
Bounds on Extended f-Divergences for a Variety of 
Classes

This is the Published version of the following publication

Cerone, Pietro, Dragomir, Sever S and Osterreicher, Ferdinand (2003) Bounds
on Extended f-Divergences for a Variety of Classes. RGMIA research report 
collection, 6 (1).  

The publisher’s official version can be found at 

Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/17794/ 



1

BOUNDS ON EXTENDED f-DIVERGENCES FOR A VARIETY
OF CLASSES

PIETRO CERONE, SEVER S. DRAGOMIR, AND 1FERDINAND ÖSTERREICHER

Abstract. The concept of f -divergences was introduced by Csiszár in 1963
as measures of the ’hardness’ of a testing problem depending on a convex real

valued function f on the interval [0,∞). The choice of this parameter f can
be adjusted so as to match the needs for specific applications.

The definition and some of the most basic properties of f -divergences are
given and five classes of f -divergences are presented.

Ostrowski’s inequality and a trapezoid inequality are utilised in order to
prove bounds for an extension of the set of f -divergences.

All five classes of f -divergences are used in order to investigate limitations
and strengths of the inequalities derived.

1. Introduction to f-Divergences

Let (X,A) be a measurable space, satisfying |A| > 2 and µ be a σ-finite measure
on (X,A) and let P be the set of all probability measures on (X,A) which are
absolutely continuous with respect to µ. For P,Q ∈ P let p = dP

dµ and q =
dQ
dµ denote the Radon-Nikodym derivatives of P and Q with respect to µ. Two
probability measures P,Q ∈ P are called orthogonal (Q ⊥ P ) if P ({q = 0}) =
Q({p = 0}) = 1.

Furthermore, let F be the set of convex functions f : [0,∞) 7→ (−∞,∞] con-
tinuous at 0 (i.e. f(0) = limu↓0 f(u) ) , F0 = {f ∈ F : f(1) = 0} and let D−f
and D+f denote the left-hand side derivative and the right-hand side derivative of
f respectively. Further, let f∗ ∈ F0, defined by

f∗(u) = uf

(
1
u

)
, u ∈ (0,∞),

the ∗-conjugate (convex) function of f and let f̃ (u) = (f (u) + f∗ (u)) /2.
Definition 1. (Csiszár (1963)). Let P,Q ∈ P. Then

If (Q,P ) =
∫
X

p f

(
q

p

)
dµ

is called the f-divergence of the probability distributions Q and P.

The following two theorems contain the most basic properties of f -divergences.
For their proof we refer the reader to, for example, Chapter 1 of [6].
Theorem 1 (Uniqueness and Symmetry Theorem). Let f, f1 ∈ F and f∗ be
the ∗-conjugate of f. Then

If1 (Q,P ) = If (Q,P )∀ (P,Q) ∈ P2 iff ∃c ∈ R : f1(u)− f(u) = c (u− 1)

and If∗ (Q,P ) = If (Q,P ) ∀ (P,Q) ∈ P2 iff

1Corresponding author
Key words and phrases. f -divergences, bounds, Ostrowski’s inequality.

1



2 PIETRO CERONE, SEVER S. DRAGOMIR, AND FERDINAND ÖSTERREICHER

(i) ∃c ∈ R : f∗(u)− f(u) = c (u− 1) .

Theorem 2 (Range of Values Theorem). Let f ∈ F . Then

f(1) ≤ If (Q,P ) ≤ f(0) + f∗(0) ∀ Q,P ∈ P.

In the first inequality, equality holds if Q = P. Further, equality holds if and only if
Q = P, provided that

(ii) f is strictly convex at 1.

In the second, equality holds if Q ⊥ P. Further, equality holds if and only if Q =
P, provided that

(iii) f(0) + f∗(0) <∞.

Remark 1. In order for an f-divergence to be nonnegative it is necessary, to
restrict oneself to the class F0. Since the values of an f-divergence are not changed
when replacing the function f ∈ F0 by f(u) − c(u − 1), it is convenient to take a
value c ∈ [D−f(0), D+f(0)] in order to get a nonnegative function f .

Remark 2. If f ∈ F0, then

If (Q,P ) = f(0) · P ({q = 0}) + f∗(0) ·Q ({p = 0}) +
∫
{p·q>0}

pf

(
q

p

)
dµ,

holds, where P ({q = 0}) is the amount of singularity of the distribution P with
respect to Q and Q ({p = 0}) is the amount of singularity of the distribution Q
with respect to P. Therefore f(0) = ∞ or f∗ (0) = ∞ imply If (Q,P ) = ∞ unless
P � Q (i.e. P ({q = 0}) = 0) and Q� P (i.e. Q ({p = 0}) = 0) respectively.

In the Sections 1 and 3 we consider five classes of f -divergences, from which the
classes (I), (II) and (III) are well known. All elements f of the five classes satisfy
f(1) = 0, f(u) ≥ 0 ∀ u ∈ [0,∞) and property (ii). The elements of the classes
(III), (IV) and (V) satisfy, in addition, (i) and (iii), and thus complete the basic
requirements in order to allow for a metric divergence. We conclude this section
by presenting the first class, which we need in Theorem 4, the main result of this
paper.

(I) The class of χα-Divergences

The f -divergences of this class, which is generated by the functions χα, α ∈
[1,∞), defined by

χα(u) = |u− 1|α , u ∈ [0,∞),

have the form

If (Q,P ) =
∫
X

p

∣∣∣∣qp − 1
∣∣∣∣α dµ =

∫
X

p1−α |q − p|α dµ,

whereby, in view of Remark 2, we assume Q� P provided α > 1.
From this class only the parameter α = 1 provides a distance, namely the total

variation distance V (Q,P ) =
∫
X
|q − p| dµ . The most prominent special case of

this class is, however, Karl Pearson’s χ2-divergence.
The following result is a refinement of the second inequality in Theorem 1.

Theorem 3. Let f ∈ F0 satisfy condition (iii) and let f̃ = (f + f∗) /2. Then

(1.1) If (Q,P ) ≤ f̃(0)Iχ1(Q,P ) ∀ Q,P ∈ P.
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Proof. The proof relies on the following simple fact

(1.2) f(u) ≤

 f(0)(1− u) for u ∈ [0, 1]

f∗(0)(u− 1) for u ∈ (1,∞)
.

First we consider the set {p · q > 0}. Setting u = q
p , multiplying the resulting

inequality by p > 0 and integrating over the set {p · q > 0} yields∫
{p·q>0}

pf

(
q

p

)
dµ ≤ f(0) (P ({p ≥ q > 0})−Q({p ≥ q}))

+ f∗(0) (Q({q > p > 0})− P ({q > p})) .
Together with the part for the remaining set {p = 0}∪{q = 0}, covered by Remark
2, this yields

If (Q,P ) ≤ f(0) (P ({p ≥ q})−Q({p ≥ q}))
+ f∗(0) (Q({q > p})− P ({q > p}))

= f̃(0)V (Q,P ),

where the latter is easily seen by splitting up X = {p ≥ q} ∪ {q > p} and applying∫
X
qdµ =

∫
X
pdµ = 1.

Remark 3. For functions f ∈ F0 which satisfy, in addition to (iii) also condition
(i), f̃(0) = f(0) holds. The most simple example satisfying all conditions (i), (ii)
and (iii) is χ1 which corresponds to the total variation distance. Note that for
functions f ∈ F0 given by equality in (1.2) the inequality (1.1) is sharp.

2. General Inequalities for extended f-Divergences

In the following result the notion of the f -divergence is extended to the class F̄
of functions f : [0,∞) → R which are locally absolutely continuous functions on
[0,∞) the derivative f ′ of which is of bounded variation on each compact interval
[1, u] or [u, 1]. In this context

∨b
a (g) denotes the total variation of a function g over

an interval [a, b]. Corresponding to the set F0 in Section 1 let, further, F̄0 = {f ∈
F̄ : f(1) = 0}.
Theorem 4. Let f ∈ F̄ be such that the derivative f ′ satisfies

(2.1)

∣∣∣∣∣
u∨
1

(f ′)

∣∣∣∣∣ ≤ V |u− 1|ρ−1 for any u ∈ (0,∞),

where the constants V > 0 and ρ ∈ (1,∞) are given.
Then for any P,Q ∈ P, with Q� P, one has the inequalities

(2.2) |If (Q,P )− f(1)| ≤ V Iχρ(Q,P )

and

(2.3)
∣∣∣If (Q,P )− f(1)− I

h
(i)
f

(Q,P )
∣∣∣ ≤ V

2
Iχρ(Q,P )

where the functions h(i)
f , i ∈ {1, 2} are defined by

(2.4) h
(i)
f (u) =

 (u− 1)f ′
(
u+1

2

)
for i = 1

1
2 (u− 1)f ′(u) for i = 2

, u ∈ (0,∞)
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and Iχρ(Q,P ) is defined as in Section 1.

Proof. In the first part we prove the inequalities (2.2) and (2.3) for the case i =
1. We use the following inequality obtained in [3] for functions g of bounded varia-
tion

(2.5)

∣∣∣∣∣g(y)− 1
b− a

∫ b

a

g(s)ds

∣∣∣∣∣ ≤
[

1
2

+

∣∣∣∣∣y − a+b
2

b− a

∣∣∣∣∣
]
∨ba (g)

for any y ∈ [a, b] , provided g : [a, b] → R is of bounded variation on [a, b] .
Now, the application of the inequality (2.5) for the choices g = f ′, a = 1, b =

u ∈ (0,∞) and y = 1 yields in view of (2.2)

(2.6) |f(u)− f(1)− (u− 1)f ′(1)| ≤ |u− 1| |∨u1 (f ′)| ≤ V |u− 1|ρ

for any u ∈ (0,∞).
Choosing u = q

p in (2.6) we get, after multiplying by p ≥ 0∣∣∣∣pf (qp
)
− f(1)p− (q − p)f ′(1)

∣∣∣∣ ≤ V p1−ρ |q − p|ρ .

Integrating this over X, using the triangle inequality and taking into account the
fact that

∫
X
pdµ =

∫
X
qdµ = 1, we deduce the desired inequality (2.2).

From the inequality (2.5) , we also get by choosing g = f ′, a = 1, b = u ∈ (0,∞)
and y = u+1

2

(2.7)
∣∣∣∣f(u)− f(1)− (u− 1)f ′

(
u+ 1

2

)∣∣∣∣ ≤ 1
2
|u− 1|

∣∣∣∣∣
u∨
1

(f ′)

∣∣∣∣∣ ≤ V

2
|u− 1|ρ

for any u ∈ (0,∞).
If we choose u = q

p in (2.7) we get, by multiplying with p ≥ 0,∣∣∣∣pf (qp
)
− f(1)p− (q − p)f ′

(
q + p

2p

)∣∣∣∣ ≤ V

2
p1−ρ |q − p|ρ ,

which gives, by integration over X, the desired inequality (2.3) for the case i = 1.
In the following second part we prove the inequality (2.3) for the case i = 2. For

this part we use the following inequality obtained in [1] for functions g of bounded
variation

(2.8)

∣∣∣∣∣ (b− y)g(b) + (y − a)g(a)
b− a

− 1
b− a

∫ b

a

g(s)ds

∣∣∣∣∣ ≤
[

1
2

+

∣∣∣∣∣y − a+b
2

b− a

∣∣∣∣∣
]

b∨
a

(g)

for any y ∈ [a, b] , provided g : [a, b] → R is of bounded variation on [a, b] .
The application of the inequality (2.8) for the choices g = f ′, a = 1, b = u ∈

(0,∞) and y = u+1
2 yields

(2.9)
∣∣∣∣f(u)− f(1)− (u− 1)

f ′(1) + f ′(u)
2

∣∣∣∣ ≤ 1
2
|u− 1|

∣∣∣∣∣
u∨
1

(f ′)

∣∣∣∣∣ ≤ V

2
|u− 1|ρ

for any u ∈ (0,∞).
Choosing, in (2.9), u = q

p and by multiplying with p ≥ 0 and then integrating
over X, we deduce the desired inequality (2.3) for the case i = 2.
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Remark 4. The constant 1
2 both in (2.5) and (2.8) is best possible in the sense

that it cannot be replaced by a smaller one. Dragomir et al. [4] utilised Ostrowski’s
inequality to examine bounds for extended f-divergences, however, they assumed
stricter conditions on the functions requiring absolute continuity.

Remark 5. As mentioned in Section 1, f-divergences frequently use (convex) func-
tions f ∈ F0. For these and, more generally, for f ∈ F̄0 the term f(1) in the
inequalities (2.2) and (2.3) is to be dropped.

Remark 6. For f ∈ F we interpret f ′(x) for those (at most denumberably many)
points x ∈ (0,∞) for which D−f(x) < D+f(x) as f ′(x) = 1

2 (D−f(x) +D+f(x)) . In
this way we can extend (2.1) - and hence Theorem 4 - to the case ρ = 1. By consider-
ing the function χ1(u) = |u− 1| we see, in view of

(
χ1
)′ (u) = signum (u− 1) , that

(2.1) has the form
∣∣∣∨u1 ((χ1

)′)∣∣∣ = 1 for any u ∈ (0,∞)\{1} and, consequently,
that (2.6) gives the form

χ1(u) = V |u− 1|ρ

with V = 1 and ρ = 1. This shows that (2.2) is sharp in the case of the total varia-
tion distance. It is not difficult to see when restricting the application of Theorem 4
to functions f ∈ F that (2.6) - and consequently (2.2) - is sharp only for functions
of the form

(2.10) f(u) = d+ c |u− 1| .

(By the way, the sign-function can be used to show that the constant 1
2 in (2.6) is

best posible.) Finally we note that (2.1) - and consequently (2.2) - is in the case
of the power ρ = 1 limited to functions of the form (2.10) whereas inequality (1.1)
applies to all functions f ∈ F0 satisfying condition (iii).

3. Investigation of the Results

In this section we use the class of χα-divergences and four further classes of f -
divergences in order to investigate both applicability and quality of the inequalities
(2.2) and (2.3) derived in Section 2. The latter is mostly done by comparing the
bound V achieved in (2.2) with the best possible bound for the given power ρ.

When applying Theorem 4 we typically encounter two types of numerical losses.
The first arising from the inequality (2.1) and the second by either the application
of Ostrowski’s inequality (2.5) or by the application of the Trapezoid inequality
(2.8).

Note that inequality (2.1) can only be applied to the derivative of a (convex)
function f ∈ F provided that

|D+f(0)| <∞.

Although this condition is necessary but not sufficient for (2.1) the (finite) value
|D+f(0)| turns out to be crucial since it provides the constant V in (2.1) for all
cases investigated, except in class (V) for the parameters α ∈ (2,∞).

Remark 7. The functions h(i)
f , i ∈ {1, 2}, defined in (2.4) satisfy

h
(i)
f (1) = 0 and

(
h

(i)
f

)′
(1) =

 f ′(1) for i = 1

1
2f

′(1) for i = 2
.
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Further, for functions f ∈ F with continuous derivatives f ′ on (0,∞) with the
properties (ii) and f ′(1) = 0

(
h

(i)
f

)′
(u) =


< 0 for u < 1

= 0 for u = 1

> 0 for u > 1

and hence h(i)
f (u) ≥ 0 ∀ u ∈ [0,∞), i ∈ {1, 2}.

Note, however, that the functions h(i)
f do not necessarily inherit the property of

convexity from the functions f, so that I
h
(i)
f

are in general not f-divergences in the
strict sense.

From the following classes of f -divergences the classes (I), (II) and (III) are
well-known. A detailed discussion can be found for example in Liese and Va-
jda [6], Chapter 2. The classes (IV) and (V) were introduced by Puri and Vincze
(1990) respectively Österreicher and Vajda (1997).

Our intention in the sequel is to give concise statements of our findings. Therefore
we omit any of the partially laborious details.

(I) The class of χα-Divergences
For this class∣∣(χα)′ (u)

∣∣ = α |u− 1|α−1

 ∀ u ∈ (0,∞)\{1} if α ∈ [1, 2)

∀ u ∈ (0,∞) if α ∈ [2,∞)
.

holds. Therefore inequality (2.1) - and hence (2.2) and (2.3) - apply for all param-
eters α ∈ [1,∞). The corresponding powers and constants are ρ = V = α . In this
case the inequality (2.2) has the form

|Iχα(Q,P )| ≤ αIχα(Q,P ).

For the parameter α = 1 , which corresponds to the total variation distance, the
inequality is sharp, but obvious. Note that although in (2.1) equality holds true in
this case a considerable loss is caused by the application of the inequality (2.7) for
the parameters α > 1. For this class of f -divergences for which the functions

h
(i)
χα =


α

2α−1χ
α for i = 1

α
2χ

α for i = 2

are elements of set F0 of convex functions, the inequalities (2.3) are of a similar
quality as (2.2).

Concerning the discussion of the total variation distance, which appears as a
special case also in the classes (III) and (IV) for the parameter α = 1 and in class
(V) for the parameter α = ∞, we refer to Remark 6 and the discussion in class (I).

(II) Dichotomy Class
From this class, generated by the functions

fα (u) =


u− 1− lnu for α = 0

αu+1−α−uα
α(1−α) for α ∈ R \ {0, 1}

1− u+ u lnu for α = 1

, u ∈ [0,∞),
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only the parameter α = 1
2

(
1
2f 1

2
(u) = (

√
u− 1)2

)
provides a distance, namely the

Hellinger Distance

H(Q,P ) =

√∫
X

(
√
q −√p)2 dµ .

The functions of this class satisfy

|D+f
′
α(0)| =


1

α−1 for α ∈ (1,∞)

∞ for α ∈ (−∞, 1]
.

It can be shown that, in addition, f ′α fails to satisfy (2.1) for any power ρ for the
parameters α ∈ (2,∞).
For the parameters α ∈ (1, 2], however, f ′α satisfies (2.1) - and hence (2.2) and
(2.3) - with ρ = 2 and V = 1

α−1 . In this case the inequality (2.2) has the form

(3.1) Ifα(Q,P ) ≤ cIχ2(Q,P ),

with c = 1
α−1 whereas c = 1

α is best possible. The functions

h
(i)
fα

(u) =


u−1
α−1

((
u+1

2

)α−1 − 1
)

for i = 1

(u−1)(uα−1−1)
2(α−1) for i = 2

in the inequality (2.3) turn out to be elements of F0, so that

I
h
(1)
fα

(Q,P ) =
1

α− 1

∫
X

(q − p)

((
q + p

2p

)α−1

− 1

)
dµ, α ∈ (1, 2]

and

I
h
(2)
fα

(Q,P ) =
1

2 (α− 1)

∫
X

(q − p)

((
q

p

)α−1

− 1

)
dµ, α ∈ (1, 2]

are f -divergences in the strict sense.

(III) Matusita’s Divergences
The elements of this class, which is generated by the functions ϕα, α ∈ (0, 1], given
by

ϕα(u) = |1− uα|
1
α , u ∈ [0,∞),

are prototypes of metric divergences, providing the distances
[
Iϕα(Q,P )

]α
.

These functions satisfy |D+ϕα(0)| = ∞ ∀ α ∈ (0, 1). Therefore the results of
Section 2 cannot be applied.

Note, however, that the functions α 7→ ϕα(u) are strictly monotone increasing
for every u ∈ (0,∞)\{1} and hence

Iϕα(Q,P ) < Iϕβ (Q,P ) < Iϕ1
(Q,P ) = Iχ1(Q,P ) for all 0 < α < β < 1.

For the latter inequality compare also with Theorem 3, Remark 3 and Remark 6.

(IV) Puri-Vincze Divergences
This class is generated by the functions Φα, α ∈ [1,∞) given by

Φα(u) =
1
2

|1− u|α

(u+ 1)α−1
, u ∈ [0,∞).
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As shown in [5] this class provides the distances [IΦα(Q,P )]
1
α .

These functions satisfy

|Φ′
α(u)| = 1

2
|u− 1|α−1 (2α+ (u− 1))

(u+ 1)α
∀ u ∈ (0,∞)

and |D+Φα(0)| = α− 1
2 . Further, it can be shown that

|Φ′
α(u)| ≤ (α− 1

2
)× |u− 1|α−1 ∀ u ∈ (0,∞).

Therefore Theorem 4 can be applied for all parameters α ∈ (1,∞) with ρ = α and
V = α− 1

2 .
The inequality (2.2) takes the form

(3.2) IΦα(Q,P ) ≤ cIχα(Q,P )

with c = α− 1
2 whereas c = 1

2 is best possible. Note also that none of the functions

h
(i)
Φα

(u) =


|u−1|k(4k+u−1)

(u+3)k
for i = 1

|u−1|k(k+u−1
2 )

(u+1)k
for i = 2

, u ∈ (0,∞),

which are used in inequality (2.3), have a nonnegative second derivative, so that
I
h
(i)
Φα

(Q,P ) are not f -divergences in the strict sense.

We finally note that for the parameters α > 2 the inequality (2.1) - and con-
sequently (2.2) and (2.3) - holds not only for the power ρ = α but for all powers
ρ ∈ [2, α].

(V) Divergences of Arimoto-type

This class is generated by the functions

ψα(u) =


1

1−1/α

[
(1 + uα)1/α − 21/α−1(1 + u)

]
for α ∈ (0,∞)\{1}

(1 + u) ln(2) + u ln(u)− (1 + u) ln(1 + u) for α = 1
|1− u| /2 for α = ∞ .

.

As shown in [7] this class provides the distances [Ifα(Q,P )]min(α, 12 ) for α ∈ (0,∞)
and V (Q,P )/2 for α = ∞.

These functions satisfy

ψ′
α(u) =


1

1−1/α

[
(1 + uα)

1
α−1

uα−1 − 2
1
α−1

]
for α ∈ (0,∞)\{1}

ln(2) + ln(u)− ln(u+ 1) for α = 1
,

ψ′′
α(u) = α(1 + uα)

1
α−2uα−2 and

∣∣D+ψα(0)
∣∣ =


∞ for α ∈ (0, 1]

2
1
α
−1

1−1/α for α ∈ (1,∞)
.
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It can be shown that ψ′
α satisfies (2.1) - and hence (2.2) and (2.3) - with ρ = 2

and

(3.3) V =


2

1
α
−1

1−1/α for α ∈ (1, 2]

ψ′′
α(u(α)) for α ∈ (2,∞)

,

where in the latter case u(α) is the unique solution of the equation ψ′′
α(u) (u− 1) =

ψ′
α(u). Therefore Theorem 4 can be applied for the parameters α ∈ (1,∞).
The inequality (2.2) takes the form

(3.4) Iψα(Q,P ) ≤ cIχ2(Q,P ).

with c = V as defined in (2.3), whereas c = c(α) = 1−2
1
α
−1

1−1/α is best possible for

α ∈ (1, α0] with α0 =
(

1− ln( 3
2 )

ln 2

)−1

> 2. By the way, (2.4) also holds for the

limiting case α = 1 with c = limα↓1 c(α) = ln 2.
Finally we note that none of the functions

h
(i)
ψα

(u) =


u−1

1−1/α

[
(2α + (u+ 1)α)

1
α−1 (u+ 1)α−1 − 2

1
α−1

]
for i = 1

u−1
2(1−1/α)

[
(1 + uα)

1
α−1

uα−1 − 2
1
α−1

]
for i = 2

,

u ∈ (0,∞), which are used in inequality (2.4), have a nonnegative second derivative,
so that I

h
(i)
ψα

(Q,P ) are not f -divergences in the strict sense.
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