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SOME NEW INEQUALITIES FOR HERMITE-HADAMARD
DIVERGENCE IN INFORMATION THEORY

N.S. BARNETT, P. CERONE, AND S.S DRAGOMIR

Abstract. In this paper we prove some new inequalities for Hermite-Hadamard

divergence in Information Theory.

1. Introduction

One of the important issues in many applications of Probability Theory is finding
an appropriate measure of distance (or difference or discrimination ) between two
probability distributions. A number of divergence measures for this purpose have
been proposed and extensively studied by Jeffreys [1], Kullback and Leibler [2],
Rényi [3], Havrda and Charvat [4], Kapur [5], Sharma and Mittal [6], Burbea and
Rao [7], Rao [8], Lin [9], Csiszár [10], Ali and Silvey [12], Vajda [13], Shioya and
Da-te [40] and others (see for example [5] and the references therein).

These measures have been applied in a variety of fields such as: anthropology [8],
genetics [14], finance, economics, and political science [15], [16], [17], biology [18],
the analysis of contingency tables [19], approximation of probability distributions
[20], [21], signal processing [22], [23] and pattern recognition [24], [25]. A number
of these measures of distance are specific cases of f -divergence and so further ex-
ploration of this concept will have a flow on effect to other measures of distance
and to areas in which they are applied.

Let the set χ and the σ−finite measure µ be given and consider the set of all prob-
ability densities on µ to be defined on Ω :=

{
p|p : χ → R, p (x) ≥ 0,

∫
p (x) dµ (x) = 1

}
.

The Kullback-Leibler divergence [2] is well known among the χ information diver-
gences. It is defined as:

(1.1) DKL (p, q) :=
∫

χ

p (x) log
[
p (x)
q (x)

]
dµ (x) , p, q ∈ Ω,

where log is to base 2.
In Information Theory and Statistics, various divergences are applied in addition

to the Kullback-Leibler divergence. These are the: variation distance Dv, Hellinger
distance DH [1], χ2−divergence Dχ2 , α−divergence Dα, Bhattacharyya distance
DB [2], Harmonic distance DHa, Jeffreys distance DJ [1], triangular discrimination
D∆ [35], etc... They are defined as follows:

(1.2) Dv (p, q) :=
∫

χ

|p (x)− q (x)| dµ (x) , p, q ∈ Ω;
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(1.3) DH (p, q) :=
∫

χ

∣∣∣√p (x)−
√

q (x)
∣∣∣ dµ (x) , p, q ∈ Ω;

(1.4) Dχ2 (p, q) :=
∫

χ

p (x)

[(
q (x)
p (x)

)2

− 1

]
dµ (x) , p, q ∈ Ω;

(1.5) Dα (p, q) :=
4

1− α2

[
1−

∫
χ

[p (x)]
1−α

2 [q (x)]
1+α

2 dµ (x)
]

, p, q ∈ Ω;

(1.6) DB (p, q) :=
∫

χ

√
p (x) q (x)dµ (x) , p, q ∈ Ω;

(1.7) DHa (p, q) :=
∫

χ

2p (x) q (x)
p (x) + q (x)

dµ (x) , p, q ∈ Ω;

(1.8) DJ (p, q) :=
∫

χ

[p (x)− q (x)] ln
[
p (x)
q (x)

]
dµ (x) , p, q ∈ Ω;

(1.9) D∆ (p, q) :=
∫

χ

[p (x)− q (x)]2

p (x) + q (x)
dµ (x) , p, q ∈ Ω.

For other divergence measures, see the paper [5] by Kapur or the book on line [6]
by Taneja. For a comprehensive collection of preprints available on line, see the
RGMIA web site http://rgmia.vu.edu.au/papersinfth.html

Csiszár f−divergence is defined as follows [10]

(1.10) Df (p, q) :=
∫

χ

p (x) f

[
q (x)
p (x)

]
dµ (x) , p, q ∈ Ω,

where f is convex on (0,∞). It is assumed that f (u) is zero and strictly convex at
u = 1. By appropriately defining this convex function, various divergences are de-
rived. All the above distances (1.1)−(1.9), are particular instances of f−divergence.
There are also many others that are not in this class (see for example [5] or [6]).
For the basic properties of f−divergence see [7]-[10].

In [11], Lin and Wong (see also [9]) introduced the following divergence

(1.11) DLW (p, q) :=
∫

χ

p (x) log
[

p (x)
1
2p (x) + 1

2q (x)

]
dµ (x) , p, q ∈ Ω.

This can be represented as follows, using the Kullback-Leibler divergence:

DLW (p, q) = DKL

(
p,

1
2
p +

1
2
q

)
.

Lin and Wong have established the following inequalities

(1.12) DLW (p, q) ≤ 1
2
DKL (p, q) ;

(1.13) DLW (p, q) + DLW (q, p) ≤ Dv (p, q) ≤ 2;

(1.14) DLW (p, q) ≤ 1.

In [45], Shioya and Da-te improved (1.12)− (1.14) by showing that

DLW (p, q) ≤ 1
2
Dv (p, q) ≤ 1.
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In the same paper [45], the authors introduced the generalised Lin-Wong f−
divergence Df

(
p, 1

2p + 1
2q

)
and the Hermite-Hadamard (HH) divergence

(1.15) Df
HH (p, q) :=

∫
χ

p (x)
∫ q(x)

p(x)
1 f (t) dt

q(x)
p(x) − 1

dµ (x) , p, q ∈ Ω

and, by use of the Hermite-Hadamard inequality for convex functions, proved the
following basic inequality

(1.16) Df

(
p,

1
2
p +

1
2
q

)
≤ Df

HH (p, q) ≤ 1
2
Df (p, q) ,

provided that f is convex and normalised, i.e., f (1) = 0.
In this paper we point out new inequalites for the HH−divergence, which also

improve the above result (1.16).
For classical and new results in comparing different kinds of divergence measures,

see the papers [1]-[45] where further references are given.

2. The Results

In the following, we assume everywhere that the mapping f : (0,∞) → R is
convex and normalised.

The following result holds.

Theorem 1. Let p, q ∈ 
, then we have the inequality,

Df

(
p,

1
2
p +

1
2
q

)
(2.1)

≤ λDf

(
p, p +

λ

2
(q − p)

)
+ (1− λ) Df

(
p,

p + q

2
+

λ

2
(q − p)

)
≤ Df

HH (p, q) ≤ 1
2

[Df (p, (1− λ) p + λq) + (1− λ) Df (p, q)]

≤ 1
2
Df (p, q) ,

for all λ ∈ [0, 1].

Proof. First, the following refinement of the Hermite-Hadamard inequality is proved.

f

(
a + b

2

)
(2.2)

≤ λf

(
a + λ · b− a

2

)
+ (1− λ) f

(
a + b

2
+ λ · b− a

2

)
≤ 1

b− a

∫ b

a

f (u) du ≤ 1
2

[f ((1− λ) a + λb) + λf (a) + (1− λ) f (b)]

≤ f (a) + f (b)
2

for all λ ∈ [0, 1].
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Applying the Hermite-Hadamard inequality on each subinterval [a, (1− λ) a + λb] ,
[(1− λ) a + λb, b], we have,

f

(
a + (1− λ) a + λb

2

)
× [(1− λ) a + λb− a]

≤
∫ (1−λ)a+λb

a

f (u) du

≤ f ((1− λ) a + λb) + f (a)
2

× [(1− λ) a + λb− a]

and

f

(
(1− λ) a + λb + b

2

)
× [b− (1− λ) a− λb]

≤
∫ b

(1−λ)a+λb

f (u) du

≤ f (b) + f ((1− λ) a + λb)
2

× [b− (1− λ) a− λb] ,

which are clearly equivalent to

λf

(
a + λ · b− a

2

)
≤ 1

b− a

∫ (1−λ)a+λb

a

f (u) du(2.3)

≤ λf ((1− λ) a + λb) + λf (a)
2

and

(1− λ) f

(
a + b

2
+ λ · b− a

2

)
(2.4)

≤ 1
b− a

∫ b

(1−λ)a+λb

f (u) du

≤ (1− λ) f (b) + (1− λ) f ((1− λ) a + λb)
2

respectively.
Summing (2.3) and (2.4), we obtain the second and first inequality in (2.2).
By the convexity property, we obtain

λf

(
a + λ · b− a

2

)
+ (1− λ) f

(
a + b

2
+ λ · b− a

2

)
≥ f

[
λ

(
a + λ · b− a

2

)
+ (1− λ)

(
a + b

2
+ λ · b− a

2

)]
= f

(
a + b

2

)
and the first inequality in (2.1) is proved.

The latter inequality is obvious by the convexity property of f .
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Now, if we choose a = 1 and b = q(x)
p(x) , x ∈ χ, in (2.2) and multiply by p (x) ≥ 0,

x ∈ χ, we get

p (x) f

(
p (x) + q (x)

2p (x)

)
≤ λp (x) f

(
p (x) + λ (q (x)− p (x))

2p (x)

)
+(1− λ) p (x) f

(
p (x) + q (x)

2p (x)
+

λ (q (x)− p (x))
2p (x)

)
≤ p2 (x)

q (x)− p (x)

∫ q(x)
p(x)

1

f (u) du

≤ 1
2

[
f

(
(1− λ) p (x) + λq (x)

p (x)

)
p (x) + λp (x) f (1) + (1− λ) p (x) f

(
q (x)
p (x)

)]

≤
p (x) f (1) + p (x) f

(
q(x)
p(x)

)
2

.

Integrating on χ and taking into account the definition of f−divergence (1.10) and
the Hermite-Hadamard divergence (1.15), we obtain (2.1).

Remark 1. If λ = 0 or λ = 1, then by (2.1), we obtain the inequality (1.16).

Corollary 1. Let p, q ∈ Ω, then we have the inequality,

Df

(
p,

p + q

2

)
≤ 1

2

[
Df

(
p,

3p + q

4

)
+ Df

(
p,

p + 3q

4

)]
(2.5)

≤ Df
HH (p, q) ≤ 1

2

[
Df

(
p,

p + q

2

)
+

1
2
Df (p, q)

]
≤ 1

2
Df (p, q) ,

which is obtained by taking λ = 1
2 in (2.1).

Remark 2. If we replace λ by (1− λ) in (2.1), we have,

Df

(
p,

p + q

2

)
(2.6)

≤ (1− λ)Df

(
p,

p + q

2
+ λ (p− q)

)
+ λDf

(
p, q + λ

p− q

2

)
≤ Df

HH (p, q) ≤ 1
2

[Df (p, λp + (1− λ) q) + λDf (p, q)]

≤ 1
2
Df (p, q) .

Now, if we add (2.1) and (2.6) and divide by 2, we can state the following
corollary.
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Corollary 2. Let p, q ∈ Ω, then we have the inequality,

Df

(
p,

p + q

2

)
(2.7)

≤ λ

[
Df

(
p, p +

λ

2
(q − p)

)
+ Df

(
p, q +

λ

2
(p− q)

)]
+(1− λ)

[
Df

(
p,

p + q

2
+

λ

2
(q − p)

)
+ Df

(
p,

p + q

2
+

1
2

(p− q)
)]

≤ Df
HH (p, q)

≤ 1
4

[Df (p, (1− λ) p + λq) + Df (p, λp + (1− λ) q) + Df (p, q)]

≤ 1
2
Df (p, q) ,

for all λ ∈ [0, 1].
We also define the divergence.

Hf (p, q; t) : =
∫

χ

p (x) f

[
tq (x) + (1− t) p (x)

p (x)

]
dµ (x)(2.8)

= Df (p, tq + (1− t) p) .

Theorem 2. Let p, q ∈ Ω, then,
(i) Hf (p, q; ·) is convex on [0, 1] ;
(ii) We have the bounds

(2.9) inf
t∈[0,1]

Hf (p, q; t) = Hf (p, q; 0) = 0,

(2.10) sup
t∈[0,1]

Hf (p, q; t) = Hf (p, q; 1) = Df (p, q) ,

and the inequality

(2.11) Hf (p, q; t) ≤ tDf (p, q) for all t ∈ [0, 1] .

(iii) The mapping Hf (p, q; ·) is monotonic nondecreasing on [0, 1].

Proof. (i) Let t1, t2 ∈ [0, 1] and α, β ∈ [0, 1] with α + β = 1, then,

Hf (p, q;αt1 + βt2)

=
∫

χ

p (x) f

[
(αt1 + βt2) q (x) + (1− αt1 − βt2) p (x)

q (x)

]
dµ (x)

=
∫

χ

p (x) f

[
α · [t1q (x) + (1− t1) p (x)]

q (x)
+ β · [t2q (x) + (1− t2) p (x)]

q (x)

]
dµ (x)

≤ α ·
∫

χ

p (x) f

[
t1q (x) + (1− t1) p (x)

q (x)

]
dµ (x)

+β ·
∫

χ

p (x) f

[
t2q (x) + (1− t2) p (x)

q (x)

]
dµ (x)

= αHf (p, q, t1) + βHf (p, q, t2)

and convexity is proved.
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(ii) Using Jensen’s inequality, we have:

Hf (p, q, t) ≥ f

[∫
χ

p (x)
[
tq (x) + (1− t) p (x)

q (x)

]
dµ (x)

]
= f

[
t

∫
χ

q (x) dµ (x) + (1− t)
∫

χ

p (x) dµ (x)
]

= f (1) = 0 = Hf (p, q, 0) .

Also, by convexity of f , we have,

Hf (p, q, t) ≤
∫

χ

p (x)
[
tf

(
q (x)
p (x)

)
+ (1− t) f (1)

]
dµ (x)

≤ t

∫
χ

p (x) f

(
q (x)
p (x)

)
dµ (x) + (1− t) f (1)

∫
χ

p (x) dµ (x)

= tDf (p, q) ,

and the statement (ii) is proved.
(iii) Let t1, t2 ∈ [0, 1] with t2 > t1. As Hf (p, q; ·) is convex, then

Hf (p, q, t2)−Hf (p, q, t1)
t2 − t1

≥ Hf (p, q, t1)−Hf (p, q, 0)
t1 − 0

and as
Hf (p, q, t1) ≥ Hf (p, q, 0) = 0,

we deduce that Hf (p, q, t1) ≤ Hf (p, q, t2), which proves the monotonicity
of Hf (p, q, ·).

Remark 3. If we write (2.11) in terms of 1− t rather than t, we obtain

(2.12) Hf (p, q, 1− t) ≤ (1− t)Df (p, q) , t ∈ [0, 1] .

Adding (2.11) and (2.12), we get,

(2.13) Hf (p, q, t) + Hf (p, q, 1− t) ≤ Df (p, q)

for all t ∈ [0, 1].
Remark 4. For t ∈

[
1
2 , 1

]
, we have the inequality,

(2.14) Df

(
p,

1
2
p +

1
2
q

)
≤ Df (p, tq + (1− t) p) ≤ tDf (p, q) ,

which is similar to (1.13).
We can also define the divergence,

(2.15) Ff (p, q; t) :=
∫

χ

∫
χ

p (x) p (y) f

[
t · q (x)

p (x)
+ (1− t) · q (y)

p (y)

]
dµ (x) dµ (y) ,

where p, q ∈ Ω and t ∈ [0, 1].
The properties of this mapping are embodied in the following theorem.

Theorem 3. Let p, q ∈ Ω, then,
(i) Ff (p, q; ·) is symmetrical about 1

2 , that is,

(2.16) Ff (p, q; t) = Ff (p, q; 1− t) for all t ∈ [0, 1] .

(ii) F is convex on [0, 1];
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(iii) We have the bounds:

(2.17) sup
t∈[0,1]

Ff (p, q; t) = Ff (p, q; 0) = Ff (p, q; 1) = Df (p, q) ,

inf
t∈[0,1]

Ff (p, q; t) = Ff

(
p, q;

1
2

)
(2.18)

=
∫

χ

∫
χ

p (x) p (y) f

[
q (x) p (y) + p (x) q (y)

2p (x) q (y)

]
dµ (x) dµ (y)

≥ 0;

(iv) Ff (p, q; ·) is nondecreasing on
[
0, 1

2

]
and nonincreasing on

[
1
2 , 1

]
;

(v) We have the inequality:

(2.19) Ff (p, q; t) ≥ max {Hf (p, q; t) ;Hf (p, q; 1− t)} for all t ∈ [0, 1] .

Proof. (i) Is obvious.
(ii) Follows by the convexity of f in a similar way to that in the proof of

Theorem 2.
(iii) For all x, y ∈ χ we have:

f

[
t · q (x)

p (x)
+ (1− t) · q (y)

p (y)

]
≤ t · f

(
q (x)
p (x)

)
+ (1− t) · f

(
q (y)
p (y)

)
for any t ∈ [0, 1].
Multiplying by p (x) p (y) ≥ 0 and integrating over χ2, we write,

Ff (p, q; t) ≤
∫

χ

∫
χ

p (x) p (y)
[
t · f

(
q (x)
p (x)

)
+ (1− t) · f

(
q (y)
p (y)

)]
dµ (x) dµ (y)

= t

∫
χ

p (y) dµ (y)
∫

χ

p (x) f

(
q (x)
p (x)

)
dµ (x)

+ (1− t)
∫

χ

dµ (x)
∫

χ

p (y) f

(
q (y)
p (y)

)
dµ (y)

= t ·Df (p, q) + (1− t) ·Df (p, q) = Df (p, q)
= Ff (p, q; 0) = Ff (p, q; 1)

and the bound (2.17) is proved.
Since f is convex, then for all t ∈ [0, 1] and x, y ∈ χ, we have

1
2

{
f

[
t · q (x)

p (x)
+ (1− t) · q (y)

p (y)

]
+ f

[
(1− t) · q (x)

p (x)
+ t · q (y)

p (y)

]}
≥ f

[
1
2

(
q (x)
p (x)

+
q (y)
p (y)

)]
.

Multiplying by p (x) p (y) ≥ 0 and integrating over χ2, we have,

1
2

[Ff (p, q; t) + Ff (p, q; 1− t)]

≥
∫

χ

∫
χ

p (x) p (y) f

[
1
2

(
q (x)
p (x)

+
q (y)
p (y)

)]
dµ (x) dµ (y)
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and the first part of (2.18) is proved.
Using Jensen’s integral inequality, we may write:∫

χ

∫
χ

f

[
1
2

(
q (x) p (y) + p (x) q (y)

p (x) q (y)

)]
p (x) p (y) dµ (x) dµ (y)

≥ f

[∫
χ

∫
χ

1
2

(
q (x) p (y) + p (x) q (y)

p (x) q (y)

)
p (x) p (y) dµ (x) dµ (y)

]
= f

[
1
2

[∫
χ

p (x) dµ (x)
∫

χ

p (y) dµ (y) +
∫

χ

q (x) dµ (x)
∫

χ

q (y) dµ (y)
]]

= f (1) = 0

and the second part of (2.18) is proved.
(iv) The mapping Ff (p, q; ·) being convex on [0, 1], we may write, for 1 ≥ t2 >

t1 ≥ 1
2 , that,

Ff (p, q; t2)− Ff (p, q; t1)
t2 − t1

≥
Ff (p, q; t1)− Ff

(
p, q; 1

2

)
t1 − 1

2

and as

Ff (p, q; t1) ≥ Ff

(
p, q;

1
2

)
, t1 ≥

1
2
,

we deduce that Ff (p, q; t2) ≥ Ff (p, q; t1), i.e., the mapping Ff (p, q; ·) is
monotonically nondecreasing on

[
0, 1

2

]
.

Similarly, we can prove that Ff (p, q; ·) is monotonically nonincreasing on[
0, 1

2

]
, and the statement (iv) is proved.

(v) Using Jensen’s integral inequality, we have,∫
χ

p (y) f

[
t · q (x)

p (x)
+ (1− t) · q (y)

p (y)

]
dµ (y)

≥ f

[∫
χ

p (y)
[
t · q (x)

p (x)
+ (1− t) · q (y)

p (y)

]
dµ (y)

]
= f

[
t · q (x)

p (x)

∫
χ

p (y) dµ (y) + (1− t) ·
∫

χ

q (y) dµ (y)
]

= f

[
t · q (x)

p (x)
+ (1− t)

]
.

Multiplying by p (x) ≥ 0 and integrating over χ, we have,

Ff (p, q; t) ≥
∫

χ

p (x) f

[
t · q (x)

p (x)
+ (1− t)

]
dµ (x)

= Hf (p, q; t) ,

for all t ∈ [0, 1].
Now, as

Ff (p, q; 1− t) ≥ Hf (p, q; 1− t)

and Ff (p, q; t) = Ff (p, q; 1− t) for all t ∈ [0, 1], the inequality (2.19) is
completely proved.
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[40] E. HELLINGER, Neue Bergrüirdung du Theorie quadratisher Formerus von uneudlichvieleu
Veränderlicher, J. für reine and Augeur. Math., 36 (1909), 210-271.

[41] A. BHATTACHARYYA, On a measure of divergence between two statistical populations
defined by their probability distributions, Bull. Calcutta Math. Soc., 35 (1943), 99-109.

[42] I. J. TANEJA, Generalised Information Measures and their Applications
(http://www.mtm.ufsc.br/~taneja/bhtml/bhtml.html).
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