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FEJÉR-TYPE INEQUALITIES (I)

K.-L. TSENG, S.-R. HWANG, AND S.S. DRAGOMIR

Abstract. In this paper, we establish some new Fejér-type inequalities for

convex functions.

1. Introduction

Throughout this paper, let f : [a, b] → R be convex, and g : [a, b] → [0,∞) be
integrable and symmetric to a+b

2 . We define the following functions on [0, 1] that
are associated with the well known Hermite-Hadamard inequality [1]

(1.1) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)
2

,
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I (t) =
∫ b
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2

)
+ f
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t
x + b

2
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2
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g (x) dx;

J (t) =
∫ b

a
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2
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f
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t
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4

)
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M (t) =
∫ a+b
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2

)
+ f

(
t
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+
∫ b

a+b
2

1
2

[
f

(
t
a + b

2
+ (1− t)

x + a

2

)
+ f

(
tb + (1− t)

x + b

2

)]
g (x) dx;

and

N (t) =
∫ b

a

1
2

[
f

(
ta + (1− t)

x + a

2

)
+ f

(
tb + (1− t)

x + b

2

)]
g (x) dx.

For some results which generalize, improve, and extend the famous integral in-
equality (1.1), see [2] – [6].

In [2], Dragomir established the following theorem which is a refinement of the
first inequality of (1.1):
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Theorem A. Let f be defined as above, and let H be defined on [0, 1] by

H (t) =
1

b− a

∫ b

a

f

(
tx + (1− t)

a + b

2

)
dx.

Then H is convex, increasing on [0, 1] , and for all t ∈ [0, 1], we have

(1.2) f

(
a + b

2

)
= H (0) ≤ H (t) ≤ H (1) =

1
b− a

∫ b

a

f (x) dx.

In [6], Yang and Hong established the following theorem which is a refinement
of the second inequality in (1.1):

Theorem B. Let f be defined as above, and let P be defined on [0, 1] by

P (t) =
1

2 (b− a)

∫ b

a

[
f

((
1 + t

2

)
a +

(
1− t

2

)
x

)
+ f

((
1 + t

2

)
b +

(
1− t

2

)
x

)]
dx.

Then P is convex, increasing on [0, 1] , and for all t ∈ [0, 1], we have

(1.3)
1

b− a

∫ b

a

f (x) dx = P (0) ≤ P (t) ≤ P (1) =
f (a) + f (b)

2
.

In [3], Fejér established the following weighted generalization of the Hermite-
Hadamard inequality (1.1).

Theorem C. Let f, g be defined as above. Then

(1.4) f

(
a + b

2

) ∫ b

a

g (x) dx ≤
∫ b

a

f (x) g (x) dx ≤ f (a) + f (b)
2

∫ b

a

g (x) dx

is known as Fejér inequality.

In this paper, we establish some Fejér-type inequalities related to the functions
I, J,M,N introduced above.

2. Main Results

In order to prove our main results, we need the following lemma:

Lemma 1 (see [4]). Let f be defined as above and let a ≤ A ≤ C ≤ D ≤ B ≤ b
with A + B = C + D. Then

f (C) + f (D) ≤ f (A) + f (B) .

Now, we are ready to state and prove our results.

Theorem 2. Let f, g, I be defined as above. Then I is convex, increasing on [0, 1] ,
and for all t ∈ [0, 1], we have the following Fejér-type inequality

f

(
a + b

2

) ∫ b

a

g (x) dx = I (0) ≤ I (t) ≤ I (1)(2.1)

=
∫ b

a

1
2

[
f

(
x + a

2

)
+ f

(
x + b

2

)]
g (x) dx.



FEJÉR-TYPE INEQUALITIES 3

Proof. It is easily observed from the convexity of f that I is convex on [0, 1] . Using
simple integration techniques and under the hypothesis of g, the following identity
holds on [0, 1] ,

(2.2) I (t) =
∫ a+b

2

a

[
f

(
tx + (1− t)

a + b

2

)
+f

(
t (a + b− x) + (1− t)

a + b

2

)]
g (2x− a) dx.

Let t1 < t2 in [0, 1] . By Lemma 1, the following inequality holds for all x ∈
[
a, a+b

2

]
:

(2.3) f

(
t1x + (1− t1)

a + b

2

)
+ f

(
t1 (a + b− x) + (1− t1)

a + b

2

)
≤ f

(
t2x + (1− t2)

a + b

2

)
+ f

(
t2 (a + b− x) + (1− t2)

a + b

2

)
.

Indeed, it holds when we make the choice:

A = t2x + (1− t2)
a + b

2
,

C = t1x + (1− t1)
a + b

2
,

D = t1 (a + b− x) + (1− t1)
a + b

2

and

B = t2 (a + b− x) + (1− t2)
a + b

2

in Lemma 1.
Multipling the inequality (2.3) by g (2x− a), integrating both sides over x on[

a, a+b
2

]
and using identity (2.2), we derive I (t1) ≤ I (t2) . Thus I is increasing on

[0, 1] and then the inequality (2.1) holds. This completes the proof.

Remark 3. Let g (x) = 1
b−a (x ∈ [a, b]) in Theorem 2. Then I (t) = H (t) (t ∈ [0, 1])

and the inequality (2.1) reduces to the inequality (1.2) , where H is defined as in
Theorem A.

Theorem 4. Let f, g, J be defined as above. Then J is convex, increasing on [0, 1] ,
and for all t ∈ [0, 1], we have the following Fejér-type inequality

(2.4)
f

(
3a+b

4

)
+ f

(
a+3b

4

)
2

∫ b

a

g (x) dx = J (0) ≤ J (t) ≤ J (1)

=
1
2

∫ b

a

[
f

(
x + a

2

)
+ f

(
x + b

2

)]
g (x) dx.
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Proof. By using a similar method to that from Theorem 2, we can show that J is
convex on [0, 1] , the identity

(2.5) J (t) =
∫ 3a+b

4

a

[
f

(
tx + (1− t)

3a + b

4

)
+ f

(
t

(
3a + b

2
− x

)
+ (1− t)

3a + b

4

)
+ f

(
t

(
x +

b− a

2

)
+ (1− t)

a + 3b

4

)
+f

(
t (a + b− x) + (1− t)

a + 3b

4

)]
g (2x− a) dx

holds on [0, 1] and the inequalities

(2.6) f

(
t1x + (1− t1)

3a + b

4

)
+ f

(
t1

(
3a + b

2
− x

)
+ (1− t1)

3a + b

4

)
≤ f

(
t2x + (1− t2)

3a + b

4

)
+ f

(
t2

(
3a + b

2
− x

)
+ (1− t2)

3a + b

4

)
,

(2.7) f

(
t1

(
x +

b− a

2

)
+ (1− t1)

a + 3b

4

)
+ f

(
t1 (a + b− x) + (1− t1)

a + 3b

4

)
≤ f

(
t2

(
x +

b− a

2

)
+ (1− t2)

a + 3b

4

)
+ f

(
t2 (a + b− x) + (1− t2)

a + 3b

4

)
hold for all t1 < t2 in [0, 1] and x ∈

[
a, 3a+b

4

]
.

By (2.5) − (2.7) and using a similar method to that from Theorem 2, we can
show that J is increasing on [0, 1] and (2.4) holds. This completes the proof.

The following result provides a comparison between the functions I and J.

Theorem 5. Let f, g, I, J be defined as above. Then I (t) ≤ J (t) on [0, 1] .

Proof. By the identity

(2.8) J (t) =
∫ a+b

2

a

[
f

(
tx + (1− t)

3a + b

4

)
+ f

(
t (a + b− x) + (1− t)

a + 3b

4

)]
g (2x− a) dx

on [0, 1] , (2.2) and using a similar method to that from Theorem 2, we can show
that I (t) ≤ J (t) on [0, 1] . The details are omited.

Further, the following result incorporates the properties of the function M :
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Theorem 6. Let f, g,M be defined as above. Then M is convex, increasing on
[0, 1] , and for all t ∈ [0, 1], we have the following Fejér-type inequality

(2.9)
∫ b

a

1
2

[
f

(
x + a

2

)
+ f

(
x + b

2

)]
g (x) dx

= M (0) ≤M (t) ≤M (1) =
1
2

[
f

(
a + b

2

)
+

f (a) + f (b)
2

] ∫ b

a

g (x) dx.

Proof. Follows by the identity

(2.10) M (t) =
∫ 3a+b

4

a

[
f (ta + (1− t) x) + f

(
t
a + b

2
+ (1− t)

(
3a + b

2
− x

))
+f

(
t
a + b

2
+ (1− t)

(
x +

b− a

2

))
+ f (tb + (1− t) (a + b− x))

]
× g (2x− a) dx

on [0, 1]. The details are left to the interested reader.

We now present a result concerning the properties of the function N :

Theorem 7. Let f, g,N be defined as above. Then N is convex, increasing on
[0, 1] , and for all t ∈ [0, 1], we have the following Fejér-type inequality

(2.11)
∫ b

a

1
2

[
f

(
x + a

2

)
+ f

(
x + b

2

)]
g (x) dx

= N (0) ≤ N (t) ≤ N (1) =
f (a) + f (b)

2

∫ b

a

g (x) dx.

Proof. By the identity

(2.12) N (t) =
∫ a+b

2

a

[f (ta + (1− t)x) + f (tb + (1− t) (a + b− x))] g (2x− a) dx

on [0, 1] and using a similar method to that for Theorem 2, we can show that N is
convex, increasing on [0, 1] and (2.11) holds.

Remark 8. Let g (x) = 1
b−a (x ∈ [a, b]) in Theorem 7. Then N (t) = P (t)

(t ∈ [0, 1]) and the inequality (2.11) reduces to (1.3) where P is defined as in The-
orem B.

Theorem 9. Let f, g,M,N be defined as above. Then M (t) ≤ N (t) on [0, 1] .

Proof. By the identity

(2.13) N (t) =
∫ 3a+b

4

a

[
f (ta + (1− t) x) + f

(
ta + (1− t)

(
3a + b

2
− x

))
+ f (tb + (1− t) (a + b− x))

+f

(
tb + (1− t)

(
x +

b− a

2

))]
g (2x− a) dx

on [0, 1], (2.10) and using a similar method to that for Theorem 2, we can show
that M (t) ≤ N (t) on [0, 1] . This completes the proof.

The following Fejér-type inequality is a natural consequence of Theorems 2 – 9.
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Corollary 10. Let f, g be defined as above. Then we have

f

(
a + b

2

) ∫ b

a

g (x) dx ≤
f

(
3a+b

4

)
+ f

(
a+3b

4

)
2

∫ b

a

g (x) dx(2.14)

≤
∫ b

a

1
2

[
f

(
x + a

2

)
+ f

(
x + b

2

)]
g (x) dx

≤ 1
2

[
f

(
a + b

2

)
+

f (a) + f (b)
2

] ∫ b

a

g (x) dx

≤ f (a) + f (b)
2

∫ b

a

g (x) dx.

Remark 11. Let g (x) = 1
b−a (x ∈ [a, b]) in Corollary 10. Then the inequality

(2.14) reduces to

f

(
a + b

2

)
≤

f
(

3a+b
4

)
+ f

(
a+3b

4

)
2

≤ 1
b− a

∫ b

a

f (x) dx

≤ 1
2

[
f

(
a + b

2

)
+

f (a) + f (b)
2

]
≤ f (a) + f (b)

2
,

which is a refinement of (1.1).

Remark 12. In Corollary 10, the third inequality in (2.14) is the weighted gener-
alization of Bullen’s inequality [5]

1
b− a

∫ b

a

f (x) dx ≤ 1
2

[
f

(
a + b

2

)
+

f (a) + f (b)
2

]
.
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