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ON WEIGHTED REMAINDER FORM OF HARDY-TYPE INEQUALITIES

PENG GAO

Abstract. We use different approaches to study a generalization of a result of Levin and Stečkin
concerning an inequality analogous to Hardy’s inequality. Our results lead naturally to the study
of weighted remainder form of Hardy-type inequalities.

1. Introduction

Let p > 1 and lp be the Banach space of all complex sequences a = (an)n≥1. The celebrated
Hardy’s inequality [13, Theorem 326] asserts that for p > 1 and any a ∈ lp,

(1.1)
∞∑

n=1

∣∣∣ 1
n

n∑
k=1

ak

∣∣∣p ≤ ( p

p− 1

)p
∞∑

k=1

|ak|p.

Hardy’s inequality can be regarded as a special case of the following inequality:∣∣∣∣∣∣C · a
∣∣∣∣∣∣p

p
=

∞∑
n=1

∣∣∣ ∞∑
k=1

cn,kak

∣∣∣p ≤ Up

∞∑
n=1

|an|p,

in which C = (cn,k) and the parameter p > 1 are assumed fixed, and the estimate is to hold for all
complex sequences a ∈ lp. The lp operator norm of C is then defined as

||C||p,p = sup
||a||p≤1

∣∣∣∣∣∣C · a
∣∣∣∣∣∣

p
.

Hardy’s inequality thus asserts that the Cesáro matrix operator C = (cj,k), given by cj,k = 1/j, k ≤ j
and 0 otherwise, is bounded on lp and has norm ≤ p/(p − 1). (The norm is in fact p/(p − 1).)
Hardy’s inequality leads naturally to the study on lp norms of general matrices. For example, we
say a matrix A = (aj,k) is a weighted mean matrix if its entries satisfy aj,k = 0, k > j and

aj,k = λk/Λj , 1 ≤ k ≤ j; Λj =
j∑

i=1

λi, λi ≥ 0, λ1 > 0.

There are many studies on the lp operator norm of a weighted mean matrix and we refer the reader
to the articles [1]-[3], [6]-[11] and the references therein for more results in this area.

In this paper, we are interested in the following analogue of Hardy’s inequality, given as Theorem
345 of [13], which asserts that the following inequality holds for 0 < p < 1 and an ≥ 0 with cp = pp:

(1.2)
∞∑

n=1

( 1
n

∞∑
k=n

ak

)p
≥ cp

∞∑
n=1

ap
n.

It is noted in [13] that the constant cp = pp may not be best possible and a better constant was
indeed obtained by Levin and Stečkin [15, Theorem 61]. Their result is more general as they proved,
among other things, the following inequality ([15, Theorem 62]), valid for 0 < p ≤ 1/3, r ≤ p or
1/3 < p < 1, r ≤ 1 − 2p (note that this is given in [15] as 1/3 < p < 1, r ≤ (1 − p)2/(1 + p) but
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an inspection of the proof of Theorem 62 in [15] shows that they actually proved their result for
1/3 < p < 1, r ≤ 1− 2p, see especially the proof of Lemma 3 in the proof of Theorem 62 in [15] for
this) with an ≥ 0,

(1.3)
∞∑

n=1

1
nr

( ∞∑
k=n

ak

)p
≥ cp,r

∞∑
n=1

ap
n

nr−p
,

where the constant cp,r = (p/(1 − r))p is best possible (see for example, [12]). It follows that
inequality (1.2) holds for 0 < p ≤ 1/3 with the best possible constant cp = (p/(1− p))p.

The above result of Levin and Stečkin has been studied in [8] and [12]. In [8], a simple proof of
inequality (1.3) for the case 0 < r = p ≤ 1/3 is given. In [12], inequality (1.3) is shown to hold for
0 < r = p ≤ 0.346.

It is our goal in this paper to first generalize the above result of Levin and Stečkin. We make a
convention in this paper that for any integer k ≥ 1, ((k + 1)0 − k0)/0 = ln((k + 1)/k) and we shall
prove in Section 3 the following

Theorem 1.1. Let an > 0, 0 < p < 1. The following inequality holds for any number r satisfying
(2 + r)p ≤ 1,

(1.4)
∞∑

n=1

( 1
nr

∞∑
k=n

((k + 1)r − kr

r

)
ak

)p
≥

( p

1− rp

)p
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ap
n.

The above inequality reverses when p ≥ 1, 1/p − 2 ≤ r < 1/p or p < 0, 1/p − 2 ≤ r < 1/p. The
constant is best possible.

One can show following the construction in [12] that the constant in (1.4) is best possible. We
let q be the number defined by 1/p + 1/q = 1 and note that by the duality principle (see [16]), the
statement of Theorem 1.1 is equivalent to the following

Theorem 1.2. Let an > 0, 0 < p < 1. The following inequality holds for any number r satisfying
(2 + r)p ≤ 1,

(1.5)
∞∑

n=1

(((n + 1)r − nr

r

) n∑
k=1

ak

kr

)q
≤

( p

1− rp

)q
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n=1

aq
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The above inequality also holds when p > 1, 1/p − 2 ≤ r < 1/p and the reversed inequality (1.5)
holds when p < 0, 1/p− 2 ≤ r < 1/p. The constant is best possible.

We now write r = α + β/p in Theorem 1.1 and note that for β ≤ 0, we have

nβ/p
((n + 1)α − nα

α

)
≥

((n + 1)α+β/p − nα+β/p

α + β/p

)
.

This combined with inequality (1.4) allows us to deduce the following (via a change of variables
an → n−β/pan)

Corollary 1.1. Let an ≥ 0, β ≤ 0 < α, 0 < p < 1. The following inequality holds for 0 < p ≤
(1− β)/(2 + α),

∞∑
n=1

1
nβ

( 1
nα

∞∑
k=n

(
(k + 1)α − kα

)
ak

)p
≥

( αp

1− β − αp

)p
∞∑

n=1

ap
n

nβ
.

The constant is best possible.

One can also deduce the cases 0 < p ≤ 1/3, r ≤ p or 1/3 < p < 1, r ≤ 1− 2p of inequality (1.2)
via similar transformations of inequality (1.4).

The case r = 0 in Theorem 1.1 implies the following
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Corollary 1.2. Let an ≥ 0. For 0 < p ≤ 1/2, we have
∞∑

n=1

( ∞∑
k=n

ln
(k + 1

k

)
ak

)p
≥ pp

∞∑
n=1

ap
n.

The constant is best possible.

Note that as ln((k + 1)/k) ≤ 1/k, Corollary 1.2 implies the following well-known Copson’s
inequality [13, Theorem 344] when 0 < p ≤ 1/2:

∞∑
n=1

( ∞∑
k=n

ak

k

)p
≥ pp

∞∑
n=1

ap
n.

Similarly, the case r = 0 in Theorem 1.2 implies the following

Corollary 1.3. Let an > 0. For −1 ≤ p < 0, we have
∞∑

n=1

(
ln

(n + 1
n

) n∑
k=1

ak

)p
≤

( p

p− 1

)p
∞∑

n=1

ap
n.

The constant is best possible.

We point out here that Corollary 1.3 implies the well-known Knopp’s inequality [14, Satz IV]
(which is inequality (1.1) with p < 0 and an > 0) when −1 ≤ p < 0.

We note that it is pointed out in [12] that inequality (1.2) can not hold for all 0 < p < 1 with the
constant cp being (p/(1− p))p. However, Levin and Stečkin [15, Theorem 61] was able to improve
the constant cp = pp for all 0 < p < 1 as their result is given in the following:

Theorem 1.3. Inequality (1.2) holds with cp being

cp =


(

p
1−p

)p
, 0 < p ≤ 1/3;

1
2

(
1+p
1−p

)1−p
, 1/3 < p ≤ 3/5;

2
(

p
3−p

)p
, 3/5 ≤ p < 1.

Our method in this paper allows us to give another proof of the above result. In fact, we shall
prove the following result in Section 4:

Theorem 1.4. Let 0 < p < 1, 0 < r ≤ p. Inequality (1.3) holds with cp,r with

c−1
p,r = (2− p + r)

( 1− p

1− p + 2r

)1−p
.

We note here the constant c−1
p,r in the statement of Theorem 1.4 is nothing but the constant

χ(r) defined in Lemma 5 in the proof of Theorem 62 in [15]. We now say a few words on how to
deduce Theorem 1.3 from Theorem 1.4, this is also given in Theorem 62 of [15]. First, it is easy to
show that for fixed p, c−1

p,r is minimized at r = (3 − 2p)(1 − p)/2p. When 1/3 ≤ p ≤ 3/5, we have
p ≤ (3 − 2p)(1 − p)/2p, hence on setting r = p in Theorem 1.4 implies the corresponding cases of
Theorem 1.3. When 3/5 ≤ p < 1, we have p ≥ (3− 2p)(1− p)/2p and a combination of Lemma 7
in the proof of Theorem 62 in [15] and setting r = (3 − 2p)(1 − p)/2p in Theorem 1.4 implies the
corresponding cases of Theorem 1.3.

Our method in proving Theorem 1.3 and Theorem 1.4 is more flexible and there is still room to
further improve the constant cp or cp,r, when they are not best possible. In this paper, we shall
only consider the constant c1/2 of the special case p = 1/2 in (1.2). It’s given as 1/

√
2 in [13] and

was improved to be
√

3/2 by Levin and Stečkin in [15]. The author has shown in [8] that one can
take c1/2 = 0.8967 but at that time he was not aware that Boas and de Bruijn [4] showed that
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15/17 ≈ 0.8824 < c1/2 < 1/1.08 ≈ 0.9259 and De Bruijn [5] showed that c1/2 ≈ 1/1.1064957714 ≈
0.90375. With less effort than de Bruijn’s analysis in [5], we shall use our approach in this paper
to show in Section 4 that we can take c1/2 to be 0.9, which coincides with the optimal c1/2 for the
first two decimal expansions. This is given in the following

Theorem 1.5. Inequality (1.4) holds when p = 1/2 with c1/2 = 0.9.

We note the following result:

Theorem 1.6. Let an > 0 and α > 0. Then for p < 0 or p ≥ 1 and αp > 1, we have

(1.6)
∞∑

n=1

( 1
nα

n∑
k=1

(kα − (k − 1)α)ak

)p
≤

( αp

αp− 1

)p
∞∑

k=1

ap
k.

The constant is best possible.

The special case p > 1, α ≥ 1, αp > 1 of inequality (1.6) was proved by the author in [6]. The
general cases of inequality (1.6) were proved by Bennett in [3].

It’s easy to show that we have, for α > 0, r ≥ 1, p ≥ 1 that when k ≥ 1,

k(1−r)/p
(kα − (k − 1)α

α

)
≤ kα+(1−r)/p − (k − 1)α+(1−r)/p

α + (1− r)/p
.

The above inequality reverses when p < 0. Replacing α with α+(1−r)/p in (1.6) and applying the
above inequality, we deduce immediately the following (via a change of variables an → n(r−1)/pan)
result ([3, Theorem 1]):

Corollary 1.4. Let an > 0. Suppose that α > 0 and r ≥ 1. Then for p < 0 or p ≥ 1 and αp > r,
we have

∞∑
n=1

nr−1
( 1

nα

n∑
k=1

(kα − (k − 1)α)ak

)p
≤

( αp

αp− r

)p
∞∑

k=1

kr−1ap
k.

The constant is best possible.

We point out here that we will present two proofs of Theorem 1.1 in Section 3. The first one can
be viewed as an analogue to Bennett’s proof of Theorem 1.6 and the second one is a generalization
of the proof of inequality (1.3) given in [15]. One then asks whether one can adapt the approach
used in the second proof of Theorem 1.1 to give another proof of Theorem 1.6 and this is indeed
possible as we will give an alternative proof of Theorem 1.6 in Section 5.

As it is pointed out in [3] that inequality (1.6) fails to hold when αp ≤ 1. One therefore wonders
whether there are any analogues of inequality (1.6) that hold when αp ≤ 1. For this we note that
it follows from Theorem 1.1 that the reversed inequality (1.4) holds when p ≥ 1 or p < 0 under
certain restrictions on r. One may view these reversed inequalities as the αp ≤ 1 analogues to
inequality (1.6). However, the duality principle also allows one to interpret these inequalities as
αp > 1 (with a different α) analogues to (1.6). To see this, we take the p > 1 case in Theorem
1.1 as an example and we use its dual version, Theorem 1.2 with p > 1, 1/p − 2 ≤ r < 1/p. We
interchange the variables p and q and replace r by −r to recast inequality (1.5) for this case as
(1/p− 1 < r ≤ 1 + 1/p):

∞∑
n=1

((n−r − (n + 1)−r

r

) n∑
k=1

krak

)p
≤

( p

(r + 1)p− 1

)p
∞∑

n=1

ap
n.

Note that the above inequality is analogue to inequality (1.6) in the sense that we have (r+1)p > 1
here. We can further recast the above inequality as

(1.7)
∞∑

n=1

((n−r − (n + 1)−r

r

)
(1 + r)

( n∑
i=1

ir
) 1∑n

i=1 ir

n∑
k=1

krak

)p
≤

( (r + 1)p
(r + 1)p− 1

)p
∞∑

n=1
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n.
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The above inequality and inequality (2.3) below imply immediately the following inequality for
an > 0, p > 1, 2 ≤ α ≤ 2 + 1/p:

(1.8)
∞∑

n=1

( 1∑n
i=1 iα−1

n∑
i=1

iα−1ai

)p
≤

( αp

αp− 1

)p
∞∑

n=1

ap
n.

The above inequality has been studied in [6], [3], [8], [10] and [11]. The author [6] and Bennett
[3] proved inequality (1.8) for p > 1, α ≥ 2 or 0 < α ≤ 1, αp > 1 independently. The author [8] has
shown that (1.8) holds for p ≥ 2, 1 ≤ α ≤ 1 + 1/p or 1 < p ≤ 4/3, 1 + 1/p ≤ α ≤ 2. Recently, the
author [11] has shown that inequality (1.8) holds for p ≥ 2, 0 ≤ α ≤ 1. In [10, Corollary 2.4], it is
shown that inequality (1.8) holds for α > 0, p < 0.

Other than the above point of view of the reversed inequality of (1.4) using the duality principle,
we may also regard the (reversed) inequality of (1.4) as a type of “weighted remainder form of
Hardy-type inequalities”, a terminology we use after Pečarić and Stolarsky, who studied a special
case of this type of inequalities in [17, Sec 3]. Theorem 1.1 thus leads naturally to the study of the
following weighted remainder form of Hardy-type inequalities in general:

(1.9)
∞∑

n=1

( ∞∑
k=n

λkak

Λn

)p
≤

( p

p− L

)p
∞∑

n=1

ap
n,

where (λn) is a positive sequence satisfying Λn =
∑∞

k=n λk < +∞ and L is a number such that
L < p when p > 0 and L > p when p < 0. We want the above inequality to hold for p > 1 or p < 0
and any positive sequence (an) satisfying

∑∞
n=1 ap

n < +∞. We also want the reversed inequality of
(1.9) to hold when 0 < p < 1. We shall study inequality (1.9) in Section 6. We shall find conditions
on the λn’s so that inequality (1.9) (or its reverse) can hold under these conditions.

2. A heuristic approach to inequality (1.4)

In this section, we first give a heuristic approach towards establishing inequality (1.4). This
approach will provide motivation and serve as a guideline for our proof of Theorem 1.1 later. In
fact, the approach we discuss here is in some sense a “natural” approach towards establishing
Hardy-type inequalities. For simplicity, we consider inequality (1.4) for 0 < p < 1, r > 0, rp < 1.
A general approach towards establishing the above inequality is to apply the reversed Hölder’s
inequality to get

(2.1)
( ∞∑

k=n

(
(k + 1)r − kr

)
ak

)p
≥

( ∞∑
k=n

W
1/(1−p)
k

)p−1( ∞∑
k=n

Wk

(
(k + 1)r − kr

)p
ap

k

)
,

where (Wk) is a sequence to be determined. A general discussion on Hardy-type inequalities in [11]
implies that one can in fact obtain the best possible constant on choosing Wk properly.

We now give a description of one choice for the Wk’s in (2.1). In fact, more naturally, we write(
(k + 1)r − kr

)
ak =

(
(k + 1)r − kr

)
k−γkγak, so that by the reversed Hölder’s inequality (and one

can reconstruct the Wk’s from this), we have

( ∞∑
k=n

(
(k + 1)r − kr

)
ak

)p
≥

( ∞∑
k=n

(
(k + 1)r − kr

)p/(p−1)
k−γp/(p−1)

)p−1( ∞∑
k=n

kγpap
k

)
,
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where γ < r − 1/p < 0 (this guarantees the finiteness of the two factors of the right-hand side
expressions above) is a parameter to be chosen later. Using this, we then have

∞∑
n=1

( 1
nr

∞∑
k=n

((k + 1)r − kr

r

)
ak

)p

≥
∞∑

n=1

( ∑∞
k=n

(
(k + 1)r − kr

)p/(p−1)
k−γp/(p−1)

)p−1( ∑∞
k=n kγpap

k

)
rpnrp

=
∞∑

k=1

ap
kk

γp
k∑

n=1

( ∑∞
i=n

(
(i + 1)r − ir

)p/(p−1)
i−γp/(p−1)

)p−1

rpnrp
.

Asymptotically, we have
∞∑

i=n

(
(i + 1)r − ir

)p/(p−1)
i−γp/(p−1)(2.2)

∼ rp/(p−1)
∞∑

i=n

i(r−1−γ)p/(p−1)

∼ rp/(p−1)n(r−1−γ)p/(p−1)+1

(γ + 1− r)p/(p− 1)− 1
.

It follows that asymptotically, we have

kγp
k∑

n=1

( ∑∞
i=n

(
(i + 1)r − ir

)p/(p−1)
i−γp/(p−1)

)p−1

rpnrp

∼ 1
((γ + 1− r)p/(p− 1)− 1)p−1

kγp
k∑

n=1

1
n1+γp

∼ − 1
((γ + 1− r)p/(p− 1)− 1)p−1

1
γp

.

We then want to choose γ so that the last expression above is maximized and calculation shows
that in this case we need to take γ = (rp − 1)/p2(< r − 1/p) and the so taken γ makes the value
of the last expression above being exactly the constant appearing on the right-hand side of (1.4).

The above approach can be applied to discuss inequality (1.5) similarly and in this case, we can
make our argument rigorous to give a proof of Theorem 1.2.

Proof of Theorem 1.2:
Due to the similarities of the proofs (taken into account the reversed inequality of (2.3)), we may

assume 0 < p < 1 here. By the reversed Hölder’s inequality, we have( n∑
k=1

ak

kr

)q
≤

( n∑
k=1

kγaq
k

krq

)( n∑
k=1

kγ/(1−q)
)q−1

, γ = 1/p + r/(p− 1).

It follows that
∞∑

n=1

(((n + 1)r − nr

r

) n∑
k=1

ak

kr

)q

≤
∞∑

k=1

kγaq
k

krq

∞∑
n=k

((n + 1)r − nr

r

)q( n∑
i=1

iγ/(1−q)
)q−1

.
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We now note the following inequality ([15, Lemma 2, p. 18]), which asserts for r ≥ 1, we have

(2.3)
n∑

i=1

ir ≥ r

1 + r

nr(n + 1)r

(n + 1)r − nr
.

The above inequality reverses when −1 < r ≤ 1 (only the case r ≥ 0 of the above inequality was
proved in [15] but one checks easily that the proof extends to the case r > −1).

When γ/(1− q) ≥ 1, which is equivalent to the condition (r + 2)p ≤ 0, we can apply estimation
(2.3) to get

(2.4)
n∑

i=1

iγ/(1−q) ≥ 1
1 + γ/(1− q)

( ∫ n+1

n
x−γ/(1−q)−1dx

)−1

This combines with (2.4) implies that

∞∑
n=1

(((n + 1)r − nr

r

) n∑
k=1

ak

kr

)q

≤
( 1

1 + γ/(1− q)

)q−1
∞∑

k=1

kγaq
k

krq

∞∑
n=k

( ∫ n+1

n
xr−1dx

)q( ∫ n+1

n
x−γ/(1−q)−1dx

)1−q

≤
( 1

1 + γ/(1− q)

)q−1
∞∑

k=1

kγaq
k

krq

∞∑
n=k

∫ n+1

n
xq(r−1)+(1−q)(−γ/(1−q)−1)dx

=
( 1

1 + γ/(1− q)

)q
=

( p

1− rp

)q
.

This completes the proof of Theorem 1.2.

3. Proof of Theorem 1.1

We shall give two proofs of the case 0 < p < 1 here and as we mentioned earlier, the first proof
can be viewed as an analogue to Bennett’s proof ([3, Theorem 1]) of Theorem 1.6 and the second
proof is a generalization of the proof of Theorem 62 in [15]. An inspection of the proofs shows that
they also work for the cases p ≥ 1 and p < 0 as well (taken into account the reversed inequality of
(2.3)). The first proof given below can also be viewed as a translation of the proof of Theorem 1.2
given in the previous section via duality. From now on in this section, we assume 0 < p < 1.

The first proof:
Our discussion in Section 2 suggests that if we take the approach there, then we should take an

auxiliary sequence (Wk) so that asymptotically, a similar expression would lead to something like
the last expression of (2.2). One can see in what follows that our selection of the auxiliary sequence
in the proof is then guided by this. By the reversed Hölder’s inequality, we have( ∞∑

k=n

((k + 1)r − kr

r

)
ak

)p
(3.1)

≥
( ∞∑

k=n

(
kr−1/p − (k + 1)r−1/p

))p−1
·
( ∞∑

k=n

((k + 1)r − kr

r

)p(
kr−1/p − (k + 1)r−1/p

)1−p
ap

k

)
= n(1−rp)(1−p)/p

∞∑
k=n

((k + 1)r − kr

r

)p(
kr−1/p − (k + 1)r−1/p

)1−p
ap

k.
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We then proceed as in Section 2 to see that
∞∑

n=1

( 1
nr

∞∑
k=n

((k + 1)r − kr

r

)
ak

)p

≥
∞∑

k=1

ap
k

((k + 1)r − kr

r

)p(
kr−1/p − (k + 1)r−1/p

)1−p
k∑

n=1

n1/p−(1+r).

It therefore suffices to show that

(3.2)
((k + 1)r − kr

r

)p(
kr−1/p − (k + 1)r−1/p

)1−p
k∑

n=1

n1/p−(1+r) ≥
( p

1− rp

)p
.

We now apply inequality (2.3) to see that in order for inequality (3.2) to hold, it suffices to show
that for n ≥ 1 (note that for (2 + r)p ≤ 1, 1/p− (1 + r) ≥ 1),((n + 1)r − nr

r

)p(nr−1/p − (n + 1)r−1/p

(1− rp)/p

)1−p
≥ n1+r−1/p − (n + 1)1+r−1/p

1/p− 1− r
.

We can recast the above inequality as

(3.3)
( ∫ n+1

n
xr−1dx

)p( ∫ n+1

n
xr−1/p−1dx

)1−p
≥

∫ n+1

n
xr−1/pdx.

Hölder’s inequality now implies the above inequality and this completes the first proof.
The second proof:
Similar to (2.1), we have

∞∑
n=1

( 1
nr

∞∑
k=n

((k + 1)r − kr

r

)
ak

)p

≥
∞∑

k=1

ap
k

((k + 1)r − kr

r

)p
Wk

k∑
n=1

1
nrp

( ∞∑
i=n

W
1/(1−p)
i

)p−1
.

We now choose Wk to be

Wk =
((k + 1)r − kr

r

)−p( k∑
i=1

iγ
)−1

, γ =
1− rp

p
− 1.

Using (2.3) and (3.3), we have

Wk ≤ (1 + γ)
( ∫ k+1

k
xr−1dx

)−p( ∫ k+1

k
x−γ−1dx

)
≤ (1 + γ)

( ∫ k+1

k
x−γ−2dx

)1−p
.

It follows that ((k + 1)r − kr

r

)p
Wk

k∑
n=1

1
nrp

( ∞∑
i=n

W
1/(1−p)
i

)p−1

≥ (1 + γ)−1
( k∑

i=1

iγ
)−1

k∑
n=1

1
nrp

( ∞∑
i=n

∫ i+1

i
x−γ−2dx

)p−1

= (1 + γ)−p =
( p

1− rp

)p
.

This now completes the second proof of Theorem 1.1.
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4. Proofs of Theorem 1.4 and Theorem 1.5

We first give the proof of Theorem 1.4 and we need a lemma:

Lemma 4.1. Let 0 < p < 1, 0 < r ≤ p, β ≥ 1 + 2r/(1− p). The function

fp,r,β(x) = x−1
(
(1 + x)β−r/(1−p) − (1 + x)−r/(1−p)

)
is an increasing function of 0 ≤ x ≤ 1.

Proof. We have f ′p,r,β(x) = x−2(1 + x)−r/(1−p)−1hp,r,β(x), where

hp,r,β(x) = 1 + x− (1 + x)β+1 +
x

1− p

(
(β(1− p)− r)(1 + x)β + r

)
.

We also have
1− p

1− p + r
h′p,r,β(x) = β

(β(1− p)− r

1− p + r

)
x(1 + x)β−1 −

(
(1 + x)β − 1

)
≥ 0,

where the last inequality above follows from the mean value theorem and our assumption on β. As
hp,r,β(0) = 0, it follows that hp,r,β(x) ≥ 0 for 0 ≤ x ≤ 1. We then deduce from this that fp,r,β(x) is
an increasing function of 0 ≤ x ≤ 1 and this completes the proof. �

We now return to the proof of Theorem 1.4 and by a change of variables, an → n(r−p)/pan, we
can recast inequality (1.3) as

(4.1)
∞∑

n=1

1
nr

( ∞∑
k=n

k(r−p)/pak

)p
≥ cp,r

∞∑
n=1

ap
n.

We follow the process in the first proof of Theorem 1.1 in Section 3, but this time, instead of using
kr−1/p− (k +1)r−1/p in (3.1), we use k−β − (k +1)−β , where β > 0 is a constant to be chosen later.
The same process then leads to inequality (4.1) with the constant cp,r given by

(4.2) min
k≥1

((
k−β − (k + 1)−β

)1−p
kr−p

k∑
n=1

nβ(1−p)−r
)
.

We note the following inequality ([15, Lemma 1, p. 18]), which asserts for 0 ≤ r ≤ 1, we have

(4.3)
n∑

i=1

ir ≥ n(n + 1)r

1 + r
.

We now assume r/(1− p) ≤ β ≤ (1 + r)/(1− p) so that 0 ≤ β(1− p)− r ≤ 1 and we can use the
bound (4.3) in (4.2) to see that

cp,r ≥ min
k≥1

f1−p
p,r,β(1/k)

1 + β(1− p)− r
,

where fp,r,β(x) is defined as in Lemma 4.1. We now take β = 1 + 2r/(1− p) and it is easy to verify
that the so chosen β satisfies r/(1− p) ≤ β ≤ (1 + r)/(1− p). It then follows from Lemma 4.1 that
mink≥1 f1−p(1/k) = limx→0+ f1−p(x) = β1−p = (1+2r/(1−p))1−p. This now leads to the constant
cp,r given in the statement of Theorem 1.4 and this completes the proof.

We now give the proof of Theorem 1.5. Again we follow the process in the first proof of Theorem
1.1 in Section 3 and similar to our proof of Theorem 1.4 above, instead of using kr−1/p−(k+1)r−1/p

in (3.1), we use k−β − (k + 1)−β , where β > 0 is a constant to be determined. The same process
then leads to inequality (1.2) with c1/2 = mink≥1 sk, where

sk =
(
k−β − (k + 1)−β

)1/2
k∑

n=1

n(β−1)/2.
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We want to choose β properly to maximize c1/2. On considering s1 and limk→+∞ sk, we see that

c1/2 ≥ min
(
(1− 2−β)1/2,

2β1/2

1 + β

)
.

Note that when β = 2, (1−2−2)1/2 =
√

3/2 and when β = 3, 2∗31/2/(1+3) =
√

3/2. As (1−2−β)1/2

is an increasing function of β while 2β1/2/(1+β) is a decreasing function of β ≥ 1, our calculations
above show that it suffices to consider 2 ≤ β ≤ 3. On setting (1 − 2−β)1/2 = 2β1/2/(1 + β), we
find that the optimal β is approximately 2.4739 and the value of (1− 2−β)1/2 or 2β1/2/(1 + β) at
this number is approximately 0.9055. This suggests that in order to maximize the value of c1/2, we
need to take β to be around 2.47. We now take β = 2.4 instead and use the bound (4.3) to see that

(
k−β − (k + 1)−β

)1/2
k∑

n=1

n(β−1)/2 ≥ 2
1 + β

u
1/2
β (1/k),

where
uβ(x) = x−1

(
(1 + x)β−1 − (1 + x)−1

)
.

We have u′β(x) = x−2(1 + x)−2vβ(x), where

vβ(x) = 1 + x− (1 + x)1+β + x(1 + (β − 1)(1 + x)β).

It’s easy to check that v′β(0) = 0 and that

v′′β(x) = β(1 + x)β−2(β − 3 + (β2 − β − 2)x).

It’s also easy to see that the last factor of the right-hand expression above is < 0 when β = 2.4
and 0 ≤ x ≤ 1/3. It follows that v′β(x) ≤ 0 when β = 2.4 and 0 ≤ x ≤ 1/3. As vβ(0) = 0, we
deduce that vβ(x) ≤ 0 when β = 2.4 and 0 ≤ x ≤ 1/3. This means that when β = 2.4, uβ(x) is a
decreasing function for 0 ≤ x ≤ 1/3.

Our discussions above combined with direct calculations now imply that

c1/2 ≥ min
( 2

1 + 2.4
u

1/2
2.4 (1/11) ≈ 0.9001, min

1≤k≤10
sk

)
≥ 0.9.

This completes the proof of Theorem 1.5.

5. Another proof of Theorem 1.6

By Hölder’s inequality, we have( n∑
k=1

(
kα − (k − 1)α

)
ak

)p
≤

( n∑
k=1

W
1/(1−p)
k

)p−1( n∑
k=1

Wk

(
kα − (k − 1)α

)p
ap

k

)
,

where (Wk) is a sequence to be determined later. It follows that
∞∑

n=1

( 1
nα

n∑
k=1

(
kα − (k − 1)α

)
ak

)p

≤
∞∑

k=1

ap
k

(
kα − (k − 1)α

)p
Wk

∞∑
n=k

1
nαp

( n∑
i=1

W
1/(1−p)
i

)p−1
.

We now choose Wk to be

Wk =
(
kα − (k − 1)α

)−p
( ∞∑

i=k

iγ
)−1

, γ = −αp− 1
p

− 1.
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We now note the following inequality ([3, (30)]) for k ≥ 1, γ > 1:

(5.1) (kγ − (k − 1)γ)
∞∑

n=k

1
nγ

≤ γ

γ − 1
.

The above estimation implies that

Wk ≥ α−p
( p

αp− 1

)−1(kα − (k − 1)α

α

)−p
∫ k

k−1
xα−1/pdx.

It follows that

Wk ≥ α−p
( p

αp− 1

)−1( ∫ k

k−1
xα−1dx

)−p
∫ k

k−1
xα−1/pdx

≥ α−p
( p

αp− 1

)−1( ∫ k

k−1
xα−1/p−1dx

)1−p
,

where the last inequality above follows from Hölder’s inequality. We then have( n∑
i=1

W
1/(1−p)
i

)p−1
≤ αp

( p

αp− 1

)( n∑
i=1

∫ i

i−1
xα−1/p−1dx

)p−1
= αp

( p

αp− 1

)p
n(α−1/p)(p−1).

We then deduce that(
kα − (k − 1)α

)p
Wk

∞∑
n=k

1
nαp

( n∑
i=1

W
1/(1−p)
i

)p−1

≤ αp
( p

αp− 1

)p( ∞∑
n=k

n−1−α+1/p
)−1

∞∑
n=k

n(α−1/p)(p−1)

nαp
=

( αp

αp− 1

)p
.

This now completes the proof of Theorem 1.6.

6. Weighted Remainder Form of Hardy-type Inequalities

In this section we study the weighted remainder form of Hardy-type inequalities in general. Let
(λn) be a positive sequence satisfying

∑∞
n=1 λn < +∞. We set in this section Λn =

∑∞
k=n λk and

consider inequality (1.9). As we mentioned earlier, our goal is to find conditions on the λn’s so that
inequality (1.9) (or its reverse) can hold under these conditions. Our approaches in this section
follow closely the approaches used in [7], [8] and [9]. We first let N be a large integer and for
1 ≤ n ≤ N , we set Sn =

∑N
k=n λkak and

(6.1) An =
∑N

k=n λkak

Λn
.

It follows from [6, (2.6)] that we have for 0 < p < 1, 1/p + 1/q = 1, 1 ≤ k ≤ N ,

(6.2) µkS
1/p
k − (µq

k − ηq
k)

1/qS
1/p
k+1 ≤ ηkλ

1/p
k a

1/p
k ,

where µq
k > ηq

k ≥ 0 and the above inequality reverses when p > 1. Here we define SN+1 = 0. Due
to similarities, we shall suppose 0 < p < 1 here and summing the above inequality from k = 1 to
N leads to

µ1S
1/p
1 +

N∑
k=2

(
µk − (µq

k−1 − ηq
k−1)

1/q
)
S

1/p
k ≤

N∑
n=1

ηnλ1/p
n a1/p

n .
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We now set ηi = λ
−1/p
i together with a change of variables µi → µiηi to recast the above inequality

as
µ1S

1/p
1

λ
1/p
1

+
N∑

k=2

( µk

λ
1/p
k

−
(µq

k−1 − 1)1/q

λ
1/p
k−1

)
S

1/p
k ≤

N∑
n=1

a1/p
n .

We further set µq
i − 1 = νi and make a further change of variables: p → 1/p to recast the above

inequality as
(1 + ν1)1−pSp

1

λp
1

+
N∑

k=2

((1 + νk)1−p

λp
k

−
ν1−p

k−1

λp
k−1

)
Sp

k ≤
N∑

n=1

ap
n.

We now set νi =
∑∞

n=i+1 wi/wi, where wn’s are positive parameters, to recast the above inequality
as

wp−1
1

λp
1

( ∞∑
i=1

wi

)1−p
Λp

1A
p
1 +

N∑
n=2

( ∞∑
k=n

wk

)−(p−1)(wp−1
n

λp
n
−

wp−1
n−1

λp
n−1

)
Λp

nAp
n ≤

N∑
n=1

ap
n.

By a change of variables wn → λnw
1/(p−1)
n , we can recast the above inequality as

w1

λ1

( ∞∑
i=1

λiw
1/(p−1)
i

Λ1

)1−p
Λ1A

p
1 +

N∑
n=2

(∑∞
k=n λkw

1/(p−1)
k

Λn

)−(p−1)(wn

λn
− wn−1

λn−1

)
ΛnAp

n ≤
N∑

n=1

ap
n.

With another change of variables, wn/wn−1 → bn with w0 = 1, we can further recast the above
inequality as

b1

λ1

(∑∞
k=1 λk

∏k
i=1 b

1/(p−1)
i

Λn

)−(p−1)
Λ1A

p
1(6.3)

+
N∑

n=2

(∑∞
k=n λk

∏k
i=n b

1/(p−1)
i

Λn

)−(p−1)( bn

λn
− 1

λn−1

)
ΛnAp

n ≤
N∑

n=1

ap
n.

We now choose the bn’s to satisfy:
∞∑

k=n

λk

k∏
i=n

b
1/(p−1)
i =

p

p− L
Λn.

From this we solve the bn’s to get

bn =
(
1− L

p

λn

Λn

)1−p
.

Upon requiring Λn(bn/λn−1/λn−1) ≥ 1−L/p (with 1/λ0 = 0) and letting N → +∞, we deduce
easily from (6.3) the p > 1 (and 0 < p < 1) cases of the following

Theorem 6.1. Let p 6= 0 be fixed and an > 0. Let L be a number satisfying L < p when p > 0 and
L > p when p < 0. Suppose that limn→∞ Λn+1(

∑∞
k=n+1 λkak/Λn+1)p/λn = 0 when p < 0. When

p > 1 or p < 0, if (with Λ0/λ0 = 1) for n ≥ 1,

(6.4)
Λn−1

λn−1
≤ Λn

λn

(
1− Lλn

pΛn

)1−p
+

L

p
,

then inequality (1.9) holds when p > 1 or p < 0. If the reversed inequality above holds when
0 < p < 1, then the reversed inequality of (1.9) also holds.

The case p < 0 of Theorem 6.1 follows from the same arguments above staring from inequality
(6.2), as it still holds for p < 0, except this time we substitute Sn by

∑∞
k=n λkak and An by∑∞

k=n λkak/Λn. In this case, we may assume
∑∞

k=n λkak/Λn < +∞, for otherwise, inequality (1.9)
holds automatically.

On taking Taylor expansion of the right-hand side expression of (6.4), we deduce easily from
Theorem 6.1 the following
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Corollary 6.1. Let p 6= 0 be fixed and an > 0. Let L be a number satisfying L < p when p > 0 and
L > p when p < 0. Suppose that limn→∞ Λn+1(

∑∞
k=n+1 λkak/Λn+1)p/λn = 0 when p < 0. When

p > 1 or p < 0, if (with Λ0/λ0 = 1) for n ≥ 1,

(6.5) L ≥ Λn−1

λn−1
− Λn

λn
,

then inequality (1.9) holds when p > 1 or p < 0. If the reversed inequality above holds when
0 < p < 1, then the reversed inequality of (1.9) also holds.

We now give an improvement of the above result:

Theorem 6.2. Let p 6= 0 be fixed and an > 0. Let L be a number satisfying L < p when p > 0 and
L > p when p < 0. Suppose that limn→∞ Λn+1(

∑∞
k=n+1 λkak/Λn+1)p/λn = 0 when p < 0. When

p ≥ 1 or p < 0, if (with Λ0/λ0 = 1) for n ≥ 1, inequality (6.5) holds, then for p ≥ 1,
∞∑

n=1

( ∞∑
k=n

λkak

Λn

)p
≤ p

p− L

∞∑
n=1

an

( ∞∑
k=n

λkak

Λn

)p−1
.

The above inequality reverses when p < 0. When 0 < p ≤ 1, the reversed inequality above also holds
if the reversed inequality (6.5) holds for all n ≥ 1.

Proof. We consider the cases p ≥ 1 and 0 < p ≤ 1 first. Due to similarities, we assume p ≥ 1 here.
We let N be a large integer and start with the inequality xp− px+ p− 1 ≥ 0, valid for x > 0, p ≥ 1
or p < 0 with the reversed inequality being valid for x > 0, 0 < p ≤ 1. On setting x = An+1/An,
1 ≤ n ≤ N with AN+1 = 0, where An, 1 ≤ n ≤ N is defined as in (6.1), we obtain

(6.6) Ap
n+1 + (p− 1)Ap

n ≥ pAn+1A
p−1
n .

Note that
An+1 =

ΛnAn

Λn+1
− λnan

Λn+1
.

Substituting this expression of An+1 on the right-hand side of (6.6), we obtain after some simplifi-
cations that (Λn

λn
+ p− 1

)
Ap

n −
(Λn

λn
− 1

)
Ap

n+1 ≤ panAp−1
n .

Summing the above inequality from n = 1 to N , we obtain

(6.7)
N∑

n=1

(Λn

λn
− Λn−1

λn−1
+ p

)
Ap

n ≤ p

N∑
n=1

anAp−1
n .

The assertion of the theorem for the cases p ≥ 1 now follows easily from the case N → +∞ of the
above inequality and inequality (6.5).

The case p < 0 of the assertion of the theorem follows from the same arguments above, except
this time we substitute An by

∑∞
k=n λkak/Λn. In this case, we may assume

∑∞
k=n λkak/Λn < +∞,

for otherwise, the assertion of the theorem holds automatically. �

When
∑∞

n=1 ap
n < +∞ and that

∑∞
n=1

( ∑∞
k=n λkak/Λn

)p
< +∞, then by Hölder’s inequality,

we have for p > 1,
∞∑

n=1

an

( ∞∑
k=n

λkak

Λn

)p−1
≤

( ∞∑
n=1

ap
n

)1/p( ∞∑
n=1

( ∞∑
k=n

λkak

Λn

)p)1/q
.

with the above inequality reversed when 0 6= p < 1 and from which one easily deduces the assertion
of Corollary 6.1. Note that when p > 0, one can also deduce the assertion of Corollary 6.1 without
assuming

∑∞
n=1

( ∑∞
k=n λkak/Λn

)p
< +∞. Since one can start with (6.7), repeat the argument

above and then let N → +∞.
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We now study the following so called weighted remainder form of Carleman-type inequality,
corresponding to the limiting case p → +∞ of inequality (1.9) (after a change of variables ap

n → an):

(6.8)
∞∑

n=1

( ∞∏
k=n

a
λk/Λn

k

)
≤ E

∞∑
n=1

an.

This is first studied by Pečarić and Stolarsky in [17, Sect 3]. Our starting point is the following
result of Pečarić and Stolarsky [17, (3.5)], which is an outgrowth of Redheffer’s approach in [18]:

(6.9)
N∑

n=1

Λn(bn − 1)Gn + G1Λ1 − ΛN+1GN+1 ≤
N∑

n=1

λnanbΛn/λn
n ,

where N is a large integer, b is any positive sequence and

Gn =
∞∏

k=n

a
λk/Λn

k .

We now make a change of variables λnanb
Λn/λn
n → an to recast inequality (6.9) as

N∑
n=1

Λn(bn − 1)
( ∞∏

k=n

λ
−λk/Λn

k

)( ∞∏
k=n

b
−Λk/Λn

k

)
Gn + G1Λ1

( ∞∏
k=1

λ
−λk/Λn

k

)( ∞∏
k=1

b
−Λk/Λn

k

)

−GN+1ΛN+1

( ∞∏
k=N+1

λ
−λk/ΛN+1

k

)( ∞∏
k=N+1

b
−Λk/ΛN+1

k

)
≤

N∑
n=1

an.

Now, a further change of variables bn → λn−1bn/λn with λ0 > 0 an arbitrary number allows us
to recast the above inequality as
(6.10)
Λ1b1G1

λ1

∞∏
k=1

b
−Λk/Λn

k +
N∑

n=2

Λn

( bn

λn
− 1

λn−1

)
Gn

∞∏
k=n

b
−Λk/Λn

k − ΛN+1GN+1

λN

∞∏
k=N+1

b
−Λk/ΛN+1

k ≤
N∑

n=1

an.

If we now choose the values of bn’s so that
∏∞

k=n b
−Λk/Λn

k = e−M , we then solve the bn’s to get
bn = eMλn/Λn and upon substituting these values for bn’s we obtain via (6.10):

(6.11)
Λ1

λ1
eMλ1/Λ1G1 +

N∑
n=2

Λn

(eMλn/Λn

λn
− 1

λn−1

)
Gn −

ΛN+1

λN
GN+1 ≤ eM

N∑
n=1

an.

We immediately deduce from (6.11) the following

Theorem 6.3. Suppose that limn→∞ Λn+1Gn+1/λn = 0 and that (with Λ0/λ0 = 1)

M = sup
n≥1

Λn

λn
log

(Λn−1/λn−1

Λn/λn

)
< +∞,

then inequality (6.8) holds with E = eM .

We note that

log
(Λn−1/λn−1

Λn/λn

)
= log

(
1 +

Λn−1/λn−1 − Λn/λn

Λn/λn

)
≤ Λn−1/λn−1 − Λn/λn

Λn/λn
.

It follows from this and Theorem 6.3 that we have the following

Corollary 6.2. Suppose that limn→∞ Λn+1Gn+1/λn = 0 and that (with Λ0/λ0 = 1)

M = sup
n≥1

(Λn−1

λn−1
− Λn

λn

)
< +∞,
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then inequality (6.8) holds with E = eM .

We now consider another choice for the bn’s in (6.10) by setting bn = e(Λn−1/λn−1−Λn/λn)/(Λn/λn)

with Λ0/λ0 = 1 and it follows from this and (6.10) that
N∑

n=1

(Λne(Λn−1/λn−1−Λn/λn)/(Λn/λn)

λn
− Λn−1

λn−1
+ 1

)
Gne

−
∑∞

k=n
λk
Λn

(
Λk−1
λk−1

−Λk
λk

)

−ΛN+1GN+1

λN
e
−

∑∞
k=N+1

λk
ΛN+1

(
Λk−1
λk−1

−Λk
λk

) ≤
N∑

n=1

an,

from which we deduce the following

Corollary 6.3. Suppose that limn→∞ Λn+1Gn+1/λn = 0 and that (with Λ0/λ0 = 1)

M = sup
n≥1

∞∑
k=n

λk

Λn
(
Λk−1

λk−1
− Λk

λk
) < +∞,

then inequality (6.8) holds with E = eM .

Note that the above corollary also implies Corollary 6.2. We now consider some applications of
our results above. When λn = nα− (n+1)α, −1 ≤ α < 0, by Lemma 1 (and property (iv) of fα(x)
defined there) of [3], we have for n ≥ 1,

(6.12)
nα

nα − (n + 1)α
− (n + 1)α

(n + 1)α − (n + 2)α
≤ 1

α
.

One can show also easily that 1−α ≥ 2−α for −1 ≤ α < 0 and that for fixed −1 ≤ α < 0. Moreover,
we have (n + 1)αGn+1/(nα − (n + 1)α) ≤ (n + 1)Gn+1/(−α), so that it follows from Corollary 6.2
that we have the following

Corollary 6.4. Let −1 ≤ α < 0 and assume that limn→∞ nGn = 0, then

(6.13)
∞∑

n=1

( ∞∏
k=n

a
(kα−(k+1)α)/nα

k

)
≤ e1/α

∞∑
n=1

an.

The constant is best possible.

By taking an = n−1−ε with ε → 0+, one shows that the constant in (6.13) is indeed best possible.
We note that inequality (6.12) is reversed when α ≤ −1 and we also have 1−α ≤ 2−α when α ≤ −1
and it follows from Corollary 6.1 that this gives another proof of the case r ≤ −1, 0 < p < 1 of
inequality (1.4). We point out that similar to the treatment in inequality (1.7), one can show the
case r ≤ −1, 0 < p < 1 of inequality (1.4) also follows from inequality (2.3) and the validity of
inequality (1.8) for α ≥ 2, p < 0.

When λn = nα, α < −1, it follows from (5.1) with γ = −α, we have for n ≥ 1,∑∞
i=n iα

nα
−

∑∞
i=n+1 iα

(n + 1)α
≥ 1

α + 1
.

Note that the case k = 1 of (5.1) with γ = −α also implies the reversed inequality (6.5) when n = 1
and it follows from Corollary 6.1 that we have the following

Corollary 6.5. Let α < −1 and an > 0, then for 0 < p < 1,

(6.14)
∞∑

n=1

( ∞∑
k=n

kαak∑∞
i=n iα

)p
≥

( (1 + α)p
(1 + α)p− 1

)p
∞∑

n=1

ap
n.

The constant is best possible.
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By taking an = n−1/p−ε with ε → 0+, one shows that the constant in (6.14) is indeed best
possible. We point out here that similar to the treatment for the p > 1 case of Theorem 1.1 given
in Section 1, we can recast inequality (6.14) via the duality principle as (by a change of variable
α → −α),

∞∑
n=1

( n∑
k=1

α

(α− 1)(kα − (k − 1)α)
∑∞

i=k i−α

(kα − (k − 1)α)ak

nα

)p
≤

( αp

αp− 1

)p
∞∑

n=1

ap
n.

Here we have α > 1 and p < 0. It is then easy to see that the above inequality (hence inequality
(6.14)) also follows from inequality (5.1) and the p < 0 case of inequality (1.6).
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