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A REFINEMENT OF JENSEN’S DISCRETE INEQUALITY FOR
DIFFERENTIABLE CONVEX FUNCTIONS

S.S. DRAGOMIR AND F.P. SCARMOZZINO

ABSTRACT. A refinement of Jensen’s discrete inequality and applications for
the celebrated Arithmetic Mean — Geometric Mean — Harmonc Mean inequality
and Cauchy-Schwartz-Bunikowski inequality are pointed out.

1. INTRODUCTION

The following inequality is well known in literature as Jensen’s inequality:

(1.1) f (; ZP@%‘) < Pinif(m%
" oi=1 oi=1

provided f : [a,b] — R is a convex function on [a,b], z; € [a,b], and p; > 0 with
P, .= Z?:l p; > 0.

Its central role in Analytic Inequality Theory is determined by the fact that
many other fundamental results such as: the Arithmetic Mean — Geometric Mean
— Harmonic Mean inequality, or the Holder and Minkowski inequalities, or even the
Ky Fan inequality may be obtained from Jensen’s inequality by appropriate choices
of the function f.

There is an extensive literature devoted to Jensen’s inequality concerning differ-
ent generalizations, refinements, counterparts and converse results, see, for example
m - 211,

The main aim of this paper is to point out a new refinement of this classical
result. Two applications in connection with the celebrated A — G — H—means
inequality and the Cauchy-Buniakowski-Schwartz inequality are mentioned as well.

2. A REFINEMENT OF JENSEN’S INEQUALITY

The following refinement of Jensen’s inequality holds.
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Theorem 1. Let f : [a,b] — R be a differentiable convez function on (a,b) and
z; € (a,b), p; > 0 with P, := %" | p; > 0. Then one has the inequality

(2.1) > ZPif (i) — f (Pl ZPN%)

Proof. Since f is differentiable convex on (a,b), then for each z,y € (a,b), one has
the inequality

(2.2) f@)=fQy)>@—y) f(y).

Using the properties of the modulus, we have

(2.3) f@)=f) ==y f () =If(=)—fy)—(-y) )
>|[f (x) = fF @)l =z =yllf W

for each z,y € (a,b).

If we choose y = P%L > pjr; and x = a;, i € {1,...,n}, then we have

1 « 1 « 1 «
(2'4) f(xi) - f P E pPixj | — | ¥i — P E P;iZyj f’ N E P;Tj
=1 =1 =1

RN 1 o 1 o
> || f (i) = f szjxj — |z — szjmj f szjxj H

forany ¢ € {1,...,n}.
If we multiply (2.4) by p; > 0, sum over ¢ from 1 to n, and divide by P,, > 0, we
deduce
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1< 1< 1< 1<
Z 5 QP fzi)— f szjxj - $i_Fijxj f szjxj
" i=1 " j=1 " j=1 " j=1
J J J
1< 1<
> |5 o | @) = f | 5 D pi
=1 " =1
1< 1< 1<
— 5 D pilwi— 5 D piw| |f | 5 D piv
"=t " =1 moj=1
Since

1 n 1 n
szi xi_Fijxj =0,
=1 =1

the inequality (2.1]) is proved. I

In particular, we have the following result for unweighted means.

Corollary 1. With the above assumptions for f and x;, one has the inequality

J (@) £+ f (@) f(x1+...+xn)

n n

xi—f<x1+.ﬁ-+xn>‘

n

P A SRR S 1 1 «
— AT T2 P 1| > 0.
patrm) s PO

i=1

(2.5)

1 n
2

i=1

>

Remark 1. Similar integral inequalities may be stated as well. We omit the details.

3. A REFINEMENT OF A. — G. — H. INEQUALITY

For a positive n-tuple & = (z1,...,2,) and p = (p1,...,pn) with p; > 0 and
S pi =: Py >0, define

1 n
A, (D, T) = B Zpixi (the weighted arithmetic mean),
=1

n .

1
n

Pp
G, (P, ) := (H xf) (the weighted geometric mean),
i=1
P,
S B
The following inequality

-1
1
H, (p,T) = = {An (, j)] (the weighted harmonic mean).

is well known in the literature as the Arithmetic Mean — Geometric Mean — Har-
monic Mean (A — G — H)-means inequality.
Using Theorem [I] we may improve this result as follows.
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Proposition 1. Suppose that T, p are as above. Then we have the inequality

oo 3
oo () G5

where for a function h, we denote h (Z) := (h(x1),...,h(z,)).
Proof. Applying the inequality for f (z) = —Inx, we get

[

Gn (P, T)
ii,ln i — AT ).ii,|._14( )|
P, 1:1171 A, (p, ) n DT P, i:1pz Ty n \P, T

from where we get the desired inequality (3.2]). B

> >0

)

The following proposition also holds.

Proposition 2. Suppose that T, p are as above. Then we have the inequality:

ol (o (82)) - 22

instead of Z. I

8~

Proof. Follows by Proposition |1/ on choosing

4. A REFINEMENT OF CAUCHY-BUNIAKOWSKI-SCHWARTZ’S INEQUALITY

The following inequality is well known in the literature as the Cauchy-Buniakowski-
Schwartz inequality:

n

(4.1) > f:bf > (i aibi> ,
i=1

i=1 =1

for any a;,b; € R (1 € {1,...,n}).
The following refinement of (4.1]) holds.

Proposition 3. Ifa;,b; € R, i € {1,...,n}, then one has the inequality;

(4.2)

2
n n n 1
; a? Z b? — (Z asz‘) > 7271 02

=1 i=1 =1 i=1"1

n

>

=1

2 2
a; b;

(Z?:l ajbj)2 (Z}Ll b?)2 ‘ ’
i |04 ibj "
i=1 Jj=1
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-9 > 0.

n
D> anbe
k=1
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Proof. If we apply Theorem [1| for f (z) = 22, we get

1 — 1 < g 1O
(4.3) B Zple -\ 5 Zpixi > P Zpi x7 — N ijacj
™ oi=1 =1 " oi=1 noj=1

n

1 1 « 1 «
-2 E;Pkﬂfk Fn;pl mifpfnjglpjmj > 0.

If in (4.3), we choose p; = b2, z; = &, i € {1,...,n}, we get

g2 b2 n 2 b\ 2
(4.4) Zéﬂ:l a; _ (Zzzl azb%g > nl . Zb? . a; ijl aJQJ
i1 b (>, b2) > b = b; > -1 b7

ZZ:I akbk Z?:l bz2 ll%: - Z;’lzl ajbj/ Z?:l b?’
Z?:l b’LQ Z:l:l b12 ’
which is clearly equivalent to (4.2]). B
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