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NEW TAYLOR-LIKE EXPANSIONS FOR FUNCTIONS OF TWO
VARIABLES AND ESTIMATES OF THEIR REMAINDERS

S.S. DRAGOMIR, F. QI, G. HANNA, AND P. CERONE

Abstract. In this article, a generalisation of Sard’s inequality for Appell polynomials is ob-
tained. Estimates for the remainder are also provided.

1. Introduction

Let x ∈ [a, b] and y ∈ [c, d]. If f(x, y) is a function of two variables we shall adopt the following
notation for partial derivatives of f(x, y):

f (i,j)(x, y) ,
∂i+jf(x, y)

∂xi∂yj
,

f (0,0)(x, y) , f(x, y),

f (i,j)(α, β) , f (i,j)(x, y)|(x,y)=(α,β)

(1)

for 0 ≤ i, j ∈ N and (α, β) ∈ [a, b]× [c, d].
A. H. Stroud has pointed out in [6] that one of the most important tools in the numerical
integration of double integrals is the following Taylor’s formula [6, p. 138 and p. 157] due to A.
Sard [5]:

Theorem A. If f(x, y) satisfies the condition that all the derivatives f (i,j)(x, y) for i + j ≤ m
are defined and continous on [a, b]× [c, d], then f(x, y) has the expansion

f(x, y) =
∑

i+j≤m

(x− a)i

i!

(y − c)j

j!
f (i,j)(a, c)

+
∑
j<q

(y − c)j

j!

∫ x

a

(x− u)m−j−1

(m− j − 1)!
f (m−j,j)(u, c) du

+
∑
i<p

(x− a)i

i!

∫ y

c

(y − v)m−i−1

(m− i− 1)!
f (i,m−i)(a, v) dv

+

∫ x

a

∫ y

c

(x− u)p−1

(p− 1)!

(y − v)q−1

(q − 1)!
f (p,q)(u, v) dv du,

(2)

where i, j are nonnegative integers; p, q are positive integers; and m , p + q ≥ 2.
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Essentially, the representation (2) is used for obtaining the fundamental Kernel Theorems and
Error Estimates in numerical integration of double integrals [6, p. 142, p. 145 and p. 158] and
has both theoretical and practical importance in the domain as a whole.

Definition 1. A sequence of polynomials {Pi(x)}∞i=0 is called harmonic [4] if it satisfies the
recursive formula

P ′
i (x) = Pi−1(x) (3)

for i ∈ N and P0(x) = 1.

A slightly different concept that specifies the connection between the variables is the following
one.

Definition 2. We say that a sequence of polynomials {Pi(t, x)}∞i=0 satisfies the Appell condition
[2] if

∂Pi(t, x)

∂t
= Pi−1(t, x) (4)

and P0(t, x) = 1 for all defined (t, x) and n ∈ N.

It is wellknown that the Bernoulli polynomials Bi(t) can be defined by the following expansion

xetx

ex − 1
=

∞∑
i=0

Bi(t)

i!
xi, |x| < 2π, t ∈ R. (5)

It can be shown that the polynomials Bi(t), i ∈ N, are uniquely determined by the two formulae

B′
i(t) = iBi−1(t), B0(t) = 1; (6)

and Bi(t + 1)−Bi(t) = iti−1. (7)

The Euler polynomials can be defined by the expansion

2etx

ex + 1
=

∞∑
i=0

Ei(t)

i!
xi, |x| < π, t ∈ R. (8)

It can also be shown that the polynomials Ei(t), i ∈ N, are uniquely determined by the two
properties

E ′
i(t) = iEi−1(t), E0(t) = 1; (9)

and Ei(t + 1) + Ei(t) = 2ti. (10)

For further details about Bernoulli polynomials and Euler polynomials, please refer to [1, 23.1.5
and 23.1.6].
There are many examples of Appell polynomials. For instance, for i a nonegative integer, θ ∈ R
and λ ∈ [0, 1],

Pi,λ(t) , Pi,λ(t; x; θ) =
[t− (λθ + (1− λ)x)]i

i!
, (11)

Pi,B(t) , Pi,B(t; x; θ) =
(x− θ)i

i!
Bi

( t− θ

x− θ

)
([4]), (12)

Pi,E(t) , Pi,E(t; x; θ) =
(x− θ)i

i!
Ei

( t− θ

x− θ

)
([4]). (13)

In [4], the following generalized Taylor’s formula was established.
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Theorem B. Let {Pi(x)}∞i=0 be a harmonic sequence of polynomials. Further, let I ⊂ R be a
closed interval and a ∈ I. If f : I → R is any function such that f (n)(x) is absolutely continuous
for some n ∈ N, then, for any x ∈ I, we have

f(x) = f(a) +
m∑

k=1

(−1)k+1
[
Pk(x)f (k)(x)− Pk(a)f (k)(a)

]
+ Rn(f ; a, x), (14)

where

Rn(f ; a, x) = (−1)n

∫ x

a

Pn(t)f (n+1)(t) dt. (15)

The fundamental aim of this article is to obtain a generalisation of the Taylor-like formula (2)
for Appell polynomials and to study its impact on the numerical integration of double integrals.

2. Two New Taylor-like Expansions

Following a similar argument to the proof of Theorem 2 in [4], we obtain the following result.

Theorem 1. If g : [a, b] → R is such that g(n−1) is absolutely continuous on [a, b], then we have
the generalised integration by parts formula for x ∈ [a, b]∫ b

a

g(t) dt =
n∑

k=1

(−1)k+1
[
Pk(b, x)g(k−1)(b)− Pk(a, x)g(k−1)(a)

]
+ (−1)n

b∫
a

Pn(t, x)g(n)(t) dt.

(16)

Proof. By integration by parts we obtain, on using the Appell condition (4),

(−1)n

b∫
a

Pn(t, x)g(n)(t) dt

= (−1)nPn(t, x)g(n−1)(t)
∣∣b
a
+ (−1)n−1

∫ b

a

Pn−1(t, x)g(n−1)(t) dt (17)

= (−1)n

[
Pn(b, x)g(n−1)(b)− Pn(a, x)g(n−1)(a)−

∫ b

a

Pn−1(t, x)g(n−1)(t) dt

]
.

Clearly, the same procedure can be used for the term
∫ b

a
Pn−1(t, x)g(n−1)(t) dt. Therefore, for-

mula (16) follows from successive integration by parts.

Theorem 2. Let D be a domain in R2 and the point (a, c) ∈ D. Also, let {Pi(t, x)}∞i=0 and
{Qj(s, y)}∞j=0 be two Appell polynomials. If f : D → R is such that f (i,j)(x, y) are continuous
on D for all 0 ≤ i ≤ m and 0 ≤ j ≤ n, then

f(x, y) = f(a, c) + C(f, Pm, Qn) + D(f, Pm, Qn) + S(f, Pm, Qn) + T (f, Pm, Qn), (18)

where

C(f, Pm, Qn) =
m∑

i=1

(−1)i+1
[
Pi(x, x)f (i,0)(x, c)− Pi(a, x)f (i,0)(a, c)

]
+

n∑
j=1

(−1)j+1
[
Qj(y, y)f (0,j)(a, y)−Qj(c, y)f (0,j)(a, c)

]
,

(19)
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D(f, Pm, Qn)

=
m∑

i=1

n∑
j=1

(−1)i+jPi(x, x)
[
Qj(y, y)f (i,j)(x, y)−Qj(c, y)f (i,j)(x, c)

]
−

m∑
i=1

n∑
j=1

(−1)i+jPi(a, x)
[
Qj(y, y)f (i,j)(a, y)−Qj(c, y)f (i,j)(a, c)

]
, (20)

S(f, Pm, Qn)

= (−1)m

∫ x

a

Pm(t, x)f (m+1,0)(t, c) dt + (−1)n

∫ y

c

Qn(s, y)f (0,n+1)(a, s) ds

+
m∑

i=1

(−1)n+i+1

∫ y

c

Qn(s, y)
[
Pi(x, x)f (i,n+1)(x, s)− Pi(a, x)f (i,n+1)(a, s)

]
ds

+
n∑

j=1

(−1)m+j+1

∫ x

a

Pm(t, x)
[
Qj(y, y)f (m+1,j)(t, y)−Qj(c, y)f (m+1,j)(t, c)

]
dt (21)

and

T (f, Pm, Qn) = (−1)m+n

∫ x

a

∫ y

c

Pm(t, x)Qn(s, y)f (m+1,n+1)(t, s) ds dt. (22)

Proof. Let Pm(t, x) be an Appell polynomial. Applying formula (14) to the function f(x, y)
with respect to variable x yields

f(x, y) = f(a, y) +
m∑

i=1

(−1)i+1
[
Pi(x, x)f (i,0)(x, y)− Pi(a, x)f (i,0)(a, y)

]
+ (−1)m

∫ x

a

Pm(t, x)f (m+1,0)(t, y) dt.

(23)

Similarly, for the functions f (i,0)(x, y), f (i,0)(a, y), f (m+1,0)(t, y) and f(a, y), we have

f (i,0)(x, y) = f (i,0)(x, c) + (−1)n

∫ y

c

Qn(s, y)f (i,n+1)(x, s) ds

+
n∑

j=1

(−1)j+1
[
Qj(y, y)f (i,j)(x, y)−Qj(c, y)f (i,j)(x, c)

]
,

(24)

f (i,0)(a, y) = f (i,0)(a, c) + (−1)n

∫ y

c

Qn(s, y)f (i,n+1)(a, s) ds

+
n∑

j=1

(−1)j+1
[
Qj(y, y)f (i,j)(a, y)−Qj(c, y)f (i,j)(a, c)

]
,

(25)

f (m+1,0)(t, y) = f (m+1,0)(t, c) + (−1)n

∫ y

c

Qn(s, y)f (m+1,n+1)(a, s) ds

+
n∑

j=1

(−1)j+1
[
Qj(y, y)f (m+1,j)(t, y)−Qj(c, y)f (m+1,j)(t, c)

]
,

(26)
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f(a, y) = f(a, c) + (−1)n

∫ y

c

Qn(s, y)f (0,n+1)(a, s) ds

+
n∑

j=1

(−1)j+1
[
Qj(y, y)f (0,j)(a, y)−Qj(c, y)f (0,j)(a, c)

]
.

(27)

Substituting formulae (24)–(27) into (23) produces

f(x, y) = f(a, c) +
m∑

i=1

(−1)i+1
[
Pi(x, x)f (i,0)(x, c)− Pi(a, x)f (i,0)(a, c)

]
+

n∑
j=1

(−1)j+1
[
Qj(y, y)f (0,j)(a, y)−Qj(c, y)f (0,j)(a, c)

]
+

m∑
i=1

n∑
j=1

(−1)i+jPi(x, x)
[
Qj(y, y)f (i,j)(x, y)−Qj(c, y)f (i,j)(x, c)

]
−

m∑
i=1

n∑
j=1

(−1)i+jPi(a, x)
[
Qj(y, y)f (i,j)(a, y)−Qj(c, y)f (i,j)(a, c)

]
+ (−1)m

∫ x

a

Pm(t, x)f (m+1,0)(t, c) dt + (−1)n

∫ y

c

Qn(s, y)f (0,n+1)(a, s) ds (28)

+
m∑

i=1

(−1)n+i+1

∫ y

c

Qn(s, y)
[
Pi(x, x)f (i,n+1)(x, s)− Pi(a, x)f (i,n+1)(a, s)

]
ds

+
n∑

j=1

(−1)m+j+1

∫ x

a

Pm(t, x)
[
Qj(y, y)f (m+1,j)(t, y)−Qj(c, y)f (m+1,j)(t, c)

]
dt

+ (−1)m+n

∫ x

a

∫ y

c

Pm(t, x)Qn(s, y)f (m+1,n+1)(t, s) ds dt.

The proof of Theorem 2 is complete.

Remark 1. If we take

Pi(t, x) = Pm,λ(t, x; a), Qj(s, y) = Qj,µ(s, y; c) (29)

for 0 ≤ i ≤ m, 0 ≤ j ≤ n and λ, µ ∈ [0, 1] in Theorem 2, then the expressions simplify to give,
on using (11),

C(f, Pm, Qn) =
m∑

i=1

(x− a)i

i!

[
(1− λ)if (i,0)(a, c) + λif (i,0)(x, c)

]
+

n∑
j=1

(y − c)j

j!

[
(1− µ)jf (0,j)(a, c) + µjf (0,j)(a, y)

]
, (30)

D(f, Pm, Qn) =
m∑

i=1

n∑
j=1

λi(x− a)i(y − c)j

i! · j!
[
µjf (i,j)(x, y) + (1− µ)jf (i,j)(x, c)

]
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−
m∑

i=1

n∑
j=1

(1− λ)i(x− a)i(y − c)j

i! · j!
[
µjf (i,j)(a, y) + (1− µ)jf (i,j)(a, c)

]
, (31)

S(f, Pm, Qn) = (−1)m

∫ x

a

[t− (λa + (1− λ)x)]m

m!
f (m+1,0)(t, c) dt

+ (−1)n

∫ y

c

[s− (µc + (1− µ)y)]n

n!
f (0,n+1)(a, s) ds

+
m∑

i=1

∫ y

c

[µc + (1− µ)y − s]n(x− a)i

n! · i!
[
(λ− 1)if (i,n+1)(a, s)− λif (i,n+1)(x, s)

]
ds

+
n∑

j=1

∫ x

a

[λa + (1− λ)x− t]m(y − c)j

m! · j!
[
(µ− 1)jf (m+1,j)(t, c)− µjf (m+1,j)(t, y)

]
dt, (32)

and

T (f, Pm, Qn) =∫ x

a

∫ y

c

[(λa + (1− λ)x)− t]m[(µc + (1− µ)y)− s]n

m! · n!
f (m+1,n+1)(t, s) ds dt. (33)

Notice that, taking λ = 0 and µ = 0 in (29), then we can deduce Theorem A from Theorem 2.
Other choices of Appell type polynomials will provide generalizations of Theorem A.

The following approximation of double integrals in terms of Appell polynomials holds.

Theorem 3. Let {Pi(t, x)}∞i=0 and {Qj(s, y)}∞j=0 be two Appell polynomials and f : [a, b] ×
[c, d] ⊂ R2 → R such that f (i,j)(x, y) are continuous on [a, b] × [c, d] for all 0 ≤ i ≤ m and
0 ≤ j ≤ n. We then have

∫ b

a

∫ d

c

f(t, s) ds dt = A(f, Pm, Qn) + B(f, Pm, Qn) + R(f, Pm, Qn), (34)

where

A(f, Pm, Qn) =
m∑

i=1

n∑
j=1

(−1)i+jPi(a, b)
[
Qj(d, d)f (i−1,j−1)(a, d)−Qj(c, d)f (i−1,j−1)(a, c)

]
−

m∑
i=1

n∑
j=1

(−1)i+jPi(b, b)
[
Qj(d, d)f (i−1,j−1)(b, d)−Qj(c, d)f (i−1,j−1)(b, c)

]
,

(35)
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B(f, Pm, Qn) =
n∑

j=1

(−1)jQj(c, d)

∫ b

a

f (0,j−1)(t, c) dt

−
n∑

j=1

(−1)jQj(d, d)

∫ b

a

f (0,j−1)(t, d) dt

+
m∑

i=1

(−1)iPi(a, b)

∫ d

c

f (i−1,0)(a, s) ds

−
m∑

i=1

(−1)iPi(b, b)

∫ d

c

f (i−1,0)(b, s) ds

(36)

and

R(f, Pm, Qn) = (−1)m+n

∫ b

a

∫ d

c

Pm(t, b)Qn(s, d)f (m,n)(t, s) ds dt. (37)

Proof. Using the generalized integration by parts formula consecutively yields∫ b

a

∫ d

c

Pm(t, b)Qn(s, d)f (m,n)(t, s) ds dt

=

∫ b

a

Pm(t, b)

[∫ d

c

Qn(s, d)f (m,n)(t, s) ds

]
dt

= (−1)m

∫ b

a

Pm(t, b)

{∫ d

c

f (m,0)(t, s) ds

+
n∑

j=1

(−1)j
[
Qj(d, d)f (m,j−1)(t, d)−Qj(c, d)f (m,j−1)(t, c)

]}
dt

= (−1)m

∫ b

a

∫ d

c

Pm(t, b)f (m,0)(t, s) ds dt

+
n∑

j=1

(−1)m+jQj(d, d)

∫ b

a

Pm(t, b)f (m,j−1)(t, d) dt

−
n∑

j=1

(−1)m+jQj(c, d)

∫ b

a

Pm(t, b)f (m,j−1)(t, c) dt

= (−1)m

∫ d

c

(−1)n

{∫ b

a

f(t, s) dt

+
m∑

i=1

(−1)i

[
Pi(b, b)f

(i−1,0)(b, s)− Pi(a, b)f (i−1,0)(a, s)

]}
ds

+
n∑

j=1

(−1)n+jQj(d, d)

{
(−1)m

[∫ b

a

f (0,j−1)(t, d) dt

+
m∑

i=1

(−1)j

(
Pi(b, b)f

(i−1,j−1)(b, d)− Pi(a, b)f (i−1,j−1)(a, d)

)]}
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−
n∑

j=1

(−1)n+jQj(c, d)

{
(−1)m

[∫ b

a

f (0,j−1)(t, c) dt

+
m∑

i=1

(−1)i

(
Pi(b, b)f

(i−1,j−1)(b, c)− Pi(a, b)f (i−1,j−1)(a, c)

)]}
= (−1)m+n

∫ b

a

∫ d

c

f(t, s) ds dt

+
m∑

i=1

(−1)m+n+i

∫ d

c

[
Pi(b, b)f

(i−1,0)(b, s)− Pi(a, b)f (i−1,0)(a, s)
]
ds

+
n∑

j=1

(−1)m+n+jQj(d, d)

∫ b

a

f (0,j−1)(t, d) dt

+
m∑

i=1

n∑
j=1

(−1)m+n+i+jPi(b, b)Qj(d, d)f (i−1,j−1)(b, d)

−
m∑

i=1

n∑
j=1

(−1)m+n+i+jPi(a, b)Qj(d, d)f (i−1,j−1)(a, d)

−
n∑

j=1

(−1)m+n+jQj(c, d)

∫ b

a

f (0,j−1)(t, c) dt

+
m∑

i=1

n∑
j=1

(−1)m+n+i+jPi(a, b)Qj(c, d)f (i−1,j−1)(a, c)

−
m∑

i=1

n∑
j=1

(−1)m+n+i+jPi(b, b)Qj(c, d)f (i−1,j−1)(b, c)

= (−1)m+n

m∑
i=1

n∑
j=1

(−1)i+jPi(b, b)
[
Qj(d, d)f (i−1,j−1)(b, d)

−Qj(c, d)f (i−1,j−1)(b, c)
]

+ (−1)m+n

m∑
i=1

n∑
j=1

(−1)i+jPi(a, b)
[
Qj(c, d)f (i−1,j−1)(a, c)

−Qj(d, d)f (i−1,j−1)(a, d)
]

+ (−1)m+n

m∑
i=1

(−1)iPi(b, b)

∫ d

c

f (i−1,0)(b, s) ds

− (−1)m+n

m∑
i=1

(−1)jPi(a, b)

∫ d

c

f (i−1,0)(a, s) ds

+ (−1)m+n

n∑
j=1

(−1)jQj(d, d)

∫ b

a

f (0,j−1)(t, d) dt
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− (−1)m+n

n∑
j=1

(−1)iQj(c, d)

∫ b

a

f (0,j−1)(t, c) dt

+ (−1)m+n

∫ b

a

∫ d

c

f(t, s) ds dt.

The proof of Theorem 3 is complete.

Remark 2. As usual, let Bi, i ∈ N, denote Bernoulli numbers.
From properties (6) and (7), (9) and (10) of the Bernoulli and Euler polynomials respectively,
we can easily obtain that, for i ≥ 1,

Bi+1(0) = Bi+1(1) = Bi+1, B1(0) = −B1(1) = −1

2
, (38)

and, for j ∈ N,

Ej(0) = −Ej(1) = − 2

j + 1
(2j+1 − 1)Bj+1. (39)

It is also a well known fact that B2i+1 = 0 for all i ∈ N.

As an example, taking Pi(t, x) = Pi,B(t, x; a) and Qj(s, y) = Pj,E(s, y; c) from (12) and (13) for
0 ≤ i ≤ m and 0 ≤ j ≤ n in Theorem 3 and using (38) and (39) yields

A(f, Pm, Qn) =
m∑

i=1

n∑
j=2

(a− b)i(c− d)j

i! · j!
· 2(2j+1 − 1)

j + 1
BiBj+1

×
[
f (i−1,j−1)(a, d) + f (i−1,j−1)(a, c)− f (i−1,j−1)(b, d)− f (i−1,j−1)(b, c)

]
+(b− a)

m∑
i=1

(2i+1 − 1)(c− d)j

(i + 1)!
Bj+1

×
[
f (i−1,0)(a, d) + f (i−1,0)(a, c) + f (i−1,0)(b, d) + f (i−1,0)(b, c)

]
,

(40)

B(f, Pm, Qn) =

2
n∑

j=1

(1− 2j+1)(c− d)j

(j + 1)!
Bj+1

∫ b

a

[
f (0,j−1)(t, c) + f (0,j−1)(t, d)

]
dt

+
n∑

j=2

(a− b)j

j!
Bj

∫ d

c

[
f (i−1,0)(a, s)− f (i−1,0)(b, s)

]
ds

+
b− a

2

∫ d

c

[
f(a, s) + f(b, s)

]
ds,

(41)

and

R(f, Pm, Qn) = (42)

(a− b)m(c− d)n

m! · n!

∫ b

a

∫ d

c

Bm

( t− a

b− a

)
En

(s− c

d− c

)
f (m,n)(t, s) ds dt.
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3. Estimates of the Remainders

In this section, we will give some estimates for the remainders of expansions in Theorem 2 and
Theorem 3.

We firstly need to introduce some notation.
For a function ` : [a, b]× [c, d] → R, then for any x, y ∈ [a, b] , u, v ∈ [c, d] we define

‖`‖[x,y]×[u,v],∞ := ess sup {|` (t, s)|} ,

t ∈ [x, y] or [y, x] and s ∈ [u, v] or [v, u]

and

‖`‖[x,y]×[u,v],p :=

∣∣∣∣∫ y

x

∫ v

u

|h (t, s)|p dsdt

∣∣∣∣ 1
p

, p ≥ 1.

The following result establishing bounds for the remainder in the Taylor-like formula (18) holds.

Theorem 4. Assume that {Pi (t, x)}∞i=0 , {Qj (s, y)}∞j=0 and f satisfy the assumptions of The-

orem 2. Then we have the representation (18) and the remainder satisfies the estimate

|T (f, Pm, Qn)| ≤



‖Pm (·, x)‖[a,x],∞ ‖Qn (·, y)‖[c,y],∞

∥∥f (m+1,n+1)
∥∥

[a,x]×[c,y],1
,

‖Pm (·, x)‖[a,x],p ‖Qn (·, y)‖[c,y],p

∥∥f (m+1,n+1)
∥∥

[a,x]×[c,y],p
,

where p > 1, 1
p

+ 1
q

= 1;

‖Pm (·, x)‖[a,x],1 ‖Qn (·, y)‖[c,y],1

∥∥f (m+1,n+1)
∥∥

[a,x]×[c,y],∞ .

(43)

The proof follows in a straightforward fashion on using Hölder’s inequality applied for the in-
tegral representation of the remainder T (f, Pm, Qn) provided by equation (22). We omit the
details.

The integral remainder in the cubature formula (34) may be estimated in the following manner.

Theorem 5. Assume that {Pi (t, x)}∞i=0 , {Qj (s, y)}∞j=0 and f satisfy the assumptions in The-

orem 3. Then one has the cubature formula (34) and, the remainder R (f, Pm, Qn) satisfies the
estimate:

|R (f, Pm, Qn)| ≤



‖Pm (·, b)‖[a,b],∞ ‖Qn (·, d)‖[c,d],∞

∥∥f (m,n)
∥∥

[a,b]×[c,d],1
,

‖Pm (·, b)‖[a,b],p ‖Qn (·, d)‖[c,d],p

∥∥f (m,n)
∥∥

[a,b]×[c,d],p
,

where p > 1, 1
p

+ 1
q

= 1;

‖Pm (·, b)‖[a,b],1 ‖Qn (·, d)‖[c,d],1

∥∥f (m,n)
∥∥

[a,b]×[c,d],∞ .

(44)

Remark 1. If we consider the particular instances of Appell polynomials provided by (11), (12)
and (13), then a number of particular formulae may be obtained. Their remainder may be
estimated by the use of Theorems 4 and 5, providing a 2−dimensional version of the results in
[4].
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For instance, if we consider from (11),

Pm,λ(t, x; a) =
[t− (λ a + (1− λ) x)]m

m!
(45)

Qn,µ(s, y; c) =
[s− (µ c + (1− µ) y)]n

n!
(46)

then we obtain the following result.

Theorem 6. Let {Pm,λ (t, x; a)}∞m=0 , {Qn,µ (s, y)}∞n=0 and f satisfy the assumptions of Theorem
2. Then we have the representation (18) and the remainder satisfies for a ≤ x, c ≤ y, the
estimate

|T (f, Pm,λ, Qn,µ)| ≤



(x−a)m(y−c)n

m!n!
λ∞ µ∞

∥∥f (m+1,n+1)
∥∥

[a,x]×[c,y],1
,

1
m!n!

[
(x−a)mq+1(y−c)nq+1

(mq+1)(nq+1)

] 1
q
λp µp

∥∥f (m+1,n+1)
∥∥

[a,x]×[c,y],q
,

where p > 1, 1
p

+ 1
q

= 1;

(x−a)m+1(y−c)n+1

(m+1)!(n+1)!
λ1µ1

∥∥f (m+1,n+1)
∥∥

[a,x]×[c,y],∞ .

(47)

where

λ1 =
[
λm+1 + (1− λ)m+1

]
, λp =

[
λmq+1 + (1− λ)mq+1

] 1
p and λ∞ =

[
1

2
+

∣∣∣∣λ− 1

2

∣∣∣∣]m

.

and similar for µ1, µp and µ∞

Proof. Utilizing equations (45) and (46) and using Hölder’s inequality for double integrals and
the properties of the modulus on equation (22), then we have that∣∣∣∣ ∫ x

a

∫ y

c

T (f, Pm,λ,Qn,µ)

∣∣∣∣
=

∣∣∣∣∫ x

a

∫ y

c

Pm,λ(t, x; a) Qn,µ(s, y; c)f (m+1,n+1) ds dt

∣∣∣∣
≤

∫ x

a

∫ y

c

|Pm,λ(t, x; a) Qn,µ(s, y; c)|
∣∣f (m+1,n+1)

∣∣ ds dt

≤



sup
(t,s)∈[a,x]×[c,y]

|Pm,λ(t, x; a)Qn,µ(s, y; c)|
∥∥f (m+1,n+1)

∥∥
[a,x]×[c,y],1

.

(∫ x

a

∫ y

c
|Pm,λ(t, x; a)Qn,µ(s, y; c)|q dt ds

) 1
q

∥∥f (m+1,n+1)
∥∥

[a,x]×[c,y],p
,

p > 1, 1
p

+ 1
q

= 1;∫ x

a

∫ y

c
|Pm,λ(t, x; a)Qn,µ(s, y; c)| dt ds

∥∥f (m+1,n+1)
∥∥

[a,x]×[c,y],∞ .

(48)

Now, the result in equation (48) can be further simplified by the application of equations (45)
and (46), given that,

α = (1− λ) x + λ a and β = (1− µ) y + µ c.



12 S.S. DRAGOMIR, F. QI, G. HANNA, AND P. CERONE

It then follows

sup
(t,s)∈[a,x]×[c,y]

|Pm,λ(t, x; a)Qn,µ(s, y; c)|

= sup
t∈[a,c]

|Pm,λ(t, x; a)| sup
s∈[c,y]

|Qn,µ(s, y; c)|

= max

{
(α− a)m

m!
,
(x− α)m

m!

}
×max

{
(β − c)n

n!
,
(y − β)n

n!

}
=

(x− a)m (y − c)n

m!n!
[max{(1− λ), λ}]m × [max{(1− µ), µ}]n

=
(x− a)m (y − c)n

m!n!

[
1

2
+

∣∣∣∣λ− 1

2

∣∣∣∣]m

×
[
1

2
+

∣∣∣∣µ− 1

2

∣∣∣∣]n

giving the first inequality in (47) where we have used the fact that

max {X, Y } =
X + Y

2
+

∣∣∣∣Y −X

2

∣∣∣∣ .

Further, we have( ∫ x

a

∫ y

c

|Pm,λ(t, x; a)Qn,µ(s, y; c)|q ds dt

) 1
q

=

(∫ x

a

|Pm,λ(t, x; a)|q dt

) 1
q
(∫ y

c

|Qn,µ(s, y; c)|q ds dt

) 1
q

=
1

m!n!

[∫ α

a

(α− t)mq dt +

∫ x

α

(t− α)mq dt

] 1
q

×
[∫ β

c

(β − s)nq ds +

∫ y

β

(s− β)nq ds

] 1
q

=
1

m!n!

[
(x− a)mq+1 (y − c)nq+1

(mq + 1)(nq + 1)

] 1
q

λp µp

producing the second inequality in (47).
Finally,∫ x

a

∫ y

c

|Pm,λ(t, x; a)Qn,µ(s, y; c)| dt ds

=

∫ x

a

∣∣∣∣(t− α)m

m!

∣∣∣∣ dt

∫ y

c

∣∣∣∣(s− β)n

n!

∣∣∣∣ ds

=

[∫ α

a

(α− t)m

m!
dt +

∫ x

α

(t− α)m

m!
dt

]
×

[∫ β

c

(β − s)n

n!
ds +

∫ y

β

(s− β)n

n!
ds

]

=
(x− a)m+1 (y − c)n+1

(m + 1)! (n + 1)!

[
(1− λ)m+1 + λm+1

]
×

[
(1− µ)n+1 + µn+1

]
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gives the last inequality in (47). Thus the theorem is completely proved.

Remark 2. By taking λ = µ = 0 or 1, we recapture the result obtained by G. Hanna et al. in
[3].

In a similar fashion, we can stat the remainder R (f, Pm,λ, Qn,µ) estimate in the cubature formula
(34) as in the following

Theorem 7. Let {Pm,λ (t, x; a)}∞m=0 , {Qn,µ (s, y)}∞n=0 and f satisfy the assumptions of Theo-
rem 3, then the remainder R (f, Pm,λ, Qn,µ) estimate in the cubature formula (34) satisfies the
following

|R (f, Pm,λ, Qn,µ)| ≤



(b−a)m(d−c)n

m!n!
λ∞ µ∞

∥∥f (m,n)
∥∥

[a,b]×[c,d],1
,

1
m!n!

[
(b−a)mq+1(d−c)nq+1

(mq+1)(nq+1)

] 1
q
λp µp

∥∥f (m,n)
∥∥

[a,b]×[c,d],q
,

where p > 1, 1
p

+ 1
q

= 1;
(b−a)m+1(d−c)n+1

(m+1)!(n+1)!
λ1 µ1

∥∥f (m,n)
∥∥

[a,b]×[c,d],∞ .

(49)

The proof is similar to the one in Theorem 6 applied on the interval [a, b]× [c, d] , and we omit
the details.
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