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ON SOME ANALOGUES OF KY FAN-TYPE INEQUALITIES

PENG GAO

ABSTRACT. We study the behavior of means under equal increments of their variables and we apply
the results to Ky Fan-type inequalities and certain bounds for the differences of means. We also
give a sharpening of Sierpinski’s inequality and prove a Rado-type inequality.

1. INTRODUCTION
Let P,,(x) be the generalized weighted power means: P, ,(x) = (>, wixf)%, where w; >
0,1 <i<nwith Y ,w;=1and x = (21,22, - ,xn). Here P,o(x) denotes the limit of P, ,(x)
as r — 07. Unless specified, we always assume 0 < z7 < 29--- < 7, m = min{z;}, M = max{z;}.
We denote o, = > 1 wim; — Ap)?.

To any given x,t > 0 we associate X' = (1 — z1,1 — g, - ,1 —xp),x¢ = (x1 + ¢, , 2y + 1).
When there is no risk of confusion, We shall write P, , for P, ,(x), P, ; for P, ,(x;) and P;z,r for
P, (x')if 1 —x; > 0 for all i. We also define A, = P, 1,G,, = Py, H, = P, 1 and similarly for
An,ta Gn,ta Hn,ta A;u Gna Hn

To simplify expressions, we define

P P P~ P

n,rt L n,st /
(1.1) Apgpo= —mrt—Zmst A1
1990y !)a _ Pa ? 7,8 P _
n,r n,s ’ n,r ]n,s

with A, 510 = (In i:’:’z)/(ln I;::) We also write A, s for A, s;1. In order to include the case of

equality for various inequalities’ in our discussions, for any given inequality, we define 0/0 to be the
number which makes the inequality an equality.
Recently, the author(,ﬂgﬂ) proved the following result:

Theorem 1.1. Forr > s,m > 0,t > 0, the following inequalities are equivalent:

r—sSs r—s
(12) om On 2 Pn,r_Pn,s > Wo'n
M m
1. > Al >
(1.3) 1-M ~ ne T 1l-m
M m
1.4 _> A >
(14) t+m = et S e M

where in (1.3) we require M < 1.

D.Cartwright and M.Field@] first proved the validity of (1.2) for » = 1,s = 0. For other
extensions and refinements of , see , , and . (1.3) is commonly referred as the
additive Ky Fan’s inequality. We refer the reader to the survey article[2] and the references therein
for an account of Ky Fan’s inequality.

J.Aczél and Zs. Pales|l| proved Aj ¢ < 1 for any s # 1. We can interpret their result as
an assertion of the monotonicity of A,; — P, s as a function of ¢. The asymptotic behavior of
t(Pnrt — Anyt) was studied by J.Brenner and B. Carlson and in this paper, we will study the
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9 PENG GAO

monotonicities of (¢t + M)(Py ¢ — Pnst) and (t +m)(Pp,t — Py s¢) as functions of ¢ for r =1 or
s = 1 and then apply the result to inequalities of the type (|1.2]).

The following inequality connecting three classical means(with w; = 1/n here) is due to P.F.Wang
and W.L.Wang(right—hand side inequality), H. Alzer, S. Ruscheweyh and L. Salinas(left—hand
side inequality):

H, ,h A G An ., 1 H,
(HnynorAn o (G o (Anpoor

(1.5) was refined in [8] and in section [5| we will give a further refinement of the above inequality.

We will also prove a Rado-type inequality in the last section.

(1.5)

2. A FEw LEMMAS

Lemma 2.1. Let J(x) be the smallest closed interval that contains all of z; and f(x),g(zx) €
C?(J(x)) be two twice differentiable functions, then

(2.1) Z%l wif(xi) = foi wizi) _ f"(€)
> i wig(@i) — g3y wiri) 9" (§)
for some & € J(x), provided that the denominator of the left-hand side is nonzero.
Lemma and the following consequence of it are due to A.M.Mercer:
Lemma 2.2. For w > u,w #v,u #v,x1 >0

w(u—v), 1 (P — Ppy) w(u—wv), 1
w(w U) Tq ( n,w n,v) w(w 1)) Tn
with equality holding if and only if x1 = -+ = x,.

Apply Lemma to f(x) = (t+x)",9(x) =2",r # 0 and f(z) = In(t + x),g(x) = Inz when
r = 0, we obtain

Corollary 2.1. For x1 >0
t+ a1 t+xy

L+ Ty g 2 —9 U+ T
2o <A < ma "
I (Y < A < (2 (R

(2.3) min{( )%}

We now give a generalization of the result of Aczél and Pales:

Lemma 2.3. Letr > s,t > 0,a < 1.
(i). For s #1,A1 610 < 1.

(i1). If Do < 722, then Dy oo < (F2-)20
(i) If Dpoy > 7, then Apgpa > (7215)270

Proof. We will prove (i) for s < 1, # 0, (ii) for 0 < o < 1 and the other proofs are similar. For
(i), let f(t) = Ap; — Pgs 4, then

) a(AO‘—l - Pa—l( Pt )175) < oz(Ag;l — Py‘i%) <0,0<a<l1
n,t net P > aP,‘l’i;%(l — (#i’lt,t)l_s) >0,a<0

The conclusion then follows from the monotonicity of f(t).
For (ii), let f(t) = (t + z,)? (P2 P ,), then it suffices to show f/(0) < 0 or equivalently

n,rt ~ L nst
P, P,
(2~ )(B, — PR < (PSS ()1 = P (i)
n,s—1 n,r—1
We also have
P].—Ol P P
(2.4) = (Poy = Pag) < Poy — Pos < mp(( — )178_(i)1ir)
« ’ ’ 7 ' Pps—1 P
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where the first inequality above follows from the mean value theorem and the second inequality

follows from A, s; < ; fgn. Similarly, by using the mean value theorem, we get
P, — P} a o P,
(2.5) e < Py, < n(5=)
Pn,s _Pn7r 1—04 1_06 PTZ,'I‘—l

where the last inequality follows from Py = S7  wial < 30 wiapa] ' = 2, P11 Now (ii)

n,r—1°
follows by rewriting ([2.4)), (2.5) as

P, P,
(2.6) P =P < aPiltan((5) 0 = () )
’ ’ ’ Pn,sfl Pn,rfl
P,
(2.7) (1= a)(By, = Py) < ama(BSt = PR (5)
n,r—1
and adding (2.6 and (2.7). O

The following two lemmas will be needed in section

Lemma 2.4. Let x,b,u,v,t be real numbers with 0 < z < b,u > 1,v > 1,t >0, then f(u,v,z,b) <
f(u,v,x +t,b+t) where
u+v—1 1 1

— 32 -
f(u,v,x,b)—b ( ux + vb +x2(u/x—i—’u/b) _1')

with equality holding if and only if t =b oru=v =1 ort=0.

Proof. Let x < b,t > 0and u > 1,v > 1. Write D(u,v,z,b,t) = f(u,v,x,b)— f(u,v, z+t,b+t),then
(u—1)b/x+ (v—1)
(v + ux/b)(u + vz /b)
(u—=1)b+t)/(x+1t)+ (v—1)

D(u,v,xz,b,t) = v(b—x)[—

B CE S ey sy v prarar y ey
v(b—z) — T v—1)— ((u— x4+ (v —
el D+ 0/ )+ (0= 1) = ((w = Db+ (= 1)

B v(u—1)(b— )%t
T (v4 ux/b)(u+ vz /b)z(z + 1) <0

since (x+t)/(b+t) > x/b. Thus we conclude that D(u,v,z,b,t) <0for0 <z <bu>1l,0v>1. O

We remark here from the proof of the Lemma one finds f(u,v,s,b) <0 and we have D <0
as long as the condition v+ v > 2,u > 1,v > 0 is satisfied, we don’t really need v > 1.
Lemma 2.5. Let x,a,b,u,v,s,t be real numbers witht > 0,0 <z <a<bu>1l,v>1lLu+v>3
and 0 < s <w, then g(u, s,v,z,a,b) < g(u,s,v,x +t,a+t,b+t) where
2 u+tv—1 1 l]

=b
9(u, s,0,,0,b) uz + sa+ (v — s)b * 22(u/z +s/a+ (v—s)/b) =

with equality holding if and only if one of the following cases is true: 1. x =a="b; 2. s=0,x =b;
3. t=0.

Proof. We may assume t > 0 and let M = {(s,a) € R*|0 < s < v,z < a < b}. Furthermore, we
define H(s,a) = g(u, s,v,z,a,b) — g(u, s,v,x +t,a+t,b+t), where (s,a) € M. It suffices to show
H(s,a) < 0. Let m = (so,ap) be the point in which the absolute minimum of H is reached. If m
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is an interior point of M, then we obtain

) toH 1 om - /e
s da a—>b 0s

(s,:)=(s0,a0) = za2(u+ sz/a+ (v —s)z/b)2
B (b—a)(b+1t)/(z+1) 50
(x+t)a+t)?’(u+sz+t)/(a+t)+ (v—s)(z+1t)/(b+1))?
where the inequality follows from b/z > (b+t)/(x +t),(x +t)/(a+t) > x/a. Hence, m is a
boundary point of M, so that we get m € {(so,x), (s0,b),(0,a0), (v,a0)}. Using Lemma we
obtain H(so,b) = H(0,a0) = D(u,v,z,b,t) <0 and
H(sp,x) = D(u + so,v — sg,z,b,t) <0

The above inequality follows from the remark after the proof of the Lemma[2.4] since here v—sy > 0
but may not exceed 1. Finally,

H(v,a0) = b /a3 f(u, v, 2, a0) — (b+)* /(a0 + 1)* f(u, 0,2+ t,a0 +) <O

The above inequality holds since f(u,v,z,a9) < f(u,v,z + t,a9 +t) < 0 by the remark after
the proof of the Lemma and b/ag > (b+1t)/(ap +t). Thus if (s,a) € M, then H(s,a) < 0.
The conditions for equality can be easily checked by using Lemma [2.4) and noticing the condition
u+v > 3. O

3. THE MAIN THEOREM

Theorem 3.1. Fort > 0,21 >0, -1 <s#1<2

I In
3.1 <A <
( ) t+x1 l’s’t_t—i—xn
with equality holding if and only ift =0 or x1 =+ = x,.

Proof. The case s = 0 has been treated in [@H so we will assume s # 0 and prove the left-hand side
inequality of (3.1) and the other proofs are similar. For 0 < s < 1, let

Dn(Xa t) = xn(An - Pn,s) - (t + wn)(An,t - Pn,s,t)
We want to show D,, > 0 here. We can assume x; < 3 < --- < x, and prove by induction, the
case n = 1 is clear so we will start with n > 1 variables assuming the inequality holds for n — 1
variables. Then
oD _ _
2 = (An = Pus) = (Ant — Post) +wnl(An — P, %a5) — (Any — By S5 (t+ 20)”)]

axn n,s,t

= wp[Pr 5t +an) + Posy — 2t — Pos — Py by

n,s,t

wn[(An = Pps) = (Ant — Pust) + (A — P&,;S%Sz) — (Ant — Py (t+zn)%)]

n,s,t

where the inequality follows from A ;¢ < 1. Now consider

9(t) = P55t +a0)° + Pose — 2t

and we have
t+x P,st _
" = (11— nys_fnst \1-s
g ( ) ( )( Pn,s,t Pn,sfl,t

> (1=s)y®+sy° ! = 1:= h(y)
where y = % > 1 and the inequality follows from (Pp"i’s’t)lfs > 1. Note h/(y) = 0 has

n,s—1,t
only one root y = 1, which implies h(y) > min{h(1),lim, o h(y)} = 0. Thus ¢'(¢t) > 0, hence
g(t) > g(0) = Ps+ Pi%z5 and it follows %?: > 0 and by letting z, tend to x,_1, we have
D,, > D,,_1(with weights w1, -+ ,wp—2,wn—1 + wy) and thus the right-hand side inequality of ({3.1))

holds by induction. It is easy to see the equality holds if and only if t =0 or z; = - - - = xy,.

Pn,s,t
t+ x,,

Pn,s,t
Pn s—1,t

) )

)lfs )lfs —9

+ s(
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For —1 < s < 0, we have

1 8Dn Pn S\1— Pn st \1—
— = —t—zp () (¢ A
—— P ) () () ey
Consider
n S
P, . . .. xp1s Phst o5 (t+ xpn)(t + x;)*
!/ — _ 1 _ . n,5\1—2s . J _ n,s, 1-2s n J < O
f(x1) ( S)JZ;WJ[( o ) l’iﬂ (t—i—xl (t+ 2p)5t1 ] <
The last inequality holds, since when —1 < s < 0,5 = 2,--- ,n, we have
(Pn75)1725 > ( Prst1o0s Tj _t+x5  on ( Lj ) > ( Lj ylts > x1 yits
T T4 Txn Tttt a t4a, ttx; T t4a; Tt

Thus by a similar argument as above, we deduce f(z;) > —t and %g 2 < 0, which implies Dy, > 0
with equality holding if and only if t =0 or z; = - - - = xy,.
For 1 < s < 2, it suffices to show %)t” < 0, which is equivalent to

Pri,_sl (Pi;l _ Psfl )

n,s—1

Tn o (Pn,s - An)

s—1
,S

The above inequality follows from P;L—n < 2572 and Lemma withu=s—1,v=s5,w=1. [

4. SOME CONSEQUENCES OF THEOREM
Corollary 4.1. (1.2) holds forr=1,-1<s<1land1<r <2,s=1.

Proof. This follows from Theorems and O

The above result was first proved by the author in , in fact it was shown there those are the
only cases (1.2]) can hold for =1 or s = 1. Thus by Theorem we have

Corollary 4.2. (3.1) holds for allt > 0 if and only if —1 < s#1<2.
Corollary 4.3. For -1 <s <1

n,s

n,s—1 n,s—1 n,s—1

(4.1)

Proof. Theorem [3.1|implies f(t) = (¢t + ) (Ant — Pn.st) is a decreasing function of ¢ and f/(0) <0
implies the right-hand side inequality of (4.1)) and the proof of the left-hand side inequality of (4.1
is similar. 0

By a change of variables x; — 1/z; and let 1 = m > 0, the right-hand side inequality of (4.1))
when s = —1 gives

Hy
g
z1 Ay "

a refinement of the left-hand side inequality of ([1.2]) for » = 1,s = —1. We note here one can
use the method in E[] to give a direct proof of (4.2)) and show the equality holds if and only if
1 = - = x,. We will leave the details to the reader.
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5. A SHARPENING OF SIERPINSKI'S INEQUALITY

Theorem 5.1. For 0 <z <--- < xp,t >0, ¢ = min{w;}

T (1-—q¢)InA,;+glnHy,; —InGp, 1
(5.1) ( )2 > - ( ?
Ty +1 (1-q)InA,+qlnH, —InG, r1+t
(5.2) ( Tn 12 > InGpt—qlnA,; —(1—¢)ln Hn’tZ 1 )2
Ty + 1 InG, —qlnA,—(1—¢q)InH, T+t
with equality holding if and only if t =0 or q=1/2 orx1 =+ = x,.

Proof. The proof uses the ideas in . We will prove the left-hand side inequality of (5.1)) and the
proofs for other inequalities are similar. We may assume ¢t > 0 being fixed and ¢ > 0,0 < x =
r1,T, = b with 1 < z,, we define
fn(xna Q) = 1‘2[(1 - Q) lnAn + qlan —In Gn] -
—(zn +)*[(1 = @) In Apy 4+ qln Hyy — In Gy

where we regard A, Gy, Hy, Ant, Gnyt, Hn e as functions of x, = (z1,--- ,2,). Then

1 Ofn 2l —q qHp 1 21l — ¢ qHn 1
R ———— [ t ) _
w1 011 .Tn[ A, + .’E% :El] (.%‘n + ) [ An,t + (1‘1 + t)2 x| + t]

gn($2a e ,$n—1) =

We want to show g, < 0. Let D = {(x2,--- ,2p_1) E R" 20 <2 <29 < --- < 21 < b}. Let
a = (ag, - ,ap—1) € D be the point in which the absolute minimum of g, is reached. Next, we
show that

(5.3) a=(z,---,x,a,-,a,b---b) withzx <a<b
where the numbers x, a, and b appear u, v, and w times, respectively, with u,v,w > 0,u+v+w =
n— 2.

Suppose not, this implies two components of a have different values and are interior points of D.
We denote these values by ar and q;. Partial differentiation shows a;, a; are the roots of

B B
5.4 hz)=————5+C=0
(54) @ = Gy T
where , )
2,..2 H n +t o 2 _ 2
B :an§n7B, _ e 2) o= Q)(anth) o g)wn
7 (x1+1) An,t A2

It’s easy to show h/(x) only has one positive root, which implies h(z) can have at most two distinct
positive roots, but lim,_oh(z) = 00,lim;— h(z) = C < 0 implies h(z) can have at most one
positive root. Thus yields a = a;. This contradicts our assumption that ar # a;. Thus
is valid and it suffices to show g, < 0 for the cases n = 2, 3.

When n = 2, by setting 1 = z,x2 = b,w1/q = u,w2/q = v, g2 < 0 follows from Lemma

When n = 3, by setting 1 = z, 22 = a, 23 = b,w1/q = u,wa/q = s,ws/q = v — s, g3 < 0 follows
from Lemma 2.5

Thus we have shown that g, = w%% < 0 with equality holding if and only if n = 1 or
n =2,q=1/2. By letting x; tend to x2, we have

fn(XmQ) > fn—l(xn—laQ) > fn—l(xn—laq,)
where x,_1 = (z2, - ,2,) with weights w1 + wo, -+ ,wp—1,w, and ¢ = min{w; + wa, -+ ,wp}.
Here we have used A; 140 < ( 7 fgn )2 ,which is a consequence of Theorem and Lemma

It then follows by induction that f, > f,—1 > -+ > fo = 0 when ¢ = 1/2 in fo or else
fn > fno1>---> f1 =0 and this completes the proof. O
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By letting t — oo in (5.1)), (5.2)), we recover the following result of the author, which can be
regarded as sharpenings of Sierpinski’s inequality for the weighted cases:

Corollary 5.1. For0 <z; <--- <z, ¢ = min{w;}

1—2q 1—2q
(5.5) WUTL >(1-q)InA,+qlnH, —InG,> 202 on

1—2q 1—2¢q
with equality holding if and only if g =1/2 orxy = -+ = xy,.

6. A RADO-TYPE INEQUALITY

By letting w; = ¢;/Qn,Qn = Y. i1 ¢i,q > O(note for different n, w;’s take different values),
C.L.Wang proved the following Rado-type inequality:

Theorem 6.1. If z; € (0,1/2],i=1,--- ,n, then

(6'1) Qn(Ant,n - A;Gn) > anl(AnflG/n—l - A;@—lanl)
We end the paper by giving an analogue of Wang’s theorem:

Theorem 6.2. Fort>0,¢; >0,i=1,---,n

A ri—Ap 1 an
(62) Qn(AnGn,t - An,th) 2 Qn—l(An—lGn—l,t - An—l,th—l)( Lt ! )gz"

Gn—l,t - Gn—l
Proof. Let f(zy) = Qn(AnGnyt — AnGp), by setting
Gt G
! n) = n\Ln An T )=
(2n) = tuln + And) ([ = ) = 0
we get x, = tGp—1/(Gn-14 — Gn—1). Moreover, at this point
" QTLQTLfl Gn Ant An
V= o Lnt 0
1" (@) Qn $n(fL‘n t+azn)>

and it is easy to see that f(z,,) takes its absolute minimum at the point, which implies

tGp_1 Ap_1p— Ap1 o
n) > f(=—"— NV =Qp-1(A4-1Gp-1t — Ap—14Gp1) () 0n
flxn) > f(Gn—l,t — Gn—l) Qn-1(An1Gn_14 1t 1)(Gn—1,t — Gn—l)
for any x, > 0, with equality holding if and only if z,, = tG,—1/(Gn-1+ — Gn-1). O

We note here by letting ¢ — oo in (6.2)), we get back Rado’s inequality:

Qn(An - Gn) 2 anl(Anfl - anl)
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