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ON AN OPEN PROBLEM BY FENG QI REGARDING AN
INTEGRAL INEQUALITY

S. MAZOUZI AND FENG QI

ABSTRACT. In the article, a functional inequality in abstract spaces is estab-
lished, which gives a new affirmative answer to an open problem posed by
Feng Qi in Several integral inequalities appeared in J. INEQUAL. PURE APPL.
MATH. 1 (2000), no. 2, Art. 19 (Available online at http://jipam.vu.edu.au/
vin2/001_00.html) and RGMIA REes. Rep. CoLL. 2 (1999), no. 7, Art. 9,
1039-1042 (Available online at http://rgmia.vu.edu.au/v2n7.html). More-
over, some integral inequalities and a discrete inequality involving sums are

deduced.

1. INTRODUCTION

Under what condition does the inequality
b b t—1
[u@racz ([ s a) )

This problem was proposed by the second author, F. Qi, in [8] after the following

hold for ¢ > 17

inequality was proved:

/a b [f(2)]" " da > ( / b f(=) dx> RH, (2)

where f(x) has continuous derivative of the n-th order on the interval [a, b], ) (a) >
0for0<i<n—1,and f(z) >nl
In the joint paper [12], K.-W. Yu and F. Qi obtained an answer to the above

problem by using the integral version of Jensen’s inequality and a property of
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convexity: Inequality (1) is valid for all f € C([a,b]) such that f; flx)dz > (b—
a)t=1 for given t > 1.

Let [z] denote the greatest integer less than or equal to z, f(=1(z) = [ f(s)ds,
fOz) = f(x), y(t) = tit —1)(t —2)---[t — (n —1)] for t € (n,n + 1], and
~(t) =1 for t < 1, where n is a positive integer. In [11], N. Towghi provided other
sufficient conditions for inequality (1) to be valid: If f)(a) > 0 for i < [t — 2] and
f=2(z) > ~(t — 1)(xz — a)*~) ] then fab f(x)dz > (b—a)!~! and inequality (1)
holds.

T. K. Pogédny in [7], by avoiding the assumptions of differentiability used in [8, 11]
and the convexity criteria used in [12], and instead using the classical integral in-
equalities due to Holder, Nehari, Barnes and their generalizations by Godunova and
Levin, established some inequalities which generalize, reverse, or weight inequality
(1).

In this paper, by employing a functional inequality introduced in [5], which is an
abstract generalization of the classical Jensen’s inequality [9], we further establish
the following functional inequality (4) from which inequality (1), some integral

inequality, and an interesting discrete inequality involving sums can be deduced.

Theorem 1. Let L be a linear vector space of real-valued functions, p and q be two
real numbers such that p > q > 1. Assume that f and g are two positive functions

in L and G is a positive linear form on L such that

(1) G(g) >0,
(2) fg and gfP € L.

If
[G(9)P~ < [G(g )P, 3)
then
[Glg )] < Ggf"). (4)

The new inequality (4) has the feature that it is stated for summable functions
defined on a finite measure space (E, 3, u) whose L'-norms are bounded from be-
low by some constant involving the measure of the whole space E as well as the

exponents p and q.



2. LEMMA AND PROOF OF THEOREM 1

To prove our main result, Theorem 1, it is necessary to recall a functional in-

equality in [5], which can be stated as follows.

Lemma 1. Let £ be a linear vector space of real valued functions and f,g € L with
g > 0. Assume that F is a positive linear form on L and ¢ : R — R is a convex

function such that

(1) F(g) =1,
(2) fg and (po flge L.
Then

o(F(fg)) < F((wo f)g)- (5)

Notice that Lemma 1 is in fact a form of the classical Jensen inequality. There

is a vast literature on this subject, see, e.g., [1, 2, 3, 4, 6, 10] and references therein.

Proof of Theorem 1. Define a positive linear form F'(u) = gg:;, then, we obviously

have F(g) = 1. From Lemma 1, if we take as a convex function ¢(z) = P for

p > 1, then
[F(g )P < F(gf"), (6)
that is,
[G(gf)]p _ Gl
Glg) ] — Glg)

which gives
[G(gf)]P1
[G(g)]P—!
Since inequality (3) holds, thus inequality (4) follows. O

[G(g )T < G(gf")-

3. COROLLARIES AND REMARKS

As a new positve and concrete answer to F. Qi’s problem mentioned at the

beginning of this paper, we have the following
Corollary 1. Let (E, X, u) be a finite measure space and let L be the space of all
integrable functions on E. If p and q are two real numbers such thatp > q > 1, and
f and g are two positive functions of L such that

(1) [pgdu>0,

(2) fg and gf? € L,



then
</ gf du) < / 9" du, (7)
E E
provided that ([, gf du)"™" > (ngdu)p_l.

Proof. This follows from Theorem 1 by taking G(u) = [ rudp as a positive linear
form. O

Remark 1. We observe that if p = ¢ and G(g) < 1, then inequality (3) is always
fulfilled, and accordingly, we have

(Ggf)IP <G(gf")

for all p > 1.

Remark 2. If £ contains the constant functions, then for

0, p=>q=>1,
f=91G@Pr1, p>q>1, (8)
1, p=gq,G(g) =1,

equality occurs in (4)

Remark 3. In fact, inequality (4) holds even if inequality (3), as merely a sufficient
condition, is not satisfied. Let p > ¢ > 1, m = % and ¢ = [q(%)q_l]l/@_w. If
E = [a,b] is a finite interval of R and f(z) = c¢(x —a)™, then (ff fdz)! = f; fPdx.
On the other hand, inequality (3) is no longer satisfied if q(i%‘{)pfl < 1. This is
due to the fact that (f; fda)"™ = q(%)pfl(b - a)pil.

Corollary 2. Let f € L'(a,b), the space of integrable functions on the interval
(a,b) with respect to the Lebesque measure, such that |f(x)| > k(x) a.e. for x €

(a,b), where

(b— a)(p—l)/(;v—Q) < /b k(z)dz < oo (9)

a

for somep >q>1, then
b q b
([ rwla) < [irora. (10
a a
Proof. This follows from Lemma 1 easily. ([

We now apply Corollary 2 to deduce F. Qi’s main result, Proposition 1.3 in [§],

in detail.



Corollary 3. Suppose that f € C™([a,b]) satisfies f)(a) > 0 and f™)(z) > n! for

x € [a,b], where 0 <i<n—1 andn €N, the set of all positive integers, then

[ i@ aes ([ rwar) ()

Proof. Since f(™(x) > n!, then successive integrations over [a, x| give
F=R(z) > G@—a)® k=01,...,n-1,

hence
!
(z —a)" k=P (z) > %(m -a)", k=0,1,...,n—1.
On the other hand, Taylor’s expansion applied to f with Lagrange remainder

states that

n—1 (k) a (n)
s =@+ 3 e o+ Ly
k=0

n

n! n
=2 i

k=0

_ 2”(1‘ _ a)n7
where £ € (a,z). But since z is arbitrary and 2™ > n + 1 for all n € N, then
fl@)zm+1)(z—a)" 20

for all z € (a,b). Therefore

b
[ f@ydez 0o,
a
and inequality (11) follows by virtue of Corollary 2. O

Remark 4. The following function
z —a)"t!
filab] —RT, fo(f):W
for a fixed n € N satisfies f € C"([a,b]) and f@(a) > 0, for 0 < i < n — 1, but
f(z) = %(x —a) for x € [a,b]. This means that the condition f™) > n! on
[a, b] is no longer fulfilled. However, we have

b n+2 b _ \(n+2)?
. n+3 o (b a)
</a fda:) —/a fredx = (7 + TS

Finally, let us apply Corollary 1 to derive a discrete inequality.
5




Corollary 4. Let E = {ay,...,an}, f : E — RT defined by f(a;) = b; for
i=1,...,N, and let p be a discrete positive measure given by p({a;}) = o; > 0 for
i=1,....,N. If, forp>q>1

N p—1 N pP—q
(Z Oéi> S (Z Oéibi> , (12)

N q N
i=1 i=1

If, in particular, a; = --- = ay = ¢ > 0 satisfies
L N p—q
-1
< N1 (Z bi> , (14)
i=1

N q
(24) <=
ci~
i=1
Proof. We observe that

(fra) =

then we have

then

N
DI (15)
i=1

and thus, the sufficient condition is satisfied. We conclude by Corollary 1 that

q N q N
</Efdﬂ> = (;%@) §/Efpd,u—;aibf.

The proof of inequality (15) is a particular case of the above argument, and thus

we leave it to the reader. O

REFERENCES

[1] P. R. Beesack and J. E. Pecaric, On Jensen’s inequality for convex functions, J. Math. Anal.
Appl. 110 (1985), 536-552.

[2] P. R. Beesack and J. E. Pecaric, On Jensen’s inequality for convex functions, II, J. Math.
Anal. Appl. 118 (1986), 125-144.



(3]

(4]

(5]
[6]

(7]

9
[10]

(11]

(12]

P. R. Beesack and J. E. Pecaric, On Jensen’s inequality for convex functions, III, J. Math.
Anal. Appl. 156 (1991), 231-239.

S. S. Dragomir, C. E. M. Pearce, and J. Pecaric, On Jensen’s and related inequalities for
isotonic sublinear functionals, Acta Sci. Math (Szeged) 61(1995), 373-382.

S. Mazouzi, A functional inequality, Magh. Math. Rev. 3 (1994), no. 1, 83-87.

J. E. Pecari¢ and I. Rasa, On Jensen’s inequality, Acta Sci. Math. (Szeged) 56 (1992),
305-309.

T. K. Pogany, On an open problem of F. Qi, J. Inequal. Pure Appl. Math. 3 (2002), no. 1,
Art. 4. Available online at http://jipam.vu.edu.au/v3n4/016_01.html.

F. Qi, Several integral inequalities, J. Inequal. Pure Appl. Math. 1 (2000), no. 2, Art. 19.
Available online at http://jipam.vu.edu.au/vin2/001_00.html. RGMIA Res. Rep. Coll. 2
(1999), no. 7, Art. 9, 1039-1042. Available online at http://rgmia.vu.edu.au/v2n7.html.
W. Rudin, Real and Complex Analysis, McGraw-Hill, Inc., New York, 1974.

J. Sdndor, On the Jensen-Hadamard inequality, Studia Univ. Babes-Bolyai Math. 36 (1991),
no. 1, 9-15.

N. Towghi, Notes on integral inequalities, RGMIA Res. Rep. Coll. 4 (2001), no. 2, Art. 12,
277-278. Available online at http://rgmia.vu.edu.au/v4n2.html.

K.-W. Yu and F. Qi, A short note on an integral inequality, RGMIA Res. Rep. Coll. 4 (2001),
no. 1, Art. 4, 23-25. Available online at http://rgmia.vu.edu.au/v4nl.html.

(S. Mazouzi) DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES, UNIVERSITY OF ANNABA,

P. O. Box 12, ANNABA 23000, ALGERIA

E-mail address: mazouzi.s@voila.fr

(F. Qi) DEPARTMENT OF APPLIED MATHEMATICS AND INFORMATICS, JIAOZUO INSTITUTE OF

TECHNOLOGY, Jiaozuo CiTy, HENAN 454000, CHINA

E-mail address: qifeng@jzit.edu.cn



