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APPLICATIONS OF OSTROWSKI’S VERSION OF THE GRUSS
INEQUALITY FOR TRAPEZOID TYPE RULES

N.S. BARNETT AND S.S. DRAGOMIR

ABSTRACT. Some applications of the Ostrowski inequality and a perturbed
version of it for integral inequalities of the trapezoid type are given.

1. INTRODUCTION

In [1], A. Ostrowski proved the following inequality of the Griiss type,

b_la/abﬂx)g(x)dx—b_la/abfm)dx-bia/abg(x)dx

1
< 3 (b—a)(M —m) ”f/H[a,b],oo

provided g is integrable on [a, b] and satisfies the condition

(1.1)

(1.2) —co<m<g(x) <M< ooforae z€la,b].

and f is absolutely continuous on [a,b] with f’ € Ly, [a,b].

The constant é is the best possible in (1.1) in the sense that it cannot be replaced
by a smaller one.

In this paper we present some applications of (1.1) as well as a perturbed version
of it that can also be applied to create some useful integral inequalities.

2. INTEGRAL INEQUALITIES

The following trapezoid type result for n—time differentiable functions has been
obtained in [2].
Lemma 1. Let f : [a,b] — R be a mapping such that the derivative f=1 (n > 1)
is absolutely continuous on [a,b]. Then for any x € [a,b] one has the equality:

b n—1
(2.1) / f (t) dt = Z (k i 1)' |:(m _ a)kJrl f(k) (a) + (_1)k (b _ m)k+1 f(k) (b)
@ k=0 )

1 b
+ —,/ (. —t)" £ (t) dt.
n! J,
Some useful particular cases are as follows.
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(1) For n =1, one can retrieve the identity (see for example [2])

b
(2.2) /f x—a>f<a>+<b—x>f<b>+/ (x—t) ' (1) dt,

for each z € [a,b].
(2) For n =2, we have (see for example [2])

(23) /f = (e~ a) f (@) + () ()
b
tyle-arr@ee-or @)+ 5 [ -0t o

If in (2.2) we choose z = “H’ , then we get the trapezoid identity

(2.4) /f par = 1O F f”( a)+/a (a;b—t)f’(t)dt,

while the same choice of x will produce, in (2.3), the following perturbed
version of the trapezoid identity,

25) /f P (UET G .

S @-rong [ (-957) o

Consider now the following results.

Theorem 1. Let f : [a,b] — R be a mapping such that the derivative f*=1) (n > 1)
is absolutely continuous on [a,b] and there exists the real numbers v,T' such that
—00 <y < f" (2) <T < oo for a.e. x € [a,b]. Then we have the inequality:

(2.6)

[0 > S 5 (=@ Y @+ () =) 1 )

(x —a)" "+ ()" 0 —2)" T,
- (n+1)! {f( )""b}

< g @t [§<b—a>+\x—a§brl

for any x € [a,b], where [h;a,b] = W is the divided difference of h on [a,b] .

Proof. If we use Ostrowski’s inequality (1.1) we may write

b b ’
ﬁ/a (x—t)nf(n ()dt_b% (]J—t)ndt'ﬁ/a f(n)(t)dt

< Sb-a)T =) sup o """
t€(a,b]
= %(b—a)(F—’y)[max(as—a,b—x)]n_l
so-am-n|[jo-a+o- 3]
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giving

@=a) + ()" b -a)"

27) n+1

/%wwwwwwﬁ

[

-

If we divide this by n! and use the representation (2.1), we obtain the desired
inequality (2.6). I

a-+b
2

T —

(b—a)+

< p-a -7 3

Remark 1. If n =1 in (2.6), we deduce,

which is clearly equivalent to the trapezoid inequality
/“f HUES{OY.

It has been shown in various papers that % is a sharp constant (see [4], and [3]).

(2.8) <L),

Remark 2. Further work has yet to be done on comparing, for any x € [a,b], the
bounds provided by (2.6) and the bound

'-~ 1
T'ml(lﬁn),

1

L Y )

N|=

+@n+1) (@ —0) (b-2) [z — )" + (b —2)")}

has been obtained in [2].
The Ostrowski inequality (1.1) can also be applied in the following way.

Theorem 2. Let f : [a,b] — R be a mapping such that the derivative f) is
absolutely continuous and 1) € L [a,b]. Then we have the inequality:

1 o T FR) () 4 (—VE (b — )R R
(29) <k+1)[< ) (@) + (1) b)) )]
(ac —a)" (D" b)),
- (n+1)! {f 1""1’}
b n
% (b—a)’ E (b—a)+ ’x _at H Hf(""’l)H[a‘b]’oo if n is even,
<
S (b= [(z = )" + (b—2)") | F| if n is odd.



4 N.S. BARNETT AND S.S. DRAGOMIR

Proof. For n = 2k, consider hoy, (t) = (z — t)** . It is obvious that
inf hoy (t) =0,

t€la,b]
sup hoy () = max [(x ) (b x)ﬂ — [max (z — a,b — 2)]**
t€la,b]
1 b 2k
= [Q(ba)+‘x a—; }

If we now apply Ostrowski’s inequality (1.1) for hog and f**) we deduce

1 b
b_a/ ( — )% 79 (4 / (x — ) dt _a/ka) ) d

S%(b—a) {l(b—a)—l—’x—a’_'—bu Hf(2k+1

2 la,b],00

by a similar argument to that in Theorem 1, proving the first part of (2.9).
For n = 2k + 1, consider hggyq (t) = (z — t)**T* . Then

pp1 (t) = =2k +1) (z — t)% )

showing that hog41 is decreasing on [a, b], and thus

Jnf Bapn (8) = haga (B) = (= b = = (b 2
and
sup hoprt () = hopgr (a) = (z — a)?
t€la,b]

Now apply Ostrowski’s inequality (1.1) for hgpy1 and fF+1D) we get

b
. 1 / (2 — )2+ F@RD) (4 g
“a ),

1P 1P
- / (x— 125+ gt bi/ FERD (1) dt
—aJq —a Jgq

< é (b—a) [(x —a)” 4 (b - x)%ﬂ} Hf(%ﬂ)

giving, by a similar procedure to that in Theorem 1, the second part of (2.9). I

[a,b],00

3. A PERTURBED VERSION

The following result holds.

Theorem 3. Let f : [a,b] — R be an absolutely continuous function on [a,b] so
that the derivative f': [a,b] — R satisfies the condition:

(3.1) —00 <y < f'(x) <T < oo for a.e. z € [a,b)].
If g : [a,b] — R is such that

(3.2) —oco<m<g(x) <M< oo forae x€la,b],
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then we have the inequality

b b b
63) | [@s@dr - [ f@de i [ @
y+T 1 P a+b 1
s (e 1) s < - a0 -y ).

The constant % is best possible.

Proof. We know that

bia/abh(m)g(x)da:—bia/abh(x)dx.bia/abg(x)dx

1
<3z (0 —a) (M —m) W]l 4,00 »

(3.4)

provided —oo <m < g (z) < M < oo for a.e. z € [a,b].
Choose h (z) = f (x) — % (x —a), a € R. Then

/ ot v+ T
h(@’)—f(x)—T

and since
r—
W (@) <~

for a.e. x € [a,b], we have

(35) bialbp<>-vgfm-aqg@Mx
_ bia/ab [f( )—’Y+P(x—a)] dz bia/abg(x)dm
< o (b= a) (M —m) (T —7).
However,
o[- e a)swa
:bia abf(x)g( )d —H2F~bia/ab(x—a)g(fﬂ)d$
and
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By (3.5) we deduce,

b b
7 [ f@e@d -5 [ ey @) e

1 10 y+T
—b_a/a f(z)dx-b_a/a g() e+ 0=

I I
b—a/ (x—a)dx-m/ g (x)dx

(b= a) (M —m) (T =)

(3.6)

X

<
Now, observe that

y+T 1 b
[ - agds

S L e i [N
_ v;r.m{@_a) Vabxg@dx_a[g@dx

_ Mm_a@_a)] /abmdx]}
5t e [ [ o]

+T | 1 P a+b 1 [°
=7 m/ xzg (z) dx — 5 -b_a/g(x)dx]

2
and by (3.6) we deduce the desired result.
The fact that 1—16 is the best constant, follows by Ostrowski’s result on choosing
v=— Hf’||[a,b],oo , = ||]"’H[a,b]7OO . We omit the details. I

In what follows, an application of the above perturbed version of Ostrowski’s
inequality is given.
Using Lemma 1, we have the identity, (see also [2])

1
k=0

b R 1 k1 [ o(k k p(k
60 [ 10 =Y e 0= [ @+ (1) 1 )

+

b n
L <a;rb —t) £ (4) dt.

nl Ja
We can further state the following result.

Theorem 4. Let f : [a,b] — R be a mapping such that the derivative f—1)
(n > 1) is absolutely continuous on [a,b] and there exists the real numbers v,T" such
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that —o0o <y < f™ (z) <T < o0 for a.e., x € [a,b]. Then we have the inequality:

n—1 (b i a)k+1

W [f(k) (a) + (—=1)* f® (b)}
_ <b - a)"“ [Fr05,a] - O )" SO )+ Y (a)

(3.8) dt—

2" (n+ 1)! 2n+1n] 2
(b — a’)n+1 n—2),
AT {f( 'ib “]
b _ n+2
% (T —7) ifn is even,
- !

b—a)"t? o
%(F—V) if n is odd.

Proof. The proof is by application of Theorem 3 for g — f(") and f — (QTH’ — )n .
We first observe that

/ab(“;bt)"dt—(b— @) [+ (<1)"]

ot (1)

P [ @i [l

0 if n is even,
_ a+b "
v = inf ( - t) = n
B _
t€a,b] (a 2nb) if n is odd,
b o n
, . ( 2na) if n is even,
1—\ = sup (C];_ — t> =
te[a,b] b—a)"
( 2na) if n is odd,
and then
(b—a)" i
ﬂ - Sri n is even,
=
0 if n is odd.
Also,

b
e
= o (S0« [ e

(n—1) (n=1) (
Y LIURY Ll

+ [f(" 2:b, a} (b—a).
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Consequently, when n is even, we have

b b n b b n b
/G<a;r—t> f(”)(t)dt—/a (a; —t) dt-ﬁ/@ £ (t) dt

O [ OO om0 )

gn+1 2

ie.,

b ra+b " in (b—a)nJr1 ne1).
/( ; —'f) Oy v AL

L™ V@) + (@) ()™ [72=2:8,d]

2n+1 2 2n+1

(b . a)n+2
< “onts T=7)
from which we we obtain the first branch in (3.8).
When n is odd, we have

b n
[ o

S R R

(- -y
2n+3

from where we get the second branch of (3.8).
The theorem is thus proved. i

The second approach is incorporated in the following theorem.

Theorem 5. Let f : [a,b] — R be a mapping such that the derivative g™ is
absolutely continuous on "+ € L. [a,b] and assume that there exist constants
¢, ® € R such that —oco < ¢ < f"+1) (z) < & < oo for a.e. x € [a,b]. Then we
have the inequality

k+1
o) [ 1o dt— M[f(k()ﬂ—l)’“f(’”(b)}

(b—a)"™!

e

¢ + q) . (b _ a)?L"rZ
2 2l (n+2)nl

_ n+2
% (@ —¢) ifn is even,
- [
-

ST (P —¢) ifn is odd.
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Proof. We apply Theorem 3 for the choices g — (%5t —-)" and f — (™.
We observe that

/ab(t_a;-b) (a—2|—b_t>"dt: <a+b >”+1dt
) [( )n+1+1:|
272 (n 4 2) '

Then by (3.3) we get

b la+b " in bla+b " 1 b
/Q< 5 —t) f()(t)dt—/a< 5 —t) dt-m/a ™ (t) dt
b n
7¢+q>/ (ta+b) <a+bt> &t
2/, 2 2

M if n is even,
1 2n
—(b—a)* (®—¢)
W lf n is Odd7
that is,
b n n+1 n
a+b (b—a) 14 (-1)"] _
— (n) _ (n—1).
/a ( 2 t) £t dt 20+ (n + 1) {f 6, “]
n+2 n+1 (b=a)” @) (®—¢) ifniseven
R N ol (G i | S BT v
Ty 2742 (n + 2) =

b-a)"

“onis (P —¢) ifnisodd,

and the inequality (3.9) is proved. I
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