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1 Introduction

There is a long and substantial history on approximation of the Riemann—Stieltjes integral, which precludes
other than a limited overview within the page limits of the present article. We note, for example, that the
seminal paper of Darst and Pollard [9], although not the first in the area, goes back nearly 40 years.

In considering the approximation of the Riemann—Stieltjes integral f; f (@) du(t) (a < b finite) by the
generalized trapezoid formula

[u(®) —u(@)]f ) +[u() —ula) fla), zelab], (1)

it is convenient to define the error functional

b
T (f,u;a,b; ) :=/ f (@) du(t) = [u(b) —u ()] £ (b) — [u(z) —u(a)l f(a).

Suppose that
(a) f:[a,b] = R is of bounded variation on [a, b], and
(b) w : [a,b] = R is of r — H-Holder type
(that is, |u (t) —u(s)| < H |t — s|" for any t,s € [a,b], where r € (0,1] and H > 0 are given).

In [15], the authors showed that if (a) and (b) hold, then
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where as usual VZ (f) denotes the total variation of f on the interval [a, b].

The dual case, in which f is of ¢ — K—Holder type and w of bounded variation, was treated in [5]. The
authors obtained the bound

T b
IT (f,u;a,b;z)| < Kl(w—a)q\/(u)+(b—w)q\/(u)]




for any z € [a, b].

The coresponding situations where bounded variation is replaced by monotonicity were considered by
Cheung and Dragomir in [8], while the cases in which one function was of Holder type and the other Lip-
schitzian were considered in [3]. For other recent results estimating the error T' (f, u; a, b, z) for absolutely
continuous integrands f and integrators u of bounded variation, see [6] and [4].

In seeking an Ostrowski type inequality for the Riemann—Stieltjes integral, Dragomir established the
following result in [10].

Theorem 1. Suppose (a) and (b) hold. Then for any x € [a,b],
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The dual case was considered in [13] and can be stated as follows.
Theorem 2. Let u: [a,b] = R be of bounded variation and f : [a,b] = R of r — H-Hélder type. Then
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for any z € [a,b].

Recently Mercer [19] has addressed the question of how z should be chosen in the general trapezoidal
formula (1) to provide an analogue and generalization of Hadamard’s inequality. He found that the choice
T = f; f(@®)du(t)/(b — a) is appropriate for the second Hadamard inequality. Our Theorem 4 gives a
shorter derivation of this result. Mercer’s generalization of mid—point quadrature, corresponding to the
first Hadamard inequality, appears as our Remark 6.

For some related Cebysev and Griiss type results, see Anastassiou [1], [2], Dragomir [11], [14], Dragomir
and Fedotov [16], [17], Zheng Liu [18] (which sharpens [16]) and Rakhmail [20].

In this paper we derive several broadly related results connected with the generalized trapezoid and
midpoint rules for the Riemann—Stieltjes integral. The situation of weighted Riemann integrals arises in
the special case when the integrator u possesses a derivative. This case, often pertinent to applications, is
treated in remarks. We begin in Section 2 with an inequality linking the integral means of two functions
over a common interval. This derives from a Cebysev—type inequality established for the Riemann-Stieltjes
integral and is a prelude to Section 3, in which a related result is proved involving a Riemann-Stieltjes
integral. Theorem 4 in Section 3 is concerned with an upper bound to the Riemann—Stieltjes integral. In
Section 4 we derive lower bounds involving subgradients.

2 Intertwining Means

Theorem 3. Let f,g: [a,b] = R, with f conver and g monotonic nondecreasing. If either
(i) g is concave and f(b) > f(a) or
(i) g is convex and f(b) < f(a),



then

b
= g(t)dt—g(a)]f(b)

> g(b (a / it @)

Proof. For h,u : [a,b] = R with h monotonic nondecreasing and u convex, we have the Cebysev-type

inequality
b _ b
/ h(t) du (t) > “(bl))_ Z(") / h(t) dt 3)
established in [12] for the Riemann—Stieltjes integral. This provides
’ f(b) — f(a) [
[a-na@ > O [oma

- (o) re-s@

for any z € [a, b].

Coupled with the equality

(b—2) £ (b) + (= — a) /f =/ (t— ) df (1

established for any z € [a,b] in [7], this gives

b
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for any z € [a,b].

Since g is monotonic nondecreasing, integrating (4) in the Riemann-Stieltjes sense over g leads to
b b
0 [ 0-2)dg@) + f()/ (v = a)dg (x /f

> ]/ (““’ x) 9(2). 5)

If (i) holds, then by (3)

/ab(“;”—x)dm) - f(m—"j”)d(—g(x))

s (. e),

and thus

b
s =@l [ (5 -2)doa) 20 ©
Similarly (6) holds under (ii).

By (5) and (6) we conclude that under (i) or (ii)

f(b)/ab(b—w)dg(ﬂf)+f(a)/ab(r—a)dg ) > [g (b /f
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and since
b b
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we derive the desired inequality (2). O

Remark 1. For the function g(t) =t, t € [a, b], which is both conver and concave, we obtain from (2) the
second part of the Hermite—Hadamard inequality

f(a+b)§ 1 /abf(t)dtgf(a)+f(b)

2 b—a 2
that holds for the convex function f : [a,b] = R.
Remark 2. Suppose g (t) = f(f w () ds with w (s) >0, s € [a,b]. Then if either
(i) f(b) > f(a) and w is decreasing, or

(i) f(b) < f(a) and w in increasing,
we have from Theorem 3 that

f(b)/b(t—a)w(s)ds+f(a)/b(b—t)w(s)dsZ/bw(s)ds-/bf(t)dt.

3 An Upper Bound for the R—S Integral

The following result is complementary to Theorem 3 and does not involve the supplementary conditions
(i), (ii). Theorem 4 is due to Mercer [19, Theorem 1]. Our proof is slightly shorter.

Theorem 4. Let f : [a,b] = R be convezr and g : [a,b] = R monotonic nondecreasing. Then

b b b
ﬂ@biaégumwwm)+ﬂwarj%;Lgmﬁ > [10awn. @
Proof. Since f is convex, we have for any ¢ € [a,b] that
(b—t)f(a;i—c(lt—a)f(b) >/ [(b—t)zi—((lt—a)b] — .
Integrating in the Riemann-Stieltjes sense with the integrator g, we have
b b b
bfg[f@{é<b—ﬂmnn+f®[l<r—@dﬂﬂ]z[;fmdgm. Q
However
b b
[ o-vdg)= [ gt~ -
and
b b
[ -0 =0-a50)- [ s@a
and by (8) we deduce the desired result (7). O

Remark 3. As noted by Mercer [19], if g (t) = t, then we get from (7) the second Hermite—Hadamard
inequality
fla)+ f(b) 1 / ’
> t) dt.
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Remark 4. If g (t) = f;w (s) ds, with w (s) >0 for s € [a,b], then

/abg(t)dt /:(/atw(s)ds)dt

= t/atw(s)dsb

—/abtw(t)dt

b w(s)ds—/bt'w(t)dt.

Therefore

and

In conclusion, we obtain from (7) that

fla)
b—a

b b b
/a (b—t)w(t)dt+lfﬂ / (t — Q)w(t)dt > / Fyw(t)dt, )

—a

where w is a positive integrable function on [a,b].

4 Lower Bounds for the R—S Integral

The results of this section involve subgradients.

Theorem 5. Let f : [a,b] = R be conver and g : [a,b] = R monotonic nondecreasing. Then for any
NE 7" (22) 74 (232)], we have

1 b a+b
i@ | 0ae-1("57)
b
A g(a)‘;g(b)(b_a)—/a g(t)dt]. (10)

Z 50 - 9(@)

Proof. Since f is convex, then for any ¢ € [a, b]

a+b a+b
- > - .
01552255
On integrating in the Riemann—Stieltjes sense with the monotone nondecreasing integrator g, we have
b b
a+b a+b
[10a0-1 ("5 a0 -s@] > A [ (-5 as0

M(b—a)—/bgu)dt] ,

A

2

which proves the desired inequality (10). O

Corollary 1. Let f and g be as in Theorem 5. If
(a) 0 € [f2(5*), £ ()], or



(b) 0 < f’ (%) and g is convex, or
(c) fi (%) <0 and g is concave,

then ;
a—+
ot [ w1 (43).

Remark 5. If g (t) = f:w (s)ds, t € [a,b] with w (s) > 0, then for any X € [f. (%£2), f} (%£2)] we have

ds/ fO)w)di= <a+b>
Sl

Theorem 6. Let f : [a,b] = R be a continuous conver function and u : [a,b] - R a monotonic
nondecreasing function on [a,b]. Then for any x € (a,b) and X (z) € [f' (2), f} (z)] , we have

b
/ f@Wdut) > [u®)-u@)]f (@)

b
A@) (b= 2)uld) + (@ — a)u (a) —/ w(t) dt] (1)

or, equivalently,
u(®) [f () = f@)]+ul@)]f(z)- f(a)]
b
A () V w(t)dt — (b—)u (b) — (w—a)u(a)]

b
> / w(t)df (2) . (12)

Proof. The function f, being convex, satisfies the gradient inequality
f(t)—f(z) 2 A(z)(t—=z) forany t€la,b], (13)
where A (z) € 9 (f) (@) = [/ (@), £} (2)].

Since the Stieltjes integral fab f () du (t) exists, we get on integrating (13) that
b

b
[HO-1@la®2r6 [ ¢-nao,

a

which, on observing that

b

/b(t—:c)du(t):(b—x)u(b)+(x—a)u(a)—/ w (t) dt

a

and ) )
[U®-r@lau=[ f0du-1@Wuo-u@),

leads to the desired inequality (11).

The integration by parts formula for the Stieltjes integral provides
b
[ r0duw - wo)-u@)f@
b
= u®)[f ) - f(@)]+u(a)[f(x) - f(a)] —/ u(t) df (),
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which leads to the equivalence of (11) and (12). d

Corollary 2. With the assumptions of Theorem 6 for f and u and X (%£2) € [f (2£2), f4 (22)], we
have the inequalities

fo@du@ > huw—u«Mf(a+b)

2
) (a—;b) u(a)-zku(b) (b—a)—/abu(t)dt]

and

b
z/uwww.

Remark 6. Since u is monotone nondecreasing, we have by the second mean—value theorem for integrals
that there ezists © = ¢ € [a, b] for which

b
b=2)u(d) + (@ —a)ula) :/ u(t) dt.

If u(b) > u(a), we have

_ bu(b) —au(a) — f;u (t) dt
’ u(®) — u(a)

and (11) provides

(14)

' (U —aua—bu
/fwmwzm@_wmfrw) (@)= ! @ﬂ_

u (b) — u (a)

This has been shown by Mercer [19], who uses it to give a lower bound for f: F@)du(t). Foru(t) =t, (14)
reduces to the lower Hadamard inequality

A?ﬂﬂﬁz(b—®f<a;b)

relating to mid—point quadrature.
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