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INTEGRAL INEQUALITIES OF GRÜSS TYPE VIA
PÓLYA-SZEGÖ AND SHISHA-MOND RESULTS

S.S. DRAGOMIR AND N.T. DIAMOND

Abstract. Integral inequalities of Grüss type obtained via Pólya-Szegö and

Shisha-Mond results are given. Some applications for Taylor’s generalised
expansion are also provided.

1. Introduction

For two measurable functions f, g : [a, b] → R, define the functional, which is
known in the literature as Chebychev’s functional

(1.1) T (f, g; a, b) :=
1

b− a

∫ b

a

f (x) g (x) dx− 1
(b− a)2

∫ b

a

f (x) dx ·
∫ b

a

g (x) dx,

provided that the involved integrals exist.
The following inequality is well known in the literature as the Grüss inequality

[11]

(1.2) |T (f, g; a, b)| ≤ 1
4

(M −m) (N − n) ,

provided that m ≤ f ≤ M and n ≤ g ≤ N a.e. on [a, b], where m,M,n,N are real
numbers. The constant 1

4 in (1.2) is the best possible.
Another inequality of this type is due to Chebychev (see for example [16, p.

207]). Namely, if f, g are absolutely continuous on [a, b] and f ′, g′ ∈ L∞ [a, b] and
‖f ′‖∞ := ess sup

t∈[a,b]

|f ′ (t)| , then

(1.3) |T (f, g; a, b)| ≤ 1
12
‖f ′‖∞ ‖g′‖∞ (b− a)2

and the constant 1
12 is the best possible.

Finally, let us recall a result by Lupaş (see for example [16, p. 210]), which states
that:

(1.4) |T (f, g; a, b)| ≤ 1
π2
‖f ′‖2 ‖g

′‖2 (b− a) ,

provided f, g are absolutely continuous and f ′, g′ ∈ L2 [a, b]. The constant 1
π2 is

the best possible here.
For other Grüss type inequalities, see the books [16] and [13], and the papers

[2]-[10], where further references are given.
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2. Integral Inequalities of Grüss Type

The following Grüss type inequality holds.
Theorem 1. Let f, g : [a, b] → R+ be two integrable functions so that

(2.1) 0 < m ≤ f (x) ≤ M < ∞ and 0 < n ≤ g (x) ≤ N < ∞
for a.e. x ∈ [a, b] .

Then one has the inequality

(2.2) |T (f, g; a, b)|

≤ 1
4
· (M −m) (N − n)√

mnMN
· 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx.

The constant 1
4 is best possible in (2.2) in the sense that it cannot be replaced by a

smaller constant.

Proof. We have, by the Cauchy-Buniakowski-Schwartz inequality for double inte-
grals, that

|T (f, g; a, b)|(2.3)

=

∣∣∣∣∣ 1
2 (b− a)2

∫ b

a

∫ b

a

(f (x)− f (y)) (g (x)− g (y)) dxdy

∣∣∣∣∣
≤ 1

2 (b− a)2

[∫ b

a

∫ b

a

(f (x)− f (y))2 dxdy ·
∫ b

a

∫ b

a

(g (x)− g (y))2 dxdy

] 1
2

=
1

2 (b− a)2

4

(b− a)
∫ b

a

f2 (x) dx−

(∫ b

a

f (x) dx

)2


×

(b− a)
∫ b

a

g2 (x) dx−

(∫ b

a

g (x) dx

)2
 1

2

=

 1
b− a

∫ b

a

f2 (x) dx−

(
1

b− a

∫ b

a

f (x) dx

)2
 1

2

×

 1
b− a

∫ b

a

g2 (x) dx−

(
1

b− a

∫ b

a

g (x) dx

)2
 1

2

.

Utilising the Pólya-Szegö inequality for integrals [15], i.e.,

(2.4) 1 ≤
∫ b

a
h2 (x) dx

∫ b

a
l2 (x) dx(∫ b

a
h (x) l (x) dx

)2 ≤ 1
4

(√
M1M2

m1m2
+
√

m1m2

M1M2

)2

,

provided 0 < m1 ≤ h (x) ≤ M1 < ∞, 0 < m2 ≤ l (x) ≤ M2 < ∞ for a.e. x ∈ [a, b] ,
we may state that

(b− a)
∫ b

a
f2 (x) dx(∫ b

a
f (x) dx

)2 ≤ 1
4

(√
M

m
+
√

m

M

)2

=
1
4
· (M + m)2

mM
,
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giving

(b− a)
∫ b

a
f2 (x) dx−

(∫ b

a
f (x) dx

)2

(∫ b

a
f (x) dx

)2 ≤ 1
4
· (M + m)2

mM
− 1 =

(M −m)2

4mM
,

that is,

(2.5) (b− a)
∫ b

a

f2 (x) dx−

(∫ b

a

f (x) dx

)2

≤ (M −m)2

4mM

(∫ b

a

f (x) dx

)2

.

In a similar fashion, we obtain

(2.6) (b− a)
∫ b

a

g2 (x) dx−

(∫ b

a

g (x) dx

)2

≤ (N − n)2

4nN

(∫ b

a

g (x) dx

)2

.

Using (2.3), (2.5) and (2.6), we deduce the desired inequality (2.2).
Now, assume that the inequality in (2.2) holds with a constant c > 0, i.e.,

(2.7) |T (f, g; a, b)|

≤ c · (M −m) (N − n)√
mnMN

· 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx.

We choose the functions f = g with

f (x) =

 m, x ∈
[
a, a+b

2

]
M, x ∈

(
a+b
2 , b

] , 0 < m < M < ∞.

Then

1
b− a

∫ b

a

f2 (x) dx−

(
1

b− a

∫ b

a

f (x) dx

)2

=
m2 + M2

2
−
(

m + M

2

)2

=
1
4

(M −m)2 ,

and by (2.7) we deduce

1
4

(M −m)2 ≤ c · (M −m)2

mM
·
(

m + M

2

)2

from where we get

(2.8) mM ≤ c (M −m)2

for any 0 < m < M < ∞.
If in (2.8) we consider m = 1− ε, M = 1 + ε, ε ∈ (0, 1) , then we get 1− ε2 ≤ 4c

for any ε ∈ (0, 1) , which shows that c ≥ 1
4 .

The second result of Grüss type is embodied in the following theorem.
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Theorem 2. Assume that f and g are as in Theorem 1. Then one has the in-
equality:

(2.9) |T (f, g; a, b)|

≤
(√

M −
√

m
)(√

N −
√

n
)√ 1

b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx.

The constant c = 1 is best possible in the sense that it cannot be replaced by a
smaller constant.

Proof. We shall use the Shisha-Mond inequality [17] (see also [13, p. 121])

(2.10)
∑n

i=1 z2
i∑n

i=1 ziyi
−
∑n

i=1 ziyi∑n
i=1 y2

i

≤

(√
M1

m2
−
√

m1

M2

)2

,

provided 0 < m1 ≤ zi ≤ M1 < ∞ and 0 < m2 ≤ yi ≤ M2 < ∞ for all i ∈
{1, . . . , n} .

Applying a standard procedure for Riemann sums instead of zi, yi, i.e.,

b−a
n

∑n
i=0 h2

(
a + i

n (b− a)
)

b−a
n

∑n
i=0 h

(
a + i

n (b− a)
)
l
(
a + i

n (b− a)
)

−
b−a
n

∑n
i=0 h

(
a + i

n (b− a)
)
l
(
a + i

n (b− a)
)

b−a
n

∑n
i=0 l2

(
a + i

n (b− a)
) ≤

(√
M1

m2
−
√

m1

M2

)2

,

provided h, l are Riemann integrable on [a, b] and 0 < m1 ≤ h (x) ≤ M1 < ∞,
0 < m2 ≤ l (x) ≤ M2 < ∞, we may deduce, by letting n → ∞, the integral
inequality

(2.11)

∫ b

a
h2 (x) dx∫ b

a
h (x) l (x) dx

−
∫ b

a
h (x) l (x) dx∫ b

a
l2 (x) dx

≤

(√
M1

m2
−
√

m1

M2

)2

,

which is the integral version of the Shisha-Mond inequality (2.10).
From (2.11) we may easily deduce

0 ≤ 1
b− a

∫ b

a

f2 (x) dx−

(
1

b− a

∫ b

a

f (x) dx

)2

(2.12)

≤
(√

M −
√

m
)2 1

b− a

∫ b

a

f (x) dx

and

0 ≤ 1
b− a

∫ b

a

g2 (x) dx−

(
1

b− a

∫ b

a

g (x) dx

)2

(2.13)

≤
(√

N −
√

n
)2 1

b− a

∫ b

a

g (x) dx.

Finally, by making use of (2.3), (2.12) and (2.13), we obtain the desired inequality
(2.9).
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To prove the sharpness of the constant, assume that (2.9) holds with a constant
c > 0, i.e.,

(2.14) |T (f, g; a, b)|

≤ c
(√

M −
√

m
)(√

N −
√

n
)√ 1

b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx.

Now, let us choose f = g and

f (x) =

 m, if x ∈
[
a, a+b

2

]
,

M, if x ∈
(

a+b
2 , b

]
.

Then from (2.14) we deduce (see also Theorem 1) that

1
4

(M −m)2 ≤ c
(√

M −
√

m
)2 m + M

2
, 0 < m < M < ∞

that is,
1
4

(√
M −

√
m
)2 (√

M +
√

m
)2

≤ c
(√

M −
√

m
)2 m + M

2
,

giving for any 0 < m < M < ∞ that

(2.15)
(√

M +
√

m
)2

≤ 2c (m + M) .

If in (2.15) we choose m = 1−ε, M = 1+ε, ε ∈ (0, 1) , we get
(√

1− ε +
√

1 + ε
)2 ≤

4c. Letting ε → 0+, we deduce c ≥ 1, and the theorem is proved.

By the classical Grüss’ inequality, we obviously have

(2.16) |T (f, g; a, b)| ≤ 1
4

(M −m) (N − n) .

It is natural to compare the bounds provided by (2.2), (2.9) and (2.16).
Proposition 1. The bounds provided by (2.2), (2.9) and (2.16) are not related.
This means that one is better than the others depending on the different choices of
functions f and g.

Proof. (1) With the assumptions in Theorem 2, consider, for f = g, n = m,
N = M, the quantity

U :=

(∫ b

a
f (x) dx

)2

(b− a)2 mM
> 0.

We want to compare this quantity with 1.
Choose a = 0, b = 3 and

f (x) =

 1 if x ∈ [0, 2] ,

k if x ∈ (2, 3], k ≥ 1.

Then
∫ b

a
f (x) dx = 1 + k, m = 1, M = k and thus

U (k) = U =
(k + 2)2

9k
.
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We observe that

U (k)− 1 =
(k − 1) (k − 4)

9k
,

showing that if k ∈ (0, 1]∪ [4,∞) , U (k) ≥ 1 while for k ∈ (1, 4) , U (k) < 1.
In conclusion, for the above choice, if k ∈ (1, 4) , the bound provided by

(2.2) is better than the bound provided by (2.16), while for k ∈ (4,∞) this
bound is worse than that provided by the Grüss inequality.

(2) With the assumptions in Theorem 2, consider, for f = g, n = m, N = M,
the quantity

I1 :=
1
4

(M −m)2 , I2 :=
(√

M −
√

m
)2 1

b− a

∫ b

a

f (x) dx.

If we assume that m = 0, M = 1, then I1 = 1
4 , I2 = 1

b−a

∫ b

a
f (x) dx,

provided 0 ≤ f (x) ≤ 1, x ∈ [a, b] .
Now, if we choose f so that 1

b−a

∫ b

a
f (x) dx < 1

4 , then the bound provided

by (2.9) is better than the one provided by (2.16). If 1
b−a

∫ b

a
f (x) dx > 1

4 ,
then Grüss’ inequality provides a better bound.

(3) With the assumptions in Theorem 2, consider, for f = g, n = m, N = M,
the quantities

J1 : =
1
4

(M −m)2

mM
·

(
1

b− a

∫ b

a

f (x) dx

)2

,

J2 : =
(√

M −
√

m
)2

· 1
b− a

∫ b

a

f (x) dx.

If we choose m = 1, M = 4, we get

J1 =
9
16

y2, J2 = y where y :=
1

b− a

∫ b

a

f (x) dx ∈ [1, 4] .

Now, observe that

J1 − J2 =
y (9y − 16)

16
,

showing that for y ∈
[
1, 16

9

]
the bound provided by (2.2) is better than the

bound provided by (2.9) while for y ∈
(

16
9 , 4

]
, the conclusion is the other

way around.

3. Some Pre-Grüss Type Inequalities and Applications

If there is no information available about the upper and lower bounds of the
function g, but the integrals∫ b

a

g2 (x) dx and
∫ b

a

g (x) dx

can be exactly computed, then the following pre-Grüss type result may be stated.
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Theorem 3. Let f, g : [a, b] → R be two integrable functions such that there exist
m,M > 0 with

(3.1) 0 < m ≤ f (x) ≤ M < ∞

and g ∈ L2 [a, b] . Then one has the inequality

(3.2) |T (f, g; a, b)| ≤ 1
2
· (M −m)√

mM
· 1
b− a

∫ b

a

f (x) dx

×

 1
b− a

∫ b

a

g2 (x) dx−

(
1

b− a

∫ b

a

g (x) dx

)2
 1

2

.

The constant 1
2 is best possible.

The proof is similar to the one incorporated in Theorem 1 and we omit the
details.

Similarly, we may state the corresponding pre-Grüss inequality that may be
deduced from Shisha-Mond’s result.
Theorem 4. With the assumption of Theorem 3, we have

(3.3) |T (f, g; a, b)| ≤
(√

M −
√

m
)√ 1

b− a

∫ b

a

f (x) dx

×

 1
b− a

∫ b

a

g2 (x) dx−

(
1

b− a

∫ b

a

g (x) dx

)2
 1

2

.

The constant c = 1 is best possible in the sense that it cannot be replaced by a
smaller constant.

Following Matić et al. [12], we may say that the sequence of polynomials
{Pn (x)}n∈N is a harmonic sequence if

P ′
n (x) = Pn−1 (x) for n ≥ 1 and P0 (x) = 1.

In the above mentioned paper [12], the authors considered the following particular
instances of harmonic polynomials:

Pn (t) =
(t− x)n

n!
, n ≥ 0;

Pn (t) =
1
n!

(
t− a + x

2

)n

, n ≥ 0;

Pn (t) =
(x− a)n

n!
Bn

(
t− a

x− a

)
, P0 (t) = 1, n ≥ 2;

where Bn (t) are the well known Bernoulli polynomials, and

Pn (t) =
(x− a)n

n!
En

(
t− a

x− a

)
, P0 (t) = 1, n ≥ 1,

where En (t) are the Euler polynomials.
The following perturbed version of the generalised Taylor’s formula was obtained

in [12].
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Theorem 5. Let {Pn (x)}n∈N be a harmonic sequence of polynomials. Let I ⊂ R be
a closed interval and a ∈ I. Suppose that f : I → R is such that f (n) is absolutely
continuous. Then for any x ∈ I we have the generalised Taylor’s formula:

(3.4) f (x) = T̃n (f ; a, x) + (−1)n [Pn+1 (x)− Pn+1 (a)]
[
f (n); a, x

]
+ G̃n (f ; a, x) ,

where

T̃n (f ; a, x) = f (a) +
n∑

k=1

(−1)k+1
[
Pk (x) f (k) (x)− Pk (a) f (k) (a)

]
and [

f (n); a, x
]

=
f (k) (x)− f (k) (a)

x− a
.

For x ≥ a, the remainder G̃ (f ; a, x) satisfies the estimation

(3.5)
∣∣∣G̃n (f ; a, x)

∣∣∣ ≤ x− a

2
(Γ (x)− γ (x)) [T (Pn, Pn)]

1
2 ,

where

T (Pn, Pn; a, x) :=
1

x− a

∫ x

a

P 2
n (t) dt−

(
1

x− a

∫ x

a

Pn (t) dt

)2

and

γ (x) = inf
t∈[a,x]

f (n+1) (t) , Γ (x) = sup
t∈[a,x]

f (n+1) (t) .

Using Theorems 3 and 4, we may point out the following bounds for the remain-
der G̃ (f ; a, x) as well.

Theorem 6. Assume that {Pn (x)}n∈N and f are as in Theorem 5. Moreover,
if γ (x) > 0, then we have the representation (3.4) and the remainder G̃ (f ; a, x)
satisfies the bounds

(3.6)
∣∣∣G̃n (f ; a, x)

∣∣∣
≤


1
2
· Γ (x)− γ (x)√

γ (x) Γ (x)

[
f (n); a, x

]
[T (Pn, Pn; a, x)]

1
2 (x− a)

(√
Γ (x)−

√
γ (x)

)√[
f (n); a, x

]
[T (Pn, Pn; a, x)]

1
2 (x− a)

for any x ≥ a.

The proof is similar to the one in Theorem 3, [12] and we omit the details.

Remark 1. If we choose the above particular instances of harmonic polynomials,
then we may produce a number of particular Taylor-like formulae whose remainder
will obey similar bounds to those incorporated in (3.6). We omit the details.

Remark 2. As shown by Proposition 1, the bounds provided by (3.5) and (3.6)
cannot be compared in general.
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