

Some New Inequalities for Hermite-Hadamard Divergence in Information Theory

This is the Published version of the following publication

Barnett, Neil S, Cerone, Pietro and Dragomir, Sever S (2000) Some New Inequalities for Hermite-Hadamard Divergence in Information Theory. RGMIA research report collection, 5 (4).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17786/

SOME NEW INEQUALITIES FOR HERMITE-HADAMARD DIVERGENCE IN INFORMATION THEORY

N.S. BARNETT, P. CERONE, AND S.S DRAGOMIR

ABSTRACT. In this paper we prove some new inequalities for Hermite-Hadamard divergence in Information Theory.

1. Introduction

One of the important issues in many applications of Probability Theory is finding an appropriate measure of distance (or difference or discrimination) between two probability distributions. A number of divergence measures for this purpose have been proposed and extensively studied by Jeffreys [1], Kullback and Leibler [2], Rényi [3], Havrda and Charvat [4], Kapur [5], Sharma and Mittal [6], Burbea and Rao [7], Rao [8], Lin [9], Csiszár [10], Ali and Silvey [12], Vajda [13], Shioya and Da-te [40] and others (see for example [5] and the references therein).

These measures have been applied in a variety of fields such as: anthropology [8], genetics [14], finance, economics, and political science [15], [16], [17], biology [18], the analysis of contingency tables [19], approximation of probability distributions [20], [21], signal processing [22], [23] and pattern recognition [24], [25]. A number of these measures of distance are specific cases of f-divergence and so further exploration of this concept will have a flow on effect to other measures of distance and to areas in which they are applied.

Let the set χ and the σ -finite measure μ be given and consider the set of all probability densities on μ to be defined on $\Omega := \{p|p: \chi \to \mathbb{R}, \ p(x) \geq 0, \ \int p(x) \, d\mu(x) = 1\}$. The Kullback-Leibler divergence [2] is well known among the χ information divergences. It is defined as:

(1.1)
$$D_{KL}(p,q) := \int_{\chi} p(x) \log \left[\frac{p(x)}{q(x)} \right] d\mu(x), \quad p,q \in \Omega,$$

where log is to base 2.

In Information Theory and Statistics, various divergences are applied in addition to the Kullback-Leibler divergence. These are the: variation distance D_v , Hellinger distance D_H [1], χ^2 -divergence D_{χ^2} , α -divergence D_{α} , Bhattacharyya distance D_B [2], Harmonic distance D_{Ha} , Jeffreys distance D_J [1], triangular discrimination D_{Δ} [35], etc... They are defined as follows:

$$(1.2) D_{v}\left(p,q\right) := \int_{\mathcal{X}} \left|p\left(x\right) - q\left(x\right)\right| d\mu\left(x\right), \ p,q \in \Omega;$$

Date: March 20, 2000.

1991 Mathematics Subject Classification. Primary94Xxx; Secondary 26D15.

Key words and phrases. Divergence measures in Information Theory.

(1.3)
$$D_{H}\left(p,q\right) := \int_{\gamma} \left| \sqrt{p\left(x\right)} - \sqrt{q\left(x\right)} \right| d\mu\left(x\right), \ p,q \in \Omega;$$

$$(1.4) D_{\chi^{2}}\left(p,q\right):=\int_{\chi}p\left(x\right)\left[\left(\frac{q\left(x\right)}{p\left(x\right)}\right)^{2}-1\right]d\mu\left(x\right), \ p,q\in\Omega;$$

$$(1.5) D_{\alpha}\left(p,q\right) := \frac{4}{1-\alpha^{2}} \left[1 - \int_{\chi} \left[p\left(x\right)\right]^{\frac{1-\alpha}{2}} \left[q\left(x\right)\right]^{\frac{1+\alpha}{2}} d\mu\left(x\right)\right], \ p,q \in \Omega;$$

(1.6)
$$D_{B}\left(p,q\right) := \int_{Y} \sqrt{p\left(x\right)q\left(x\right)} d\mu\left(x\right), \ p,q \in \Omega;$$

(1.7)
$$D_{Ha}\left(p,q\right) := \int_{\gamma} \frac{2p\left(x\right)q\left(x\right)}{p\left(x\right) + q\left(x\right)} d\mu\left(x\right), \ p,q \in \Omega;$$

(1.8)
$$D_{J}\left(p,q\right) := \int_{\mathcal{X}} \left[p\left(x\right) - q\left(x\right)\right] \ln \left[\frac{p\left(x\right)}{q\left(x\right)}\right] d\mu\left(x\right), \ p,q \in \Omega;$$

(1.9)
$$D_{\Delta}(p,q) := \int_{\mathcal{X}} \frac{[p(x) - q(x)]^2}{p(x) + q(x)} d\mu(x), \quad p, q \in \Omega.$$

For other divergence measures, see the paper [5] by Kapur or the book on line [6] by Taneja. For a comprehensive collection of preprints available on line, see the RGMIA web site http://rgmia.vu.edu.au/papersinfth.html

Csiszár f-divergence is defined as follows [10]

(1.10)
$$D_{f}(p,q) := \int_{\mathcal{X}} p(x) f\left[\frac{q(x)}{p(x)}\right] d\mu(x), \quad p, q \in \Omega,$$

where f is convex on $(0, \infty)$. It is assumed that f(u) is zero and strictly convex at u=1. By appropriately defining this convex function, various divergences are derived. All the above distances (1.1)-(1.9), are particular instances of f-divergence. There are also many others that are not in this class (see for example [5] or [6]). For the basic properties of f-divergence see [7]-[10].

In [11], Lin and Wong (see also [9]) introduced the following divergence

$$(1.11) D_{LW}(p,q) := \int_{\chi} p(x) \log \left[\frac{p(x)}{\frac{1}{2}p(x) + \frac{1}{2}q(x)} \right] d\mu(x), \quad p, q \in \Omega.$$

This can be represented as follows, using the Kullback-Leibler divergence:

$$D_{LW}(p,q) = D_{KL}\left(p, \frac{1}{2}p + \frac{1}{2}q\right).$$

Lin and Wong have established the following inequalities

(1.12)
$$D_{LW}(p,q) \le \frac{1}{2} D_{KL}(p,q);$$

$$(1.13) D_{LW}(p,q) + D_{LW}(q,p) < D_v(p,q) < 2;$$

$$(1.14) D_{LW}(p,q) \le 1.$$

In [45], Shioya and Da-te improved (1.12) - (1.14) by showing that

$$D_{LW}(p,q) \le \frac{1}{2} D_v(p,q) \le 1.$$

In the same paper [45], the authors introduced the generalised Lin-Wong f-divergence $D_f\left(p, \frac{1}{2}p + \frac{1}{2}q\right)$ and the Hermite-Hadamard (HH) divergence

$$(1.15) D_{HH}^{f}\left(p,q\right) := \int_{\chi} p\left(x\right) \frac{\int_{1}^{\frac{q\left(x\right)}{p\left(x\right)}} f\left(t\right) dt}{\frac{q\left(x\right)}{p\left(x\right)} - 1} d\mu\left(x\right), \ p,q \in \Omega$$

and, by use of the Hermite-Hadamard inequality for convex functions, proved the following basic inequality

(1.16)
$$D_f\left(p, \frac{1}{2}p + \frac{1}{2}q\right) \le D_{HH}^f(p, q) \le \frac{1}{2}D_f(p, q),$$

provided that f is convex and normalised, i.e., f(1) = 0.

In this paper we point out new inequalites for the HH-divergence, which also improve the above result (1.16).

For classical and new results in comparing different kinds of divergence measures, see the papers [1]-[45] where further references are given.

2. The Results

In the following, we assume everywhere that the mapping $f:(0,\infty)\to\mathbb{R}$ is convex and normalised.

The following result holds.

Theorem 1. Let $p, q \in \nleq$, then we have the inequality,

$$(2.1) D_{f}\left(p, \frac{1}{2}p + \frac{1}{2}q\right)$$

$$\leq \lambda D_{f}\left(p, p + \frac{\lambda}{2}(q - p)\right) + (1 - \lambda) D_{f}\left(p, \frac{p + q}{2} + \frac{\lambda}{2}(q - p)\right)$$

$$\leq D_{HH}^{f}(p, q) \leq \frac{1}{2} \left[D_{f}(p, (1 - \lambda) p + \lambda q) + (1 - \lambda) D_{f}(p, q)\right]$$

$$\leq \frac{1}{2} D_{f}(p, q),$$

for all $\lambda \in [0,1]$.

Proof. First, the following refinement of the Hermite-Hadamard inequality is proved.

$$(2.2) f\left(\frac{a+b}{2}\right)$$

$$\leq \lambda f\left(a+\lambda\cdot\frac{b-a}{2}\right) + (1-\lambda)f\left(\frac{a+b}{2}+\lambda\cdot\frac{b-a}{2}\right)$$

$$\leq \frac{1}{b-a}\int_{a}^{b}f(u)\,du \leq \frac{1}{2}\left[f\left((1-\lambda)a+\lambda b\right) + \lambda f(a) + (1-\lambda)f(b)\right]$$

$$\leq \frac{f(a)+f(b)}{2}$$

for all $\lambda \in [0, 1]$.

Applying the Hermite-Hadamard inequality on each subinterval $[a, (1 - \lambda) a + \lambda b]$, $[(1 - \lambda) a + \lambda b, b]$, we have,

$$f\left(\frac{a + (1 - \lambda)a + \lambda b}{2}\right) \times [(1 - \lambda)a + \lambda b - a]$$

$$\leq \int_{a}^{(1 - \lambda)a + \lambda b} f(u) du$$

$$\leq \frac{f((1 - \lambda)a + \lambda b) + f(a)}{2} \times [(1 - \lambda)a + \lambda b - a]$$

and

$$f\left(\frac{(1-\lambda)a+\lambda b+b}{2}\right) \times [b-(1-\lambda)a-\lambda b]$$

$$\leq \int_{(1-\lambda)a+\lambda b}^{b} f(u) du$$

$$\leq \frac{f(b)+f((1-\lambda)a+\lambda b)}{2} \times [b-(1-\lambda)a-\lambda b],$$

which are clearly equivalent to

(2.3)
$$\lambda f\left(a + \lambda \cdot \frac{b-a}{2}\right) \leq \frac{1}{b-a} \int_{a}^{(1-\lambda)a+\lambda b} f(u) du \\ \leq \frac{\lambda f((1-\lambda)a+\lambda b) + \lambda f(a)}{2}$$

and

$$(2.4) (1-\lambda) f\left(\frac{a+b}{2} + \lambda \cdot \frac{b-a}{2}\right)$$

$$\leq \frac{1}{b-a} \int_{(1-\lambda)a+\lambda b}^{b} f(u) du$$

$$\leq \frac{(1-\lambda) f(b) + (1-\lambda) f((1-\lambda)a + \lambda b)}{2}$$

respectively.

Summing (2.3) and (2.4), we obtain the second and first inequality in (2.2). By the convexity property, we obtain

$$\begin{split} &\lambda f\left(a+\lambda\cdot\frac{b-a}{2}\right)+(1-\lambda)\,f\left(\frac{a+b}{2}+\lambda\cdot\frac{b-a}{2}\right)\\ \geq & f\left[\lambda\left(a+\lambda\cdot\frac{b-a}{2}\right)+(1-\lambda)\left(\frac{a+b}{2}+\lambda\cdot\frac{b-a}{2}\right)\right]\\ = & f\left(\frac{a+b}{2}\right) \end{split}$$

and the first inequality in (2.1) is proved.

The latter inequality is obvious by the convexity property of f.

Now, if we choose a=1 and $b=\frac{q(x)}{p(x)}, x\in\chi$, in (2.2) and multiply by $p(x)\geq 0$, $x\in\chi$, we get

$$\begin{split} & p\left(x\right)f\left(\frac{p\left(x\right)+q\left(x\right)}{2p\left(x\right)}\right) \\ \leq & \lambda p\left(x\right)f\left(\frac{p\left(x\right)+\lambda\left(q\left(x\right)-p\left(x\right)\right)}{2p\left(x\right)}\right) \\ & + \left(1-\lambda\right)p\left(x\right)f\left(\frac{p\left(x\right)+q\left(x\right)}{2p\left(x\right)}+\frac{\lambda\left(q\left(x\right)-p\left(x\right)\right)}{2p\left(x\right)}\right) \\ \leq & \frac{p^{2}\left(x\right)}{q\left(x\right)-p\left(x\right)}\int_{1}^{\frac{q\left(x\right)}{p\left(x\right)}}f\left(u\right)du \\ \leq & \frac{1}{2}\left[f\left(\frac{\left(1-\lambda\right)p\left(x\right)+\lambda q\left(x\right)}{p\left(x\right)}\right)p\left(x\right)+\lambda p\left(x\right)f\left(1\right)+\left(1-\lambda\right)p\left(x\right)f\left(\frac{q\left(x\right)}{p\left(x\right)}\right)\right] \\ \leq & \frac{p\left(x\right)f\left(1\right)+p\left(x\right)f\left(\frac{q\left(x\right)}{p\left(x\right)}\right)}{2}. \end{split}$$

Integrating on χ and taking into account the definition of f-divergence (1.10) and the Hermite-Hadamard divergence (1.15), we obtain (2.1).

Remark 1. If $\lambda = 0$ or $\lambda = 1$, then by (2.1), we obtain the inequality (1.16).

Corollary 1. Let $p, q \in \Omega$, then we have the inequality,

$$(2.5) \quad D_{f}\left(p, \frac{p+q}{2}\right) \leq \frac{1}{2}\left[D_{f}\left(p, \frac{3p+q}{4}\right) + D_{f}\left(p, \frac{p+3q}{4}\right)\right]$$

$$\leq D_{HH}^{f}\left(p, q\right) \leq \frac{1}{2}\left[D_{f}\left(p, \frac{p+q}{2}\right) + \frac{1}{2}D_{f}\left(p, q\right)\right]$$

$$\leq \frac{1}{2}D_{f}\left(p, q\right),$$

which is obtained by taking $\lambda = \frac{1}{2}$ in (2.1).

Remark 2. If we replace λ by $(1 - \lambda)$ in (2.1), we have,

$$(2.6) D_{f}\left(p, \frac{p+q}{2}\right)$$

$$\leq (1-\lambda)D_{f}\left(p, \frac{p+q}{2} + \lambda(p-q)\right) + \lambda D_{f}\left(p, q + \lambda \frac{p-q}{2}\right)$$

$$\leq D_{HH}^{f}\left(p, q\right) \leq \frac{1}{2}\left[D_{f}\left(p, \lambda p + (1-\lambda)q\right) + \lambda D_{f}\left(p, q\right)\right]$$

$$\leq \frac{1}{2}D_{f}\left(p, q\right).$$

Now, if we add (2.1) and (2.6) and divide by 2, we can state the following corollary.

Corollary 2. Let $p, q \in \Omega$, then we have the inequality,

$$(2.7) D_{f}\left(p, \frac{p+q}{2}\right)$$

$$\leq \lambda \left[D_{f}\left(p, p + \frac{\lambda}{2}(q-p)\right) + D_{f}\left(p, q + \frac{\lambda}{2}(p-q)\right)\right]$$

$$+ (1-\lambda)\left[D_{f}\left(p, \frac{p+q}{2} + \frac{\lambda}{2}(q-p)\right) + D_{f}\left(p, \frac{p+q}{2} + \frac{1}{2}(p-q)\right)\right]$$

$$\leq D_{HH}^{f}(p, q)$$

$$\leq \frac{1}{4}\left[D_{f}(p, (1-\lambda)p + \lambda q) + D_{f}(p, \lambda p + (1-\lambda)q) + D_{f}(p, q)\right]$$

$$\leq \frac{1}{2}D_{f}(p, q),$$

for all $\lambda \in [0,1]$.

We also define the divergence.

(2.8)
$$H_{f}(p,q;t) := \int_{\chi} p(x) f\left[\frac{tq(x) + (1-t)p(x)}{p(x)}\right] d\mu(x)$$
$$= D_{f}(p,tq + (1-t)p).$$

Theorem 2. Let $p, q \in \Omega$, then,

- (i) $H_f(p,q;\cdot)$ is convex on [0,1];
- (ii) We have the bounds

(2.9)
$$\inf_{t \in [0,1]} H_f(p,q;t) = H_f(p,q;0) = 0,$$

(2.10)
$$\sup_{t \in [0,1]} H_f(p,q;t) = H_f(p,q;1) = D_f(p,q),$$

and the inequality

(2.11)
$$H_f(p,q;t) \le tD_f(p,q) \text{ for all } t \in [0,1].$$

(iii) The mapping $H_f(p,q;\cdot)$ is monotonic nondecreasing on [0,1].

Proof. (i) Let
$$t_{1}, t_{2} \in [0, 1]$$
 and $\alpha, \beta \in [0, 1]$ with $\alpha + \beta = 1$, then,
$$H_{f}(p, q; \alpha t_{1} + \beta t_{2})$$

$$= \int_{\chi} p(x) f\left[\frac{(\alpha t_{1} + \beta t_{2}) q(x) + (1 - \alpha t_{1} - \beta t_{2}) p(x)}{q(x)}\right] d\mu(x)$$

$$= \int_{\chi} p(x) f\left[\alpha \cdot \frac{[t_{1}q(x) + (1 - t_{1}) p(x)]}{q(x)} + \beta \cdot \frac{[t_{2}q(x) + (1 - t_{2}) p(x)]}{q(x)}\right] d\mu(x)$$

$$\leq \alpha \cdot \int_{\chi} p(x) f\left[\frac{t_{1}q(x) + (1 - t_{1}) p(x)}{q(x)}\right] d\mu(x)$$

$$+\beta \cdot \int_{\chi} p(x) f\left[\frac{t_{2}q(x) + (1 - t_{2}) p(x)}{q(x)}\right] d\mu(x)$$

$$= \alpha H_{f}(p, q, t_{1}) + \beta H_{f}(p, q, t_{2})$$

and convexity is proved.

(ii) Using Jensen's inequality, we have:

$$H_{f}(p,q,t) \geq f\left[\int_{\chi} p(x) \left[\frac{tq(x) + (1-t)p(x)}{q(x)}\right] d\mu(x)\right]$$

$$= f\left[t\int_{\chi} q(x) d\mu(x) + (1-t)\int_{\chi} p(x) d\mu(x)\right]$$

$$= f(1) = 0 = H_{f}(p,q,0).$$

Also, by convexity of f, we have,

$$\begin{split} H_{f}\left(p,q,t\right) & \leq & \int_{\chi} p\left(x\right) \left[tf\left(\frac{q\left(x\right)}{p\left(x\right)}\right) + \left(1-t\right)f\left(1\right) \right] d\mu\left(x\right) \\ & \leq & t\int_{\chi} p\left(x\right)f\left(\frac{q\left(x\right)}{p\left(x\right)}\right) d\mu\left(x\right) + \left(1-t\right)f\left(1\right)\int_{\chi} p\left(x\right) d\mu\left(x\right) \\ & = & tD_{f}\left(p,q\right), \end{split}$$

and the statement (ii) is proved.

(iii) Let $t_1, t_2 \in [0, 1]$ with $t_2 > t_1$. As $H_f(p, q; \cdot)$ is convex, then

$$\frac{H_{f}\left(p,q,t_{2}\right)-H_{f}\left(p,q,t_{1}\right)}{t_{2}-t_{1}}\geq\frac{H_{f}\left(p,q,t_{1}\right)-H_{f}\left(p,q,0\right)}{t_{1}-0}$$

and as

$$H_f(p, q, t_1) \ge H_f(p, q, 0) = 0,$$

we deduce that $H_f(p, q, t_1) \leq H_f(p, q, t_2)$, which proves the monotonicity of $H_f(p, q, \cdot)$.

Remark 3. If we write (2.11) in terms of 1-t rather than t, we obtain

$$(2.12) H_f(p,q,1-t) \le (1-t) D_f(p,q), t \in [0,1].$$

Adding (2.11) and (2.12), we get,

$$(2.13) H_f(p,q,t) + H_f(p,q,1-t) \le D_f(p,q)$$

for all $t \in [0, 1]$.

Remark 4. For $t \in \begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$, we have the inequality,

(2.14)
$$D_{f}\left(p, \frac{1}{2}p + \frac{1}{2}q\right) \leq D_{f}\left(p, tq + (1-t)p\right) \leq tD_{f}\left(p, q\right),$$

which is similar to (1.13).

We can also define the divergence,

$$(2.15) \quad F_{f}\left(p,q;t\right) := \int_{\mathcal{X}} \int_{\mathcal{X}} p\left(x\right) p\left(y\right) f\left[t \cdot \frac{q\left(x\right)}{p\left(x\right)} + \left(1-t\right) \cdot \frac{q\left(y\right)}{p\left(y\right)}\right] d\mu\left(x\right) d\mu\left(y\right),$$

where $p, q \in \Omega$ and $t \in [0, 1]$.

The properties of this mapping are embodied in the following theorem.

Theorem 3. Let $p, q \in \Omega$, then,

(i) $F_f(p,q;\cdot)$ is symmetrical about $\frac{1}{2}$, that is,

$$(2.16) F_f(p,q;t) = F_f(p,q;1-t) for all t \in [0,1].$$

(ii) F is convex on [0,1];

(iii) We have the bounds:

(2.17)
$$\sup_{t \in [0,1]} F_f(p,q;t) = F_f(p,q;0) = F_f(p,q;1) = D_f(p,q),$$

(2.18)
$$\inf_{t \in [0,1]} F_f(p,q;t) = F_f\left(p,q;\frac{1}{2}\right)$$

$$= \int_{\chi} \int_{\chi} p(x) p(y) f\left[\frac{q(x) p(y) + p(x) q(y)}{2p(x) q(y)}\right] d\mu(x) d\mu(y)$$

$$\geq 0;$$

- (iv) $F_f(p,q;\cdot)$ is nondecreasing on $\left[0,\frac{1}{2}\right]$ and nonincreasing on $\left[\frac{1}{2},1\right]$;
- (v) We have the inequality:

$$(2.19) F_f(p,q;t) \ge \max\{H_f(p,q;t); H_f(p,q;1-t)\} for all t \in [0,1].$$

Proof. (i) Is obvious.

- (ii) Follows by the convexity of f in a similar way to that in the proof of Theorem 2.
- (iii) For all $x, y \in \chi$ we have:

$$f\left[t\cdot\frac{q\left(x\right)}{p\left(x\right)}+\left(1-t\right)\cdot\frac{q\left(y\right)}{p\left(y\right)}\right]\leq t\cdot f\left(\frac{q\left(x\right)}{p\left(x\right)}\right)+\left(1-t\right)\cdot f\left(\frac{q\left(y\right)}{p\left(y\right)}\right)$$

for any $t \in [0, 1]$.

Multiplying by $p(x) p(y) \ge 0$ and integrating over χ^2 , we write,

$$F_{f}(p,q;t) \leq \int_{\chi} \int_{\chi} p(x) p(y) \left[t \cdot f\left(\frac{q(x)}{p(x)}\right) + (1-t) \cdot f\left(\frac{q(y)}{p(y)}\right) \right] d\mu(x) d\mu(y)$$

$$= t \int_{\chi} p(y) d\mu(y) \int_{\chi} p(x) f\left(\frac{q(x)}{p(x)}\right) d\mu(x)$$

$$+ (1-t) \int_{\chi} d\mu(x) \int_{\chi} p(y) f\left(\frac{q(y)}{p(y)}\right) d\mu(y)$$

$$= t \cdot D_{f}(p,q) + (1-t) \cdot D_{f}(p,q) = D_{f}(p,q)$$

$$= F_{f}(p,q;0) = F_{f}(p,q;1)$$

and the bound (2.17) is proved.

Since f is convex, then for all $t \in [0,1]$ and $x, y \in \chi$, we have

$$\begin{split} &\frac{1}{2}\left\{f\left[t\cdot\frac{q\left(x\right)}{p\left(x\right)}+\left(1-t\right)\cdot\frac{q\left(y\right)}{p\left(y\right)}\right]+f\left[\left(1-t\right)\cdot\frac{q\left(x\right)}{p\left(x\right)}+t\cdot\frac{q\left(y\right)}{p\left(y\right)}\right]\right\}\\ \geq &f\left[\frac{1}{2}\left(\frac{q\left(x\right)}{p\left(x\right)}+\frac{q\left(y\right)}{p\left(y\right)}\right)\right]. \end{split}$$

Multiplying by $p(x) p(y) \ge 0$ and integrating over χ^2 , we have,

$$\frac{1}{2} \left[F_f(p,q;t) + F_f(p,q;1-t) \right]$$

$$\geq \int_{\mathcal{X}} \int_{\mathcal{X}} p(x) p(y) f\left[\frac{1}{2} \left(\frac{q(x)}{p(x)} + \frac{q(y)}{p(y)} \right) \right] d\mu(x) d\mu(y)$$

and the first part of (2.18) is proved.

Using Jensen's integral inequality, we may write:

$$\int_{\chi} \int_{\chi} f\left[\frac{1}{2} \left(\frac{q(x) p(y) + p(x) q(y)}{p(x) q(y)}\right)\right] p(x) p(y) d\mu(x) d\mu(y)
\geq f\left[\int_{\chi} \int_{\chi} \frac{1}{2} \left(\frac{q(x) p(y) + p(x) q(y)}{p(x) q(y)}\right) p(x) p(y) d\mu(x) d\mu(y)\right]
= f\left[\frac{1}{2} \left[\int_{\chi} p(x) d\mu(x) \int_{\chi} p(y) d\mu(y) + \int_{\chi} q(x) d\mu(x) \int_{\chi} q(y) d\mu(y)\right]\right]
= f(1) = 0$$

and the second part of (2.18) is proved.

(iv) The mapping $F_f(p,q;\cdot)$ being convex on [0,1], we may write, for $1 \ge t_2 > t_1 \ge \frac{1}{2}$, that,

$$\frac{F_{f}\left(p,q;t_{2}\right)-F_{f}\left(p,q;t_{1}\right)}{t_{2}-t_{1}}\geq\frac{F_{f}\left(p,q;t_{1}\right)-F_{f}\left(p,q;\frac{1}{2}\right)}{t_{1}-\frac{1}{2}}$$

and as

$$F_{f}\left(p,q;t_{1}\right)\geq F_{f}\left(p,q;\frac{1}{2}\right),\ t_{1}\geq\frac{1}{2},$$

we deduce that $F_f(p,q;t_2) \geq F_f(p,q;t_1)$, i.e., the mapping $F_f(p,q;\cdot)$ is monotonically nondecreasing on $\left[0,\frac{1}{2}\right]$.

Similarly, we can prove that $F_f(p,q;\cdot)$ is monotonically nonincreasing on $[0,\frac{1}{2}]$, and the statement (iv) is proved.

(v) Using Jensen's integral inequality, we have,

$$\begin{split} &\int_{\chi} p\left(y\right) f\left[t \cdot \frac{q\left(x\right)}{p\left(x\right)} + \left(1 - t\right) \cdot \frac{q\left(y\right)}{p\left(y\right)}\right] d\mu\left(y\right) \\ & \geq & f\left[\int_{\chi} p\left(y\right) \left[t \cdot \frac{q\left(x\right)}{p\left(x\right)} + \left(1 - t\right) \cdot \frac{q\left(y\right)}{p\left(y\right)}\right] d\mu\left(y\right)\right] \\ & = & f\left[t \cdot \frac{q\left(x\right)}{p\left(x\right)} \int_{\chi} p\left(y\right) d\mu\left(y\right) + \left(1 - t\right) \cdot \int_{\chi} q\left(y\right) d\mu\left(y\right)\right] \\ & = & f\left[t \cdot \frac{q\left(x\right)}{p\left(x\right)} + \left(1 - t\right)\right]. \end{split}$$

Multiplying by $p(x) \ge 0$ and integrating over χ , we have,

$$F_{f}(p,q;t) \geq \int_{\chi} p(x) f\left[t \cdot \frac{q(x)}{p(x)} + (1-t)\right] d\mu(x)$$

$$= H_{f}(p,q;t),$$

for all $t \in [0, 1]$.

Now, as

$$F_f(p,q;1-t) \ge H_f(p,q;1-t)$$

and $F_f(p,q;t) = F_f(p,q;1-t)$ for all $t \in [0,1]$, the inequality (2.19) is completely proved.

References

- H. JEFFREYS, An invariant form for the prior probability in estimating problems, Proc. Roy. Soc. London, 186 A (1946), 453-461.
- [2] S. KULLBACK and R.A. LEIBLER, On information and sufficiency, Ann. Math. Stat., 22 (1951), 79-86.
- [3] A. RÉNYI, On measures of entropy and information, Proc. Fourth Berkeley Symp. Math. Stat. and Prob., University of California Press, 1 (1961), 547-561.
- [4] J.H. HAVRDA and F. CHARVAT, Quantification method classification process: concept of structural α-entropy, Kybernetika, 3 (1967), 30-35.
- [5] J.N. KAPUR, A comparative assessment of various measures of directed divergence, Advances in Management Studies, 3 (1984), 1-16.
- [6] B.D. SHARMA and D.P. MITTAL, New non-additive measures of relative information, Journ. Comb. Inf. Sys. Sci., 2 (4)(1977), 122-132.
- [7] I. BURBEA and C.R. RAO, On the convexity of some divergence measures based on entropy function, IEEE Trans. Inf. Th., 28 (3) (1982), 489-495.
- [8] C.R. RAO, Diversity and dissimilarity coefficients: a unified approach, Theoretic Population Biology, 21 (1982), 24-43.
- [9] J. LIN, Divergence measures based on the Shannon entropy, *IEEE Trans. Inf. Th.*, **37** (1) (1991), 145-151.
- [10] I. CSISZÁR, Information-type measures of difference of probability distributions and indirect observations, Studia Math. Hungarica, 2 (1967), 299-318.
- [11] I. CSISZÁR, On topological properties of f-divergences, Studia Math. Hungarica, 2 (1967), 329-339
- [12] S.M. ALI and S.D. SILVEY, A general class of coefficients of divergence of one distribution from another, J. Roy. Statist. Soc. Sec B, 28 (1966), 131-142.
- [13] I. VAJDA, Theory of Statistical Inference and Information, Dordrecht-Boston, Kluwer Academic Publishers, 1989.
- [14] M. MEI, The theory of genetic distance and evaluation of human races, Japan J. Human Genetics, 23 (1978), 341-369.
- [15] A. SEN, On Economic Inequality, Oxford University Press, London 1973.
- [16] H. THEIL, Economics and Information Theory, North-Holland, Amsterdam, 1967.
- [17] H. THEIL, Statistical Decomposition Analysis, North-Holland, Amsterdam, 1972.
- [18] E.C. PIELOU, Ecological Diversity, Wiley, New York, 1975.
- [19] D.V. GOKHALE and S. KULLBACK, Information in Contingency Tables, New York, Marcel Dekker, 1978.
- [20] C.K. CHOW and C.N. LIN, Approximating discrete probability distributions with dependence trees, IEEE Trans. Inf. Th., 14 (3) (1968), 462-467.
- [21] D. KAZAKOS and T. COTSIDAS, A decision theory approach to the approximation of discrete probability densities, IEEE Trans. Perform. Anal. Machine Intell., 1 (1980), 61-67.
- [22] T.T. KADOTA and L.A. SHEPP, On the best finite set of linear observables for discriminating two Gaussian signals, IEEE Trans. Inf. Th., 13 (1967), 288-294.
- [23] T. KAILATH, The divergence and Bhattacharyya distance measures in signal selection, IEEE Trans. Comm. Technology., Vol COM-15 (1967), 52-60.
- [24] M. BETH BASSAT, f-entropies, probability of error and feature selection, Inform. Control, 39 (1978), 227-242.
- [25] C.H. CHEN, Statistical Pattern Recognition, Rocelle Park, New York, Hoyderc Book Co., 1973.
- [26] V.A. VOLKONSKI and J. A. ROZANOV, Some limit theorems for random function -I, (English Trans.), Theory Prob. Appl., (USSR), 4 (1959), 178-197.
- [27] M.S. PINSKER, Information and Information Stability of Random variables and processes, (in Russian), Moscow: Izv. Akad. Nouk, 1960.
- [28] I. CSISZÁR, A note on Jensen's inequality, Studia Sci. Math. Hung., 1 (1966), 185-188.
- [29] H.P. McKEAN, JR., Speed of approach to equilibrium for Koc's caricature of a Maximilian gas, Arch. Ration. Mech. Anal., 21 (1966), 343-367.
- [30] J.H.B. KEMPERMAN, On the optimum note of transmitting information, Ann. Math. Statist., 40 (1969), 2158-2177.

- [31] S. KULLBACK, A lower bound for discrimination information in terms of variation, IEEE Trans. Inf. Th., 13 (1967), 126-127.
- [32] S. KULLBACK, Correction to a lower bound for discrimination information in terms of variation, *IEEE Trans. Inf. Th.*, **16** (1970), 771-773.
- [33] I. VAJDA, Note on discrimination information and variation, IEEE Trans. Inf. Th., 16 (1970), 771-773.
- [34] G.T. TOUSSAINT, Sharper lower bounds for discrimination in terms of variation, IEEE Trans. Inf. Th., 21 (1975), 99-100.
- [35] F. TOPSOE, Some inequalities for information divergence and related measures of discrimination, Res. Rep. Coll., RGMIA, 2 (1) (1999), 85-98.
- [36] L. LECAM, Asymptotic Methods in Statistical Decision Theory, New York: Springer, 1986.
- [37] D. DACUNHA-CASTELLE, Ecole d'ête de Probability de Saint-Flour, III-1977, Berlin, Heidelberg: Springer 1978.
- [38] C. KRAFT, Some conditions for consistency and uniform consistency of statistical procedures, Univ. of California Pub. in Statistics, 1 (1955), 125-142.
- [39] S. KULLBACK and R.A. LEIBLER, On information and sufficiency, *Annals Math. Statist.*, **22** (1951), 79-86.
- [40] E. HELLINGER, Neue Bergrüirdung du Theorie quadratisher Formerus von uneudlichvieleu Veränderlicher, J. für reine and Augeur. Math., 36 (1909), 210-271.
- [41] A. BHATTACHARYYA, On a measure of divergence between two statistical populations defined by their probability distributions, *Bull. Calcutta Math. Soc.*, **35** (1943), 99-109.
- [42] I. J. TANEJA, Generalised Information Measures and their Applications (http://www.mtm.ufsc.br/~taneja/bhtml/bhtml.html).
- [43] I. CSISZÁR and J. KÖRNER, Information Theory: Coding Theorem for Discrete Memoryless Systems, Academic Press, New York, 1981.
- [44] J. LIN and S.K.M. WONG, A new directed divergence measure and its characterization, Int. J. General Systems, 17 (1990), 73-81.
- [45] H. SHIOYA and T. DA-TE, A generalisation of Lin divergence and the derivative of a new information divergence, Elec. and Comm. in Japan, 78 (7) (1995), 37-40.

School of Communications and Informatics, Victoria University of Technology, PO Box 14428, Melbourne City MC, Victoria 8001, Australia.

E-mail address: neil@matilda.vu.edu.au URL: http://sci.vu.edu.au/staff/neilb.html

 $E ext{-}mail\ address: pc@matilda.vu.edu.au}\ URL: http://rgmia.vu.edu.au/cerone$

E-mail address: sever.dragomir@vu.edu.au

 URL : http://rgmia.vu.edu.au/SSDragomirWeb.html