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Abstract: In this paper, we suggest the iterative algorithm for a variational inequality by using
the auxiliary principle technique, which is closely related to the optimal boundary control of
time-varying population system with age-dependence and spatial diffusion. We also prove the
convergence of iterative sequences generated by the algorithm.
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1 Introduction

In recent years, variational inequalities have been generalized and extended in many different direc-
tions using novel and innovative techniques to study wider classes of unrelated problems in mechanics,
physics, optimization and control, nonlinear programming, economics, regional, structural, transporta-
tion, elasticity, and applied sciences, etc., see [8, 9, 10, 11, 12, 13, 14], and the references therein. It is
well-known that projection method and its variant forms including the Wiener-Hopf equations, descent
methods can solve many kinds of variational inequalities. In these approaches, one has to evaluate the
projection or resolvent of the operator, which is itself a difficult problem. To overcome these difficulties,
Glowinski et al. [14] suggested another technique, which is called auxiliary principle technique. In 1999,
Huang et al. [13] modified and extended the auxiliary principle technique to study the existence of a so-
lution for a class of generalized set-valued strongly nonlinear implicit variational inequalities and suggest
some general iterative algorithms. Recently, Shi et al.[10] extended the auxiliary principle technique to
suggest and analyze a new predictor-corrector method for solving the generalized general mixed quasi
variational inequalities.

For given p(·) : L2(ΩT ) → V, zd ∈ L2(O̧) , consider the variational inequality problem of finding
u ∈ Uad, such that

〈p(u)− zd, p(v)− p(u)〉+ γ〈u, v − u〉 ≥ 0, ∀v ∈ Uad (1.1)

where Uad is a nonempty close convex subset in L2(ΩT ),Ω ⊂ R2, O̧ = O × Ω, O = (0, A) × (0, T ), and
ΩT = (0, T )× Ω.

The above mentioned variational inequality plays a significant role in economics, engineering me-
chanics, mathematical programming, transportation. The primary motivation of the research on this
variational inequality arises from the optimal boundary control problem of time-varying population sys-
tem with age-dependence and spatial diffusion. With the development of the agriculture and the industry,
the environment is becoming worse and worse. So a lot of attention is paid to the research topic on the
space-dependent population system growth, many biologist and mathematician have done a lot of re-
search on this problem, the mathematical model about the population system with age-dependence and
spatial diffusion is established ([1]). Based on this model, people have obtained many interesting and
important results on the existence, uniqueness and stability of the solution [2, 3, 4, 5, 6]. Recently, Chen
and Zhang [7] discusses the optimal boundary control problem of time-varying population system with
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age-dependence and spatial diffusion, obtain the equivalence between the optimal control and variational
inequality (1.1).

Inspired and motivated by recent research going on in this fascinating and interesting field, in this
paper, we suggest the iterative algorithm for a variational inequality by using the auxiliary principle
technique, which is closely related to the optimal boundary control of time-varying population system
with age-dependence and spatial diffusion. We also prove the convergence of iterative sequences generated
by the algorithm.

2 An algorithm for solving the variational inequality

Let H1(Ω) be one-order sobolev space on Ω, i.e.,

H1(Ω) =
{

ϕ

∣∣∣∣ϕ ∈ L2(Ω),
∂ϕ

∂xi
∈ L2(Ω)

}
.

Definition 2.1[1] V = L2(O,H1(Ω)) is a space in which every function is defined on Ω and satisfies∫
O

‖ Ψ(r, t, ·) ‖2
H1(Ω) drdt < +∞.

Definition 2.2 p(·) : L2(ΩT ) → V is said to be strongly monotone, if there exists α > 0 , such that

〈p(v)− p(u), v − u〉 ≥ α ‖ v − u ‖2, (2.1)

where 〈·, ·〉 denotes the inner product.
By using the auxiliary principle technique, we have the following algorithm for solving the variational

inequality (1.1).
Algorithm 2.1 For a given u0 ∈ Uad,compute the sequence {un} ⊂ Uad by the iterative scheme such

as

〈un+1, v − un+1〉 ≥ 〈un, v − un+1〉 − ρ〈p(un)− zd, p(v)− p(un+1)〉
+ργ〈un, un+1〉 − ργ〈un, v〉, ∀v ∈ Uad, n = 0, 1, 2. (2.2)

where ρ > 0 is a constant.
Theorem 2.1 Let p : L2(ΩT ) → V be Lipschitz continuous with a Lipschitz constant δ > 0 and

strongly monotone with a constant α > 0. If 0 < γ + δ
√

1− 2α + δ2 < α and

0 < ρ < min

{
1

γ + δ
√

1− 2α + δ2
,

2(α− γ − δ
√

1− 2α + δ2)
δ2 − (γ + δ

√
1− 2α + δ2)2

}
, (2.3)

Then the sequence {un} generated by algorithm 2.1 strongly converges to the solution of the variational
inequality (1.1).

Proof. By (2.2), for any v ∈ Uad ,

〈un, v − un〉 ≥ 〈un−1, v − un〉 − ρ〈p(un−1)− zd, p(v)− p(un)〉
+ργ〈un−1, un〉 − ργ〈un−1, v〉 (2.4)

and

〈un+1, v − un+1〉 ≥ 〈un, v − un+1〉 − ρ〈p(un)− zd, p(v)− p(un+1)〉
+ργ〈un, un+1〉 − ργ〈un, v〉 (2.5)

Taking v = un+1 in (2.4) and v = un in (2.5), respectively, we get

〈un, un+1 − un〉 ≥ 〈un−1, un+1 − un〉 − ρ〈p(un−1)− zd, p(un+1)− p(un)〉
+ργ〈un−1, un〉 − ργ〈un−1, un+1〉 (2.6)
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and

〈un+1, un − un+1〉 ≥ 〈un, un − un+1〉 − ρ〈p(un)− zd, p(un)− p(un+1)〉
+ργ〈un, un+1〉 − ργ〈un, un〉 (2.7)

Adding (2.6) and (2.7), we obtain

〈un+1 − un, un − un+1〉 ≥ 〈un − un−1, un − un+1〉 − ρ〈p(un)− p(un−1), p(un)− p(un+1)〉
+ργ〈un−1 − un, un〉 − ργ〈un − un−1, un+1〉

and so

〈un − un+1, un − un+1〉
≤ 〈un−1 − un, un − un+1〉 − ρ〈p(un−1)− p(un), p(un)− p(un+1)〉

+ργ〈un − un−1, un〉 − ργ〈un − un−1, un+1〉
≤ 〈un−1 − un − ρ(p(un−1)− p(un)), un − un+1〉

+ρ〈p(un−1)− p(un), un − un+1 − (p(un)− p(un+1))〉+ ργ〈un − un−1, un − un+1〉.

It follows that

‖ un − un+1 ‖2 ≤ ‖ un−1 − un − ρ(p(un−1)− p(un)) ‖‖ un − un+1 ‖
+ρ ‖ p(un−1)− p(un) ‖‖ un − un+1 − (p(un)− p(un+1)) ‖
+ργ ‖ un − un−1 ‖‖ un − un+1 ‖ . (2.8)

By the strong monotonicity and the Lipschitz continuity of p, we have

‖ un−1 − un − ρ(p(un−1)− p(un)) ‖2

= ‖ un−1 − un ‖2 −2ρ〈p(un−1)− p(un), un−1 − un〉+ ρ2 ‖ p(un−1)− p(un) ‖2

≤ (1− 2ρα + ρ2δ2) ‖ un−1 − un ‖2 . (2.9)

Since p is strongly monotone and Lipschitz continuous, it follow that

‖ un − un+1 − (p(un)− p(un+1)) ‖2

= ‖ un − un+1 ‖2 −2〈un − un+1, p(un)− p(un+1)〉+ ‖ p(un)− p(un+1) ‖2

≤ (1− 2α + δ2) ‖ un − un+1 ‖2 . (2.10)

It follows from (2.8)-(2.10) that

‖ un − un+1 ‖≤ θ ‖ un−1 − un ‖, (2.11)

where
θ =

√
1− 2ρα + ρ2δ2 + ρδ

√
1− 2α + δ2 + ργ.

Now we show that θ < 1 . From the condition (2.3), we have

ρ

(
δ2 −

(
γ + δ

√
1− 2α + δ2

)2
)

< 2
(
α− γ − δ

√
1− 2α + δ2

)
,

which implies

ρ2

(
δ2 −

(
γ + δ

√
1− 2α + δ2

)2
)

< 2ρ
(
α− γ − δ

√
1− 2α + δ2

)
From the above inequality, we have

1− 2ρα + ρ2δ2 < 1 + ρ2
(
γ + δ

√
1− 2α + δ2

)2

− 2ρ
(
γ + δ

√
1− 2α + δ2

)
.

i.e., √
1− 2ρα + ρ2δ2 < 1− ρ

(
γ + δ

√
1− 2α + δ2

)
.
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Thus it follows that θ < 1 .
Since θ < 1 , if follows from (2.11) that {un} is a Cauchy sequence in Uad,
let un → u, as n →∞ .
Thus

〈u, v − u〉 ≥ 〈u, v − u〉 − ρ〈p(u)− zd, p(v)− p(u)〉+ ργ〈u, u〉 − ργ〈u, v〉, ∀v ∈ Uad.

that is
〈p(u)− zd, p(v)− p(u)〉+ γ〈u, v〉 − γ〈u, u〉 ≥ 0, ∀v ∈ Uad.

3 Applications in the optimal control

To show the applications of the variational inequality (1.1), we considering the following problem.
Problem (p)

Dp − k(r, t)∆p + µ(r, t, x)p = 0, in O̧ = O × Ω (3.1)

p(0, t, x) =
∫ A

0

β(r, t, x)p(r, t, x)dr + v(t, x), in ΩT = (0, T )× Ω (3.2)

∂p

∂ηk
= kgradp · η = 0, in Σ = O × ∂Ω (3.3)

p(r, 0, x) = p0(r, x), in ΩA = (0, A)× Ω (3.4)

where D = ∂
∂r + ∂

∂t ,∆ is a Laplace operator, O = (0, A) × (0, T ), k(r, t) > 0 denotes the coefficient of
spatial diffusion, µ(r, t, x) ≥ 0 denotes the death rate of population systems, β(r, t, x) ≥ 0 denotes the
birth date of population systems, the condition (3.3) denotes no population system passes through the
boundary ∂Ω of Ω, η denotes extra-normal unit vector, p0(r, x) denotes the age-spatial density distribution
of population systems at t = 0.

Assume the ideal object zd(r, t, x) of the system is given, we consider the control problem of finding
v(t, x) such that ‖ p(v)− zd ‖ is as small as possible and ‖ v ‖ is also as small as possible,
where

‖ p(v)− zd ‖2=
∫
O̧
|p(r, t, x; v)− zd(r, t, x)|2dO̧, dO̧ = drdtdx,

‖ v ‖2=
∫

ΩT

|v(t, x)|2dtdx. (3.5)

Let

J(v) =‖ p(v)− zd ‖2 +γ ‖ v ‖2, γ > 0, (3.6)

then the control problem (3.5) is equivalent to finding u ∈ Uad such that

J(u) = inf
v∈Uad

J(v),

where {
u ∈ Uad(a nonempty closed convex subset in U)
U = L2(ΩT ).

Definition 3.1 [7] The function p(r, t, x) ∈ V is said to be a ideal solution, if for any ϕ ∈ φ , the equality∫
O̧

[p(−Dϕ) + µpϕ + k∇p · ∇ϕ]dO̧

=
∫

ΩA

p0(r, x)ϕ(r, 0, x)drdx +
∫

ΩT

[
∫ A

0

β(r, t, x)p(r, t, x)dr + v(t, x)]ϕ(0, t, x)dtdx

holds.
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Lemma 3.1 [7] If p(v) ∈ V is the solution of system (p), J(v) is defined by (2.6), then there exists a
unique u ∈ Uad such that

J(u) = inf
v∈Uad

J(v),

and u ∈ Uad satisfies the variational inequality (1.1), i.e., u ∈ Uad is the optimal control if and only if the
variatinal inequality (1.1) is satisfied.

Theorem 3.1 Let p : L2(ΩT ) → V be Lipschitz continuous with a Lipschitz constant δ > 0 and
strongly monotone with a constant α > 0 . If 0 < γ + δ

√
1− 2α + δ2 < α and

0 < ρ < min

{
1

γ + δ
√

1− 2α + δ2
,

2(α− γ − δ
√

1− 2α + δ2)
δ2 − (γ + δ

√
1− 2α + δ2)2

}
.

Then the sequence {un} generated by algorithm 3.1 strongly converges to the optimal boundary control
of problem (p).

Proof. Combining Theorem 2.1 and Lemma 3.1, we can obtain the required result immediately.

References

[1] Gurtin M E, A system of equations for age-dependent population diffusion, J. Theoret. Biol., 40
(1973), 389-392.

[2] Langlais M, A nonlinear problem in age-dependent population diffusion, SIAM J. Math. Anal., 16
(1985), 510-529.

[3] Kubo M and Langlais M, Periodic solution for a nonlinear population dynamics models with age
dependence and spatial structure, J. Diff. Eqs., 109 (1994), 274-294.

[4] Langlais M, Large time behavior in a nonlinear age-dependent population dynamics problem with
spatial diffusion, J. Math. Biol., 26 (1988), 319-346.

[5] Chan W L and Feng D X, Modeling and stability analysis of population growth with spatial diffu-
sion,J. Sys. Sic. and Math. Scis., 6 (1993), 341-354.

[6] Prato G and Lanneli M, Boundary control problem for age-dependent equations, Lecture Notes in
Pure and Applied Mathematics, 155(1994), 91-100.

[7] Chen R Z, Zhang D S and Li J Q, Existence and uniqueness of the solution and boundary control
for population systems with spatial diffusion, J. Sys. Sic. and Math. Scis., 22 (2002),1-13.

[8] Huang N J and Deng C X, Auxiliary principle and iterative algorithms for generalized set-valued
strongly nonlinear mixed variational -like inequalities, J. Math. Anal. and Appl., 256 (2001), 345-359.

[9] F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Prob-
lems, Springer Series in Operations Research, Springer-Verlag, 2003.

[10] C. F. Shi, S. Y. Liu and J. L. Lian, Predictor-Corrector methods for generalized general multivalued
mixed quasi variational inequalities, J. Inequal. Pure and Appl. Math., 4 (2003), Art. 38.

[11] B. S. He and L. Z. Liao, Improvement of some projection methods for monotone nonlinear variational
inequalities, J. Optim. Theory Appl., 112 (2002), 111-128.

[12] Y. J. Wang, N. H. Xiu and C.Y. Wang, Unified framework for extragradient-type methods for
pseudomonotone variational inequalities,J. Optim. Theory Appl., 111 (2001), 643-658.

[13] Y. J. Wang, N. H. Xiu and C.Y. Wang, A new version of extragradient method for variational
inequality problems, Comput. Math. Appl., 43 (2001), 969-979.

[14] R. Glowinski, J. L. Lions and R. Tremolieres, Numerical Analysis of Variational Inequalities,North-
Holland, Amesterdam, 1981.

5


