � 1 are
such that

(3.12)
D
xk � xj ; kykkp�2 yk � kyjkp�2 yj

E
�
D
yk � yj ; kykkp�2 yk � kyjkp�2 yj

E
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for any k; j 2 f1; : : : ; ng ; then for any p satisfying (3.8), we have the inequality
(3.9).
If p 2 [1; 2); then we shall assume that yk 6= 0, k 2 f1; : : : ; ng :
If p = 2 and

(3.13) hxk � xj ; yk � yji � kyk � yjk2 for any k; j 2 f1; : : : ; ng

then for any p satisfying (3.8), we have the inequality (3.11).

4. Applications for Convex Functions on Rm

Now, consider an open and convex set C in the real linear space Rm; m � 1: For
a convex and di¤erentiable function f : C ! R, we have

(4.1) rf (x) (y) =
�
@f (x)

@x
; y

�
; x 2 C; y 2 Rm;

where
@f (x)

@x
=

�
@f (x)

@x1
; : : : ;

@f (x)

@xm

�
; x =

�
x1; : : : ; xm

�
2 C

and h�; �i is the usual inner product in Rm; i.e., hu; vi =
Pm

k=1 u
i � vi; where u =�

u1; : : : ; um
�
and v =

�
v1; : : : ; vm

�
2 Rm:

Now, if v := (v1; : : : ; vn) 2 Rm and u := (u1; : : : ; un) 2 Cm; then we say that v
is r� f�synchronous with u if

(4.2)
�
@f (uk)

@x
� @f (uj)

@x
; vk � vj

�
� 0 for any k; j 2 f1; : : : ; ng :

The following result may be stated.

Proposition 3. Let f : C ! R be a di¤erentiable convex function on the open
and convex set C � Rm: If v := (v1; : : : ; vn) 2 Rm and u := (u1; : : : ; un) 2 Cm
are such that v is r� f�synchronous with u, then for any probability distribution
p = (p1; : : : ; pn) ; we have the inequality

(4.3)
nX
i=1

pi

�
@f (ui)

@x
; vi

�
�
*

nX
i=1

pi
@f (ui)

@x
;
nX
i=1

pivi

+
:

The proof is obvious by Corollary 1.
Now, if uk =

�
u1k; : : : ; u

m
k

�
; k 2 f1; : : : ; ng and vk =

�
v1k; : : : ; v

m
k

�
; then

(4.4)
�
@f (uk)

@x
� @f (uj)

@x
; vk � vj

�
=

mX
`=1

�
@f (uk)

@x
� @f (uj)

@x

��
v`k � v`j

�
:

Remark 4. The above relation (4.4) shows that a su¢ cient condition for v to be
r�f�synchronous with u is that all the sequences

n
@f(uk)
@x`

o
k=1;:::;n

and
�
v`k
	
k=1;:::;n

are synchronous, where ` 2 f1; : : : ;mg ; i.e.,

(4.5)
�
@f (uk)

@x
� @f (uj)

@x

��
v`k � v`j

�
� 0 for any k; j 2 f1; : : : ; ng

and for all ` 2 f1; : : : ;mg :

The following result is an obvious consequence of Theorem 4.
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Proposition 4. Let f : C ! R be a di¤erentiable convex function on the open and
convex set C � Rm: If x = (x1; : : : ; xn) 2 Rm and y = (y1; : : : ; yn) 2 Cm are such
that

(4.6)
�
@f (yk)

@x
� @f (yj)

@x
; xk � xj

�
�
�
@f (yk)

@x
� @f (yj)

@x
; yk � yj

�
;

for each k; j 2 f1; : : : ; ng ; then for any probability distribution p = (p1; : : : ; pn)
with

(4.7)
nX
i=1

pixi =
nX
i=1

piyi

we have the inequality

(4.8)
nX
i=1

pif (xi) �
nX
i=1

pif (yi) :

Remark 5. As above, a su¢ cient condition for (4.6) to hold is that the sequencesn
@f(yk)
@x`

o
k=1;:::;n

and
�
x`k � y`k

	
k=1;:::;n

are synchronous for each ` 2 f1; : : : ;mg :
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