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Abstract

In this paper, we study the Hadamard’s inequality for midconvex and quasi-midconvex func-
tions in topological groups. A mapping naturally connected with this inequality and related
result is also pointed out. 1

1 Introduction

Let f : I −→ R be a convex mapping defined on the interval I of real numbers and a, b ∈ I with
a < b. The following double inequality:

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)
2

(1)

is known in the literature as Hadamard’s inequality for convex mapping. Note that some of the
classical inequalities for means can be derived from (1) for appropriate particular selections of the
mapping f .

In the paper [4] (see also [5] and [6]) is considered the following mapping naturally connected
with Hadamard’s results:

H : [0, 1] −→ R, H(t) =
1

b− a

∫ b

a

f

(
tx + (1− t)

a + b

2

)
dx.

The following properties of H hold:

(i) H is convex and monotonic nondecreasing.
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(ii) One has the bounds

sup
t∈[0,1]

H(t) = H(1) =
1

b− a

∫ b

a

f(x)dx

and

inf
t∈[0,1]

H(t) = H(0) = f

(
a + b

2

)
.

Another mapping also closely connected with Hadamard’s inequality is the following one [5] (see
also [6]):

F : [0, 1] −→ R, F (t) =
1

(b− a)2

∫ b

a

∫ b

a

f(tx + (1− t)y)dxdy.

The properties of this mapping are the following ones:

(i) F is convex and monotonic nonincreasing on [0, 1
2 ] and nondecreasing on [ 12 , 1];

(ii) F is symmetrical relating the element 1
2 . That is,

F (t) = F (1− t) for all t ∈ [0, 1];

(iii) One has the bounds

sup
t∈[0,1]

F (t) = F (0) = F (1) =
1

b− a

∫ b

a

f(x)dx

and

inf
t∈[0,1]

F (t) = F

(
1
2

)
=

1
(b− a)2

∫ b

a

∫ b

a

f

(
x + y

2

)
dxdy ≥ f

(
a + b

2

)
(iv) The following inequality holds:

F (t) ≥ max{H(t),H(1− t)} for all t ∈ [0, 1].

Generalization of (1) for quasi convex functions defined on the real line is also well-known. It
was established in [2] that for a quasi convex function f defined on [a, b] we have

f

(
a + b

2

)
≤ 2

b− a

∫ b

a

f(x)dx.

In this paper we shall study generalizations of the left side of (1) inequality for some convex functions
defined on an open subset of a topological group G.

2 A Secondary Result

Generalization of the left side of (1) for convex functions defined on a convex subset of Rn is well-
known. For example, if X ⊂ Rn is a convex bounded symmetrical set (the latter means that
x ∈ X =⇒ −x ∈ X), than (c.f. [8])

f(0) ≤ 1
µ(X)

∫
X

f(x)dx (2)

2



for each lower semicontinuous convex function f : X −→ R, where µ(X) is the volume of the set X.
To show (2), consider the transformation of the Rn in itself given by:

h : Rn → Rn, h = (h1, h2, · · · , hn),

and
hi(x1, x2, · · · , xn) = −xi, i = 1, 2, · · · , n.

Then h(X) = X and since

D(h1, h2, · · · , hn)
D(x1, x2, · · · , xn)

=

∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 · · · 0
0 −1 0 · · · 0
0 0 −1 · · · 0
...

...
...

...
0 0 0 · · · −1

∣∣∣∣∣∣∣∣∣∣∣
= (−1)n.

we have the change variable:∫
X

f(x1, x2, · · · , xn)dx1dx2 · · · dxn

=
∫

X

f (h1(x1, x2, · · · , xn), · · · , hn(x1, x2, · · · , xn))
∣∣∣∣D(h1, h2, · · · , hn)
D(x1, x2, · · · , xn)

∣∣∣∣ dx1dx2 · · · dxn

=
∫

X

f(−x1,−x2, · · · ,−xn)dx1dx2 · · · dxn.

Now, by the convexity of f on X we also have:

f(0, 0, · · · , 0) = f

(
x1 − x1

2
,
x2 − x2

2
, · · · ,

xn − xn

2

)
= f

(
(x1, x2, · · · , xn) + (−x1,−x2, · · · ,−xn)

2

)
≤ 1

2
[f(x1, x2, · · · , xn) + f(−x1,−x2, · · · ,−xn)]

which gives, by integration of f on X, that:∫
X

f(0, 0, · · · , 0)dx1dx2 · · · dxn

≤ 1
2

[∫
X

f(x1, x2, · · · , xn)dx1dx2 · · · dxn +
∫

X

f(−x1,−x2, · · · ,−xn)dx1dx2 · · · dxn

]
=

∫
X

f(x1, x2, · · · , xn).

Consequently, we get

f(0, 0, · · · , 0)µ(X) ≤
∫

X

f(x1, x2, · · · , xn)dx1dx2 · · · dxn

and thus
f(0, 0, · · · , 0) ≤ 1

µ(X)

∫
X

f(x1, x2, · · · , xn)dx1dx2 · · · dxn.
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3 Hadamard’s Inequality

In this section we prove the Hadamard’s inequality for midconvex and quasi-midconvex functions in
topological groups.

Let G be a topological group, and Ω is a nonempty open subset of G and f is a real-valued
function on Ω. We say that f is globally (right) midconvex if

2f(a) ≤ f(az) + f(az−1) (3)

for all a, z ∈ G such that a, az, az−1 ∈ Ω. Also, we say that f is locally (right) midconvex in a ∈ Ω
if there exists an open symmetric set V = V −1 from e such that

2f(a) ≤ f(az) + f(az−1) (4)

for all z ∈ G such that az, az−1 ∈ Ω [1]. Also, f is called quasi-(right)midconvex, if

f(az) ≤ max{f(a), f(az2)} (5)

for every a, z ∈ G so that a, az, az2 ∈ Ω [7]. Note that a is midpoint of az−1 and az, and az is
midpoint of a and az2.

Definition 1. Let Ω be an open subset of topological group G, and a ∈ G. Ω is said to
be symmetric relative to a, if a−1Ω is symmetric and e ∈ a−1Ω.

Definition 2. Let G be a topological group and Ω ⊂ G is an open set. A function ω : Ω −→ R
is called symmetric relative to a ∈ G, if

∀z ∈ G; az, az−1 ∈ Ω ω(az) = ω(az−1).

The following theorems hold:

Theorem 1. Let G be a locally compact group and Ω ⊂ G is an open symmetric set relative
to a ∈ G with 0 < µ(Ω) < ∞. If f : Ω −→ R is measurable and locally midconvex in a and
also, f ∈ L1(Ω), and ω : Ω −→ R is nonnegative and symmetric to a and ω ∈ L1(Ω) such that
fω ∈ L1(Ω), then

f(a)
∫

Ω

ω(az)dµ(z) ≤
∫

Ω

f(az)ω(az)dµ(z),

where that µ is Haar measure on G.

Proof. Since f is locally midconvex in a, so

2f(a) ≤ f(az) + f(az−1)

for any z ∈ Ω, by (4). Since ω is nonnegative and symmetric relative to a, thus

2f(a)ω(az) ≤ f(az)ω(az) + f(az−1) + ω(az)
= f(az)ω(az) + f(az−1) + ω(az−1).
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Integrating this inequality on Ω, we get∫
Ω

2f(a)ω(az)dµ(z) ≤
∫

Ω

f(az)ω(az)dµ(z) +
∫

Ω

f(az−1)ω(az−1)dµ(z)

=
∫

a−1Ω

f(z)ω(z)dµ(z) +
∫

a−1Ω

f(z−1)ω(z−1)dµ(z)

=
∫

G

f(z)ω(z)χa−1Ω(z)dµ(z) +
∫

G

f(z−1)ω(z−1)χa−1Ω(z)dµ(z)

=
∫

G

f(z)ω(z)χa−1Ω(z)dµ(z) +
∫

G

f(z−1)ω(z−1)χa−1Ω(z−1)dµ(z)

= 2
∫

G

f(z)ω(z)χa−1Ω(z)dµ(z).

= 2
∫

a−1Ω

f(z)ω(z)dµ(z).

Consequently, we have

f(a)
∫

Ω

ω(az)dµ(z) ≤
∫

Ω

f(az)ω(az)dµ(z).

�
Remark 1. If in the above theorem, set a = e and ω ≡ 1 on Ω, we have

f(e) ≤ 1
µ(Ω)

∫
Ω

f(z)dµ(z).

This result is similar result of section 2.

Theorem 2. Let G be a locally compact group and Ω ⊂ G is an open symmetric set relative
to a ∈ G with 0 < µ(Ω) < ∞ and e ∈ Ω. If f is measurable and quasi-midconvex real-valued
function on Ω such that f ∈ L2(Ω) and also, ω : Ω −→ R is a nonnegative and symetric to a and
ω ∈ L2(Ω), then

f(a)
∫

Ω

ω(az)dµ(z) ≤
∫

Ω

f(az)ω(az)dµ(z) + I(a) (6)

where
I(a) =

1
2

∫
Ω

|f(az)− f(az−1)|ω(az)dµ(z).

Furthermore, I(a) satisfies the inequalities:

0 ≤ I(a) ≤ min

{ ∫
Ω
|f(az)|ω(az)dµ(z),

1√
2

(∫
Ω

f2(az)dµ(z)−
∫
Ω

f(az)f(az−1)dµ(z)
) 1

2
(∫

Ω
ω2(az)dµ(z)

) 1
2

}
. (7)

Proof. Since Ω is symmetric set relative to a, thus for z in G, by (5), we have

f(a) ≤ max{f(az), f(az−1)}

where max{f(az), f(az−1)} = f(az)+f(az−1)+|f(az)−f(az−1)|
2 and since ω is nonnegative and symmet-

ric relative to a, therefore∫
Ω

f(a)ω(az)dµ(z) ≤ 1
2

∫
Ω

f(az)ω(az)dµ(z) +
1
2

∫
Ω

f(az−1)ω(az−1)dµ(z)

+
1
2

∫
Ω

|f(az)− f(az−1)|ω(az)dµ(z).

5



So,

f(a)
∫

Ω

ω(az)dµ(z) ≤
∫

Ω

f(az)ω(az)dµ(z) + I(a)

and the inequality (6) is proved.
We now observe that, by the Cauchy-Schwartz inequality,

0 ≤ I(a) =
1
2

∫
Ω

|f(az)− f(az−1)|ω(az)dµ(z)

≤ 1
2

(∫
Ω

(f(az)− f(az−1))2dµ(z)
) 1

2
(∫

Ω

ω2(az)dµ(z)
) 1

2

=
1
2

(∫
Ω

[
f2(az)− 2f(az)f(az−1) + f2(az−1)

]
dµ(z)

) 1
2

(∫
Ω

ω2(az)dµ(z)
) 1

2

=
1
2

(
2

∫
Ω

[f2(az)− f(az)f(az−1)]dµ(z)
) 1

2
(∫

Ω

ω2(az)dµ(z)
) 1

2

=
√

2
2

(∫
Ω

f2(az)dµ(z)−
∫

Ω

f(az)f(az−1)dµ(z)
) 1

2
(∫

Ω

ω2(az)dµ(z)
) 1

2

.

On the other hands,

I(a) ≤ 1
2

(∫
Ω

|f(az)|ω(az)dµ(z) +
∫

Ω

|f(az−1)|ω(az)dµ(z)
)

=
∫

Ω

|f(az)|ω(az)dµ(z)

and the inequality (7) is proved. �

Definition 3. The function f : Ω −→ R is said to be P-function in Ω, if

f(a) ≤ f(az) + f(az−1),

for all a ∈ Ω and z ∈ G such that az, az−1 ∈ Ω.

Theorem 3. Let G be a locally compact group and Ω ⊂ G is an open symmetric set relative
to a ∈ G with 0 < µ(Ω) < ∞. If f is measurable and P-function real-valued on Ω such that
f ∈ L1(Ω) and also, ω : Ω −→ R is nonnegative and symmetric to a and ω ∈ L1(Ω) such that
fω ∈ L1(Ω), then

f(a)
∫

Ω

ω(az)dµ(z) ≤ 2
∫

Ω

f(az)ω(az)dµ(z).

Proof. Since f is P -function, we have

f(a)ω(az) ≤ f(az)ω(az) + f(az−1)ω(az).

Integrating this inequality on Ω, we get∫
Ω

f(a)ω(az)dµ(z) ≤
∫

Ω

f(az)ω(az)dµ(z) +
∫

Ω

f(az−1)ω(az)dµ(z)

=
∫

Ω

f(az)ω(az)dµ(z) +
∫

Ω

f(az−1)ω(az−1)dµ(z)

= 2
∫

Ω

f(az)ω(az)dµ(z)
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Thus, f(a)
∫
Ω

ω(az)dµ(z) ≤ 2
∫
Ω

f(az)ω(az)dµ(z). �

Now, for a globally midconvex function f : G −→ R that e ∈ Ω, we can define the mapping
H : Ω −→ R,

H(x) =
1

µ(Ω)

∫
Ω

f(xz)dµ(z).

The properties of this mapping are embodied in the following theorem:

Theorem 4. Suppose that f : G −→ R is globally midconvex and Ω is an open symmetric
subset of G such that e ∈ Ω and 0 < µ(Ω) < ∞. Then

(i) The mapping H is globally midconvex on G, if G is abelian.

(ii) f(e) ≤ H(e).

Proof. (i) Assume that a, x, z ∈ G such that ax, ax−1 ∈ Ω, so

H(ax) + H(ax−1) =
1

µ(Ω)

∫
Ω

f(axz)dµ(z) +
1

µ(Ω)

∫
Ω

f(ax−1z)dµ(z)

=
1

µ(Ω)

∫
Ω

[
f(azx) + f(azx−1)

]
dµ(z)

≥ 2
µ(Ω)

∫
Ω

f(az)dµ(z)

= 2H(a)

that is, H is globally midconvex.

(ii) Since f is midconvex, by Theorem 1, f(e) ≤ 1
µ(Ω)

∫
Ω

f(z)dµ(z) = H(e). �

4 Applications

In this section, we study special cases of theorem 1, 2, and 3.
Set G = R. Since R is an abelian additive group, thus, for all a, z ∈ R, a− z and a+ z are points

that a is its midpoint. Now, if let a− z = x and a + z = y, then a = x+y
2 . Consequently, definitions

of globally midconvex and quasi-midconvex functions are to be written as follows:

f

(
x + y

2

)
≤ f(x) + f(y)

2
, (f globally midconvex)

f

(
x + y

2

)
≤ max{f(x), f(y)}. (f quasi midconvex)

Application 1. If in the Theorem 1 let G = R and Ω = [−a, a], we have

f(0)
∫ a

−a

ω(x)dx ≤
∫ a

−a

f(x)ω(x)dx,

and if we set ω ≡ 1 on [−a, a], we get

f(0) ≤ 1
2a

∫ a

−a

f(x)dx

7



that is special case of (2), where n = 1.

Application 2. If in the Theorem 1, let G = Rn with an additive operation and Ω = X is an
open bounded symmetric and convex subset of Rn, then the result of section 2 holds.
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