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SOME NEW INEQUALITIES FOR HERMITE-HADAMARD
DIVERGENCE IN INFORMATION THEORY

N.S. BARNETT, P. CERONE, AND S.S DRAGOMIR

ABSTRACT. In this paper we prove some new inequalities for Hermite-Hadamard
divergence in Information Theory.

1. INTRODUCTION

One of the important issues in many applications of Probability Theory is finding
an appropriate measure of distance (or difference or discrimination ) between two
probability distributions. A number of divergence measures for this purpose have
been proposed and extensively studied by Jeffreys [1], Kullback and Leibler [2],
Rényi [3], Havrda and Charvat [4], Kapur [5], Sharma and Mittal [6], Burbea and
Rao [7], Rao [8], Lin [9], Csiszdr [10], Ali and Silvey [12], Vajda [13], Shioya and
Da-te [40] and others (see for example [5] and the references therein).

These measures have been applied in a variety of fields such as: anthropology [8],
genetics [14], finance, economics, and political science [15], [16], [17], biology [18],
the analysis of contingency tables [19], approximation of probability distributions
[20], [21], signal processing [22], [23] and pattern recognition [24], [25]. A number
of these measures of distance are specific cases of f-divergence and so further ex-
ploration of this concept will have a flow on effect to other measures of distance
and to areas in which they are applied.

Let the set x and the o —finite measure p be given and consider the set of all prob-
ability densities on p to be defined on 2 := {p|p x—Rop(x) >0, [p)du(z) = 1}.
The Kullback-Leibler divergence [2] is well known among the x information diver-
gences. It is defined as:

(1) Dt .0)i= [ p@oe |25 | dua). naco
X q ()
where log is to base 2.

In Information Theory and Statistics, various divergences are applied in addition
to the Kullback-Leibler divergence. These are the: variation distance D,,, Hellinger
distance Dy [1], x?—divergence D,:, a—divergence D, Bhattacharyya distance
Dg [2], Harmonic distance Dy, Jeffreys distance Dy [1], triangular discrimination
Da [35], etc... They are defined as follows:

(1.2) D, (p.g) = / p(@) —q@)|du (@), pae;
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(1.3) Dy (p, q —/’\/7 F‘d,u , D,q € L
(1.4) D,z (p.q) := /Xp(x) [(%)2 - 1] du(x), p,q €

13 Dalra)i= o |1 [ @) T @ T de@)] . paco

(1.6) Dg (p,q) /\/7@ , PqES
(1.7) Do (p.0) = | 29 (), poac 9,
08 D)= [ -] 28 ). naco
(19) Da(pa) = [ Wdu(x), paen.

For other divergence measures, see the paper [5] by Kapur or the book on line [6]
by Taneja. For a comprehensive collection of preprints available on line, see the
RGMIA web site http://rgmia.vu.edu.au/papersinfth.html

Csiszar f—divergence is defined as follows [10]

(1.10) Dy (p.q) = /p(fv)f {q(m)} dp(x), p,q €,
X p(x)

where f is convex on (0, 00). It is assumed that f (u) is zero and strictly convex at

u = 1. By appropriately defining this convex function, various divergences are de-

rived. All the above distances (1.1)—(1.9), are particular instances of f—divergence.

There are also many others that are not in this class (see for example [5] or [6]).

For the basic properties of f—divergence see [7]-[10].

In [11], Lin and Wong (see also [9]) introduced the following divergence

(1.11) Drw (p,q) := /p(x) log [wx])gf)lq(x)] du(x), p,q €.

This can be represented as follows, using the Kullback-Leibler divergence:

1 1
Drw (p,q) = Dk <p, 5P + Q> .

2
Lin and Wong have established the following inequalities
(1.12) Drw (pq) < %DKL (P q);
(1.13) Drw (p,q) + Drw (¢:p) < Dy (p,q) < 2;
(1.14) Drw (p,q) < 1.
In [45], Shioya and Da-te improved (1.12) — (1.14) by showing that

1
Drw (p,q) < §Dv (p,q) < 1.
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In the same paper [45], the authors introduced the generalised Lin-Wong f—
divergence D (p, %p + %q) and the Hermite-Hadamard (HH) divergence

a(z

p(x)
(1.15) Dl (9,9) r=/p(:v) Wfiu(%% p,q €Q
X ﬁ -

and, by use of the Hermite-Hadamard inequality for convex functions, proved the
following basic inequality

1 1 1

provided that f is convex and normalised, i.e., f (1) = 0.

In this paper we point out new inequalites for the H H —divergence, which also
improve the above result (1.16).

For classical and new results in comparing different kinds of divergence measures,
see the papers [1]-[45] where further references are given.

2. THE RESULTS

In the following, we assume everywhere that the mapping f : (0,00) — R is
convex and normalised.
The following result holds.

Theorem 1. Let p,q € &, then we have the inequality,
1 1
2.1 D — —
(2.1) f (p7 5P+ 2q>
A + A
< ADy <p7p+ 5 (q—p)) + (1 —=A) Dy (p,qu +3 (q—p))
1
< Diy(pg) < 3 Dr (0,1 =) p+Aq) + (1= A) Dy (p,q)]

1
S 7Df (pvq)7

2
for all X € [0,1].

Proof. First, the following refinement of the Hermite-Hadamard inequality is proved.

(2.2) f<“;b)
< ar(aeatgt) o (et
<

2 2 2

b—

fla) +
2

I 1
< o [ F@d S G- Nat ) A @+ (12 £ )
. £ )

for all A € [0,1].
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Applying the Hermite-Hadamard inequality on each subinterval [a, (1 — A) a + Ab],
[(1—=X)a+ A\b,b], we have,

f<a+(1)\)a+>\b

5 >><[(1—/\)a+/\b—a]

(1=X)a+Ab
< [T rwa
< f((l_)\)a;)\b)+f(a)X[(l—)\)a—l—)\b—a]
and
f<<1_)\)a2+)\b+b>x[b—(l—)\)a—)\b]
b
u) du
= /(1A)a+)\bf()
< f(b)+f((12*/\)a+/\b) X[bf(l—)\)afkb],
which are clearly equivalent to
_ (1=N\)a+Ab
(2.3) Af(a—i—)\-bza) < bia/l ) du
A (T =X a+ Ab)+ Af (a)

- 2

(2.4) (1—A)f<“;rb+xb;“)

1 b
f(u) du
b—a /(1/\)a+)\b

A=XNfO)+A=XNFf{(L=Xa+ b
2

IA

IN

respectively.
Summing (2.3) and (2.4), we obtain the second and first inequality in (2.2).
By the convexity property, we obtain

Af(@“-b;“>+(1—x)f<a‘;bﬂ_b;a)
o 5 eomn((5ten )

()

and the first inequality in (2.1) is proved.
The latter inequality is obvious by the convexity property of f.

Y
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5

Now, ifwechooseazlandbz%,xéx, in (2.2) and multiply by p (z) > 0,
T € x, we get
p(z) +q(z)
vt ()
p(@)+A(g(z) —p(x))
< /\p(fv)f< 2 (2) >
3 o ¢ (2@ +a@)  Alg() —p(2)
R G s
p? () o
< wl fwa
1 A-Mp(@) +r(@)) . B o (1@
< (PR ) s r )+ 0N 7 (4]
x x a(z)
_ p()f(DH;()f(p(x))

Integrating on x and taking into account the definition of f—divergence (1.10) and

the Hermite-Hadamard divergence (1.15), we obtain (2.1). I

Remark 1. If A =0 or A =1, then by (2.1), we obtain the inequality (1.16).

Corollary 1. Let p,q € (), then we have the inequality,

p+q 1 3p+q p+3q
(2.5) Dy (p, 2> 3 {Df <P, 4) + Dy (p, 1 )}

IN

p+q 1
< Dhy(pq) <5 {Df (p, ) + 5Dy (p,q)

2 2

1

which is obtained by taking A\ = 3 in (2.1).
Remark 2. If we replace A by (1 — ) in (2.1), we have,

(26) Dy (n257)
< (1—/\)Df(p,p;q—i—)\(p—q)>+/\Df<p,q+)\p;q>
< Dl (:0) < 5105 (5, 2+ (1= N a) + AD; (5,0)]
< %Df (psa)-

Now, if we add (2.1) and (2.6) and divide by 2, we can state the
corollary.

|

following
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Corollary 2. Let p,q € (), then we have the inequality,

en o (n23Y)

= /\[Df (p,er;(q—p)) + Dy (p,q+/2\(p—Q)>}
+(1=A) [Df (;mp;rq+/2\(qp)> + Dy <p,p;q+;(pq)ﬂ
< Dy (p.q)

< i[Df (P, (1 =XN)p+Aqg) + Dy (p, \p+ (1 = A) q) + Dy (p,q)]

1
< 3Drpa),
for all X € [0,1].

We also define the divergence.
tg(x)+(1—¢t)p(x
@8 e = [ e |0 g
X p(x)
= Dy(ptg+(1—1)p).
Theorem 2. Let p,q € 2, then,

(i) Hy (p,q;-) is convex on [0,1];
(ii) We have the bounds

2.9 inf H ) =H 0) =0

(2.9) i 7 (p,q:t) 7 (p,q;0) =0,

(2.10) SE)I)l] Hy (p,q;t) = Hy (p,q;1) = Dy (p,q)
telo,

and the inequality
(2.11) Hy (p,q;t) <tDys(p,q) forallte[0,1].
(iii) The mapping Hy (p,q;-) is monotonic nondecreasing on [0,1].
Proof. (i) Let t1, t2 € [0,1] and «, 8 € [0,1] with oo+ 3 = 1, then,

Hy (p, q; oty + Bto)
_ /p(x)f |:(01t1 + Bt2) q(z) + (1 —aty — Kﬁz)l)(x)} du ()

q(x)
_ /p(x)f{a. [trg () +q(zx;t1)p(x>] 4. [R20(@) *;}m}”’pw}w

= aHy(p,q,t1) + BHy (p,q,t2)

and convexity is proved.
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(ii) Using Jensen’s inequality, we have:

Hy(p,q,t) > f pr(fr) [tq @) +q(2z; t)p(x)} dp (fff)]
-f&AqWMM@+UQAp@MM@}
— f(1)=0=H;(pq,0). |

Also, by convexity of f, we have,

Hy (1) < Lp@ﬂﬁ(ﬁg)+u—wfuﬂmm@

tLpuﬁ<ﬁ3)ww» (1—t)f Lp

= tDs(p,q),

and the statement (ii) is proved.
(iii) Let t1, to € [0,1] with ¢t > t;. As Hy (p,g;-) is convex, then

Hf (p7q>t2) _Hf (p7q7t1) Hf (p7Q7t1) Hf (p7qu0)
to —t1 t1—0

N

IN

and as
Hy (p,q,t1) > Hy (p,q,0) =0,
we deduce that Hy (p,¢,t1) < Hy (p,q,t2), which proves the monotonicity
of Hy (p,q,-).
|

Remark 3. If we write (2.11) in terms of 1 — t rather than t, we obtain
(2.12) Hy(p.g,1=1) <(1-t)Ds(p.q), t€[0,1].

Adding (2.11) and (2.12), we get,

(2.13) Hy (p,q,t) + Hy (p,q,1 —t) < Dy (p,q)

for all t € 10,1].

Remark 4. Fort € [%, 1} , we have the inequality,

11
(2.14) Dy ( s 5P+ 2q> < Dy (p,tq+ (1 —t)p) <tDs (p,q),

which is similar to (1.13).

We can also define the divergence,

(215) Fy(pqt J/L/" [ SR L) PSP IS

where p,q € Q and t € [0,1].
The properties of this mapping are embodied in the following theorem.

Theorem 3. Let p,q € (), then,
. A . . 1 .
(i) Fy(p,q;-) is symmetrical about 3, that is,
(2.16) Fy (p,q;t) = Fy (p,q;1 —t) for all't € [0,1].

(il) F is convex on [0,1];
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(iii) We have the bounds:

(2.17) t:}(l)pl] Fr(p,q;t) = Fy (p,q;0) = Fy (p,q;1) = Dy (p,q) ,
1
218 it Frlt) = 7y (i)
= / / p)p(y) f [q(x)g;y();)rf ((;;)q(y)]du () du (y)
> 0

(iv) Fy(p,q;-) is nondecreasing on [O, %} and nonincreasing on [%, 1] R

(v) We have the inequality:

(2.19) Fy(p,q;t) > max{Hy (p,q;t); Hy (p,q; 1 —t)} forall t€[0,1].

Proof. (i) Is obvious.
(ii) Follows by the convexity of f in a similar way to that in the proof of
Theorem 2.
(iii) For all z,y € x we have:

s el = Ge) -0 (o)

for any ¢ € [0, 1].
Multiplying by p (x) p (y) > 0 and integrating over x?, we write,

Frpgt) < // cr(H5) a0 s (48]

p(y)

= t-Dy(p,q) +(1—1t)-Dy(p,
= Fy(p,q;0) = Fr(p,q;1)

and the bound (2.17) is proved.
Since f is convex, then for all ¢ € [0, 1] and z,y € x, we have

)|

Multiplying by p (x) p (y) > 0 and integrating over x?2, we have,

}[F (p@it) + Fy (p,g; 1 — )]

2
/X/ [ ( Eii * ‘]Ej’i)] dp (x) dp (y)
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and the first part of (2.18) is proved.
Using Jensen’s integral inequality, we may write:

[ 5( (m)p;y(quﬁy(f) ) by 0) i (o) )
U/ ( ;ﬁ;)) (y))p(x)p(y)du(x)du(y)}
HIEEE >/X Wdut)+ [ @) [awane)|

= f(1)=0

(iv)

and the second part of (2.18) is proved.
The mapping Fy (p, q;-) being convex on [0, 1], we may write, for 1 > ¢o >
t1 > %, that,

Fy (p.aste) = Fy (p.aity) _ Fr(paith) = Ff (p,q;%)
ts — 1 = t— 1

and as
1 1
Ff(paq’tl)ZFf pa‘]vi ) tlzia

we deduce that Fy (p,q;t2) > Fy(p,¢;t1), i.e., the mapping Fy (p,q;-) is
monotonically nondecreasing on [O, %}

Similarly, we can prove that F (p,¢;-) is monotonically nonincreasing on
[0, 3], and the statement (iv) is proved.

Using Jensen’s integral inequality, we have,

R ACHN 1))
/Xp(y)f{t (@) +(1-1) p(y)}du(y)
[ a(®) . 1)
> f _/Xp(y) {ﬁp(x) + (1 -1 ) y)]du(y)}
= f t-ZEg/Xp(y)du(y)Jr(lt)'/XQ(y)du(y)}
], a(@) B
= ftp(x)—i—(l t)]
Multiplying by p () > 0 and integrating over x, we have,
Fhat) > / e 24 00| due)
= Hi(p,gt),

for all ¢t € [0, 1].
Now, as

Fy(p,q;1—1t) > Hy (p,q;1 —1t)

and Fy (p,q;t) = Fy(p,q;1—1t) for all ¢t € [0,1], the inequality (2.19) is
completely proved.
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