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NEW APPROXIMATIONS FOR f−DIVERGENCE VIA
TRAPEZOID AND MIDPOINT INEQUALITIES

S.S. DRAGOMIR, V. GLUŠCEVIĆ, AND C. E. M. PEARCE

Abstract. Using sharp inequalities of trapezoid and midpoint type in terms

of the infinum and supremum of the derivative, some new and better approx-
imation of f−divergence are given. Application for some particular instances
are also mentioned.

1. Introduction

A common situation in Information Theory is the following. Two probability
distributions p = (p1, . . . , pn) , q = (q1, . . . , qn) are defined over an alphabet {ai|i =
1, ..., n}, pi, qi being the point probabilities associated with event ai (i = 1, . . . , n).
For example, p, q might represent a priori and a posteriori probability distributions
associated with the alphabet.

It is useful to be able to quantify in some way the difference between such
distributions p, q. A number of ways have been suggested for doing this. Thus
the variational distance (l1-distance) and information divergence (Kullback-Leibler
divergence [1]) are defined respectively as

V (p, q) : =
n∑

i=1

|pi − qi| ,(1.1)

D (p, q) : =
n∑

i=1

pi ln
(

pi

qi

)
.(1.2)

Csizar [3] - [4] has introduced a versatile functional from which subsumes a number
of the more popular choices of divergence measures, including those mentioned
above. For a convex function f : [0,∞) → R, the f-divergence between p and q is
defined by (see also [5])

(1.3) If (p, q) :=
n∑

i=1

qif

(
pi

qi

)
.

It is convenient to invoke as a benchmark the chi-squared discrepancy measure

(1.4) Dχ2 (p, q) :=
n∑

i=1

(pi − qi)
2

qi
=

n∑
i=1

p2
i

qi
− 1

which arises from (1.3) as the particular case f(x) = (x− 1)2.
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Most common choices of f , like the above, satisfy f(1) = 0, so that If (q, p) = 0.
Convexity then ensures that If (q, p) is nonnegative. However, as noted in [2], some
additional flexibility for applications can be achieved by not insisting on convexity.

For other properties of f -divergence and applications, see [6] and the references
therin.

By the use of mid-point inequality, the following result may be stated (see also
[7])
Theorem 1. Assume that p = (p1, . . . , pn) , q = (q1, . . . , qn) are probability distri-
butions satisfying the assumptions

(1.5) 0 ≤ r ≤ pi

qi
≤ R ≤ ∞ (where r ≤ 1 ≤ R ) for each i ∈ {1, ..., n} .

If f : [0,∞) → R is so that is locally absolutely continuous in [r, R) and f
′′ ∈

L∞[r, R), then

(1.6) |If (p, q)− f (1)− Ifb (p, q)| ≤ 1
4

∥∥∥f ′′
∥∥∥

[r,R),∞
Dχ2(p, q)

where fb (x) = (x− 1) f ′
(

x+1
2

)
, x ∈ [r, R).

Using Iyengar inequality that provides a refinement of the trapezoid inequality,
the following result also holds [8]
Theorem 2. With the assumptions in Theorem 1 one has∣∣∣∣If (p, q)− f (1)− 1

2
If# (p, q)

∣∣∣∣(1.7)

≤ 1
4

∥∥∥f ′′
∥∥∥

[r,R),∞
Dχ2(p, q)− 1

4 ‖f ′′‖[r,R),∞
If0 (p, q)

≤ 1
4

∥∥∥f ′′
∥∥∥

[r,R),∞
Dχ2(p, q)

where f# (x) = (x− 1)f ′(x) and f0(x) = |f ′(x)− f ′(1)|2 , x ∈ [r, R).

In this paper similar bounds are provided when information about γ = inft∈[r,R) f
′′
(t)

and Γ = supt∈[r,R) f
′′
(t) are assumed to be known.

Applications for particular instances of f−divergences are also pointed out.

2. Some General Bounds for f−Divergence

The following analytic inequality is useful in the following. It has been obtained
in [9] with a different proof than provided here for the sake of completeness.
Lemma 1. Let ϕ : [a, b] → R be an absolutely continuous function on [a, b] with
the property that there exists the constants m,M ∈ R with

(2.1) m ≤ ϕ′(t) ≤ M for all t ∈ [a, b].

Then we have the inequality

(2.2)

∣∣∣∣∣ϕ(a) + ϕ(b)
2

− 1
b− a

∫ b

a

ϕ (t) d (t)

∣∣∣∣∣ ≤ 1
8
(M −m)(b− a).

The constant 1
8 is best possible in the sense that it can not be replaced by a smaller

constant.
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Proof. Start to the following identity that obviously holds integrating by parts

(2.3)
ϕ(a) + ϕ(b)

2
− 1

b− a

∫ b

a

ϕ (t) d (t) =
1

b− a

∫ b

a

(
t− a + b

2

)
ϕ′(t)dt.

Observe that

1
b− a

∫ b

a

(
t− a + b

2

)
ϕ′(t)dt =

1
b− a

∫ b

a

(
t− a + b

2

)(
ϕ′(t)− m + M

2

)
dt

and since ∣∣∣∣ϕ′(t)− m + M

2

∣∣∣∣ ≤ M −m

2
for all t ∈ [a, b]

we deduce

1
b− a

∣∣∣∣∣
∫ b

a

(
t− a + b

2

)(
ϕ′(t)− m + M

2

)
dt

∣∣∣∣∣(2.4)

≤ 1
b− a

M −m

2

∫ b

a

∣∣∣∣t− a + b

2

∣∣∣∣ dt

=
M −m

8
(b− a).

Since the case of equality in (2.2) is realised for the absolutely continuous function
ϕ0 : [a, b] → m, ϕ0(t) = k

∣∣t− a+b
2

∣∣, k > 0, the sharpness of the constant easily
follows, and we omit the details.

For a differentiable function f : [0,∞) → R, consider the associated function
f# : (0,∞) → R given by

(2.5) f#(u) := (u− 1)f ′(u), u ∈ (0,∞).

The following result holds.

Theorem 3. Assume that p = (p1, . . . , pn) , q = (q1, . . . , qn) are probability distri-
butions satisfying the assumption

(2.6) 0 ≤ r ≤ pi

qi
≤ R ≤ ∞ (where r ≤ 1 ≤ R ) for each i ∈ {1, ..., n} .

If f : [0,∞) → R is so that f ′ is locally absolutely continuous on [γ, R) and there
exists the real numbers γ, Γ so that

(2.7) γ ≤ f
′′
(t) ≤ Γ for all t ∈ (r, R);

then one has the inequality

(2.8)
∣∣∣∣If (p, q)− f (1)− 1

2
If# (p, q)

∣∣∣∣ ≤ 1
8
(Γ− γ)Dχ2(p, q).

Proof. Applying the inequality (2.2) for ϕ(t) = f ′(t), b = x ∈ (r, R), a = 1, M = Γ
and m = γ, we deduce

(2.9)
∣∣∣∣f (x)− f (1)− 1

2
(x− 1) (f ′(1) + f ′(x))

∣∣∣∣ ≤ 1
8
(Γ− γ)(x− 1)2

for any x ∈ (r, R) (and if γ = 0 and R = ∞, for any x ∈ (0,∞)).
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Choose in (2.9) r = pi

qi
(i = 1, ..., n) and multiply by qi ≥ 0 (i = 1, ..., n) to get∣∣∣∣qif

(
pi

qi

)
− f (1) qi −

1
2

(
pi

qi
− 1
)

f ′(1)qi −
1
2

(
pi

qi
− 1
)

f ′
(

pi

qi

)
qi

∣∣∣∣(2.10)

≤ 1
8
(Γ− γ)qi

(
pi

qi
− 1
)2

for any i ∈ {1, ..., n}. If we sum in (2.10) over i from 1 to n and take into account
that

∑n
i=1 pi =

∑n
i=1 qi = 1, then by the generalized triangle inequality we deduce

the desired result (2.8).

Remark 1. The inequality (2.8) is an improvement of (1.6) since 0 ≤ Γ − γ ≤
2
∥∥∥f ′′

∥∥∥
[r,R),∞

.

To establish our second result, we need the following inequality obtained in [9]
for which we give here a simple direct proof.
Lemma 2. Assume that ϕ is as in Lemma 1. Then one has the inequality

(2.11)

∣∣∣∣∣ϕ
(

a + b

2

)
− 1

b− a

∫ b

a

ϕ (t) d (t)

∣∣∣∣∣ ≤ 1
8
(M −m)(b− a).

The constant 1
8 is best possible in the sense mentioned in Lemma 1.

Proof. Start to the following identity that obviously holds integrating by parts

(2.12) ϕ

(
a + b

2

)
− 1

b− a

∫ b

a

ϕ (t) d (t) =
1

b− a

∫ b

a

K (t) ϕ′(t)d (t)

where

K(t) =

 t− a if t ∈
[
a, a+b

2

]
t− b if t ∈

[
a+b
2 , b

] .

Since ∫ b

a

K (t) d (t) = 0,

we observe that

1
b− a

∫ b

a

K(t)ϕ′ (t) d (t) =
1

b− a

∫ b

a

K(t)
(

ϕ′ (t)− m + M

2

)
d (t)

and since ∣∣∣∣ϕ′ (t)− m + M

2

∣∣∣∣ ≤ M −m

2
for all t ∈ [a, b],

we deduce

1
b− a

∣∣∣∣∣
∫ b

a

K(t)
(

ϕ′ (t)− m + M

2

)
dt

∣∣∣∣∣(2.13)

≤ 1
b− a

M −m

2

∫ b

a

|K (t)| dt

=
1
8
(M −m)(b− a).



f−DIVERGENCE 5

Since the case of equality in (2.11) is realised for the absolutely continuous function
ϕ0 : [a, b] → R, ϕ0(t) = k

∣∣t− a+b
2

∣∣, k > 0, the sharpness of the constant is proved
and we omit the details.

For a differentiable function f : [0,∞) → R, consider now the associated function
fb : (0,∞) → R, given by

(2.14) fb(x) := (x− 1)f ′
(

x + 1
2

)
.

The following result holds.
Theorem 4. Assume that p, q, f, γ and Γ are as in Theorem 2. Then one has the
inequality

(2.15) |If (p, q)− f (1)− Ifb (p, q)| ≤ 1
8
(Γ− γ)Dχ2(p, q).

Proof. Applying the inequality (2.11) for ϕ(t) = f ′(t), b = x ∈ (r, R), a = 1, M = Γ
and m = γ, we deduce

(2.16)
∣∣∣∣f(x)− f (1)− (x− 1)f

′
(

x + 1
2

)∣∣∣∣ ≤ 1
8
(Γ− γ)(x− 1)2.

for any x ∈ (r, R) (and if r = 0 and R = ∞, for any x ∈ (0,∞)).
Making use of the same argument utilized in the proof of Theorem 2, we deduce

the desired result (2.15).

Remark 2. The inequality (2.15) provides a different bound then (1.2). The bound
provided by (2.15) is better then the second bound in (1.7) since in general 0 ≤
Γ− γ ≤ 2

∥∥∥f ′′
∥∥∥

[r,R),∞
.

3. Applications

(1) The Kullback-Leibler divergence D(p, q) is generated by the convex function
f(u) = u lnu, u ∈ (0,∞). Obviously

f#(u) = (u− 1) lnu + u− 1, u ∈ (0,∞).

We observe that

If# (p, q) =
n∑

i=1

qi

[(
pi

qi
− 1
)

ln
(

pi

qi

)
+
(

pi

qi
− 1
)]

=
n∑

i=1

pi ln
(

pi

qi

)
−

n∑
i=1

qi ln
(

pi

qi

)
= D(p, q) + D(q, p).

Observe also that f
′′
(u) = 1

u and if 0 < r ≤ u ≤ R ≤ 0, i = 1, ..., n; then

1
R
≤ f

′′
(u) ≤ 1

r
, for u ∈ [r, R].

Using the inequality (2.8) we deduce∣∣∣∣D(p, q)− 1
2

[D(p, q) + D(q, p)]
∣∣∣∣ ≤ 1

8
(
1
r
− 1

R
)Dχ2(p, q)
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giving the following inequality

(3.1) |D(p, q)−D(q, p)| ≤ 1
4

R− r

rR
Dχ2(p, q)

for any p, q probability distributions provided

(3.2) 0 < r ≤ pi

qi
≤ R < ∞, for each i ∈ {1, ..., n}.

Now observe that

fb(u) := (u− 1) ln
(

1 + u

2

)
+ u− 1, u ∈ (0,∞).

We observe that

Ifb
(p, q) =

n∑
i=1

qi

[(
pi

qi
− 1
)

ln

(
1 + pi

qi

2

)
+

pi

qi
− 1

]

=
n∑

i=1

(pi − qi) ln
(

qi + pi

2qi

)
=: K(p, q).

Utilizing (2.15) we can conclude that

(3.3) |D(p, q)−K(q, p)| ≤ 1
8

R− r

rR
Dχ2(p, q)

provided p, q satisfy (3.2).
(2) Consider the convex function f : (0,∞) → R, f(x) = − lnx. Then

If (p, q) =
n∑

i=1

qi

(
− ln

pi

qi

)
=

n∑
i=1

qi ln
(

qi

pi

)
= D(q, p).

Observe also that
f#(u) =

1− u

u
.

We have

If# (p, q) =
n∑

i=1

qi

(
1− pi

qi

pi

qi

)
=

n∑
i=1

q2
i

pi
− 1 = Dχ2(p, q).

Since f
′′
(u) = 1

u2 and for 0 < r ≤ u ≤ R < ∞ one has 1
R2 ≤ f

′′
(u) ≤ 1

r2 ,
then by inequality (2.2) we deduce

(3.4)
∣∣∣∣D(p, q)− 1

2
Dχ2(p, q)

∣∣∣∣ ≤ 1
8

R2 − r2

r2R2
Dχ2(p, q)

provided p, q satisfy (3.2).
Now, observe that

fb(u) =
2(1− u)
u + 1

.

For this function we have

Ifb
(p, q) = 2

n∑
i=1

qi

(
1− pi

qi

pi

qi
+ 1

)
=

n∑
i=1

qi(qi − pi)
qi+pi

2

=: L(p, q).

Using the inequality (2.15) we deduce

(3.5) |D(p, q)− L(p, q)| ≤ 1
8

R2 − r2

r2R2
Dχ2(p, q)
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provided p, q satisfy (3.2).
(3) Consider the function f(u) =

√
1 + u2 − 1+u√

2
. Then f

′
(u) = u√

1+u2 −
√

2
2

and f
′′
(u) = 1

(1+u2)
√

1+u2 .
The f -divergence introduced by this function is the ”perimeter diver-

gence” and has been considered in 1982 by F. Österreicher [10] . We obvi-
ously have

(3.6) P (p, q) =
n∑

i=1

qi

√1 +
(

pi

qi

)2

−
1 + pi

qi√
2

 =
n∑

i=1

√
p2

i + q2
i −

√
2.

Observe that

f# (u) = (u− 1)f
′
(u) =

u(u− 1)√
1 + u2

−
√

2
2

(u− 1)

and thus

If# (p, q) =
n∑

i=1

qi

pi

qi

(
pi

qi
− 1
)

√
1 +

(
pi

qi

)2
=

n∑
i=1

pi(pi − qi)√
q2
i + p2

i

(3.7)

=
n∑

i=1

p2
i + q2

i − piqi − q2
i√

q2
i + p2

i

=
n∑

i=1

√
q2
i + p2

i −
n∑

i=1

qi(pi + qi)√
q2
i + p2

i

.

Define

S (p, q) =
√

2−
n∑

i=1

qi(pi + qi)√
q2
i + p2

i

(3.8)

=
n∑

i=1

qi

[√
2
√

p2
i + q2

i − (pi + qi)√
q2
i + p2

i

]
≥ 0.

Then, by (3.2), we have

If# (p, q) = P (p, q) + S(p, q).

We also observe that 0 ≤ f
′′
(u) ≤ 1 for any u ∈ [0,∞), and thus by (2.8)

one has the inequality

(3.9) |P (p, q)− S(p, q)| ≤ 1
4
Dχ2(p, q)

for any p, q probability distributions.
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[10] F. ÖSTERREICHER, The construction of least favourable distributions is traceable to a
minimal perimeter problem, Studia Sci. Math. Hungar., 17(1982), 341-351.

School of Communications and Informatics, Victoria University of Technology, PO

Box 14428, Melbourne City MC, Victoria 8001, Australia.
E-mail address: sever@matilda.vu.edu.au

URL: http://rgmia.vu.edu.au/SSDragomirWeb.html

Royal Australian Airforce, ARDU, PO Box 1500, Salisbury SA 5108, Australia.
E-mail address: vido@senet.com.au

The University of Adelaide, Applied Mathematics Department, Adelaide, SA 5005,
E-mail address: cpearce@maths.adelaide.edu.au


	1. Introduction
	2. Some General Bounds for f-Divergence
	3. Applications
	References

