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DARBOUX’S FORMULA WITH INTEGRAL REMAINDER OF FUNCTIONS WITH
TWO INDEPENDENT VARIABLES

FENG QI, QIU-MING LUO, AND BAL-NI GUO

ABSTRACT. In the article, the noted Darboux’s formula of functions with single variable is generalized
to that of functions of two independent variables with integral remainder, some important special cases
of Darboux’s formula of functions with two variables are obtained, and some estimates of the integral
remainders and Darboux’s expansion of the function In(z + y) are given. These results generalize A.
Sard’s formula in numerical integration.

1. INTRODUCTION

The well-known G. Darboux’s formula of functions with single variable was given in [13, p. 217], which
can be modified slightly as follows

Theorem A. Suppose f(z) is defined on an interval I C R and £ (z) is absolutely continuous on I.
Let P,(t) be a polynomial of degree n and the coefficient of the term t"™ equal a,, and a € 1. Then

no_1\k+1 n oz
f(z) :f(a)+Z%[P£”*k)(x)f(k)(x) (n— k)( )f(k( )] %/ pn(t)f(n+1)(t)dt. (1.1)

Remark 1. If letting P, (t) = (t — )™ in (1.1), we can obtain the following Taylor’s formula with integral
remainder

") (g R
f@) =3 L+ [e- oo an (12)

Replacing P, (t) by Prin(t) = (t — 2)™(t — a)™ in Theorem A, we have the following

Theorem B (Obreschkoff’s formula of functions with single variable [13, p. 218]). Suppose that f(x) is
defined on an interval I C R and f"+")(z) is absolutely continuous on I. Let a € I, then

Z(_Dk(ﬁ) (x—a £ (@ Z mm x—a) E=a)" (g

k=0 k ) k=0

1 xr

— — )™ (a — )" fF D () de. (1.3
*(m+n>1/a<=” Y@t O (0 ar. (1)
Remark 2. Theorem B can be applied to obtain H. Padé approximations of the functions e®, z%, Inz,
and arctanz. See [12, p. 191-205].

In this paper, we will adopt the following notations used in [11]:

o i f(x,y)
(4,9) -2 J\I)

f(O’O)(x,y) = f(x,y),
£, 8) = £ @,9)] ey

where i, j > 0 are integers and (o, ) € D C R2.
A. H. Stroud has pointed out in his celebrated book [11, p. 138] that one of the most important tools
in the numerical integration of double integrals is the following Taylor-like expansion due to A. Sard [10]:
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Theorem C (Sard’s formula of functions with two variables [1 1, p. 138 and p. 157]). Suppose that f(x,y)
is defined on a convex region D C R?, (a,b) € D, and f9) (x,y) is continuous on D fori+j < m. Then

famn = (z ;G)z Wy —-'b)J 709 (a, )

i+j<m J:
(¢ w7 (m=3:7) (4,
+Z<: /a o )f (u, b) du
- - —y)misl (1.5)
+ ZI:J / (ym — = 1)' f(l’mil) (a,’U) dov
y(JJ—u)P—li(y—v) 5.0 (4, 0) du do,
+/a /b -1 (g—1) fP0(u,v) dud

where 1, ] are nonnegative integers, p,q are positive integers, and m = p + q.

In [3], some new Taylor-like expansions of functions with two independent variables and estimates of
their remainders are established.

In this paper, we generalize G. Darboux’s formula of functions with single variable in Theorem A to
that of functions with two independent variables as follows.

Theorem 1 (Darboux’s formula of functions with two variables). Suppose D C R? is a convex region
and (a,b) € D, define f : D — R such that @79 (z,y) is continuous on D for 0 <i <n and 0 < j < m.
Let P, (t) be a polynomial of degree n with coefficient a,, of the term t"™ and Q,(s) a polynomial of degree
m with coefficient b,, of the term s™. Then

f(z,y) = f(a,b) + C(f, P, Qm) + D(f, Pn, Q) + S(fs Pny Q) + T(f, Pas Qm), (1.6)
where
C(f, P, Qm) =i Ot [P0 (@) f 50 (@, b) = P (a) f50 (a,b)]
k=1 nlay
n iy | (L.7)
+ 3 C [0 ()09 (0,) — Q40 () 109 0, )],
i=1 m
~~ (DR (m—i) .,y (kyi) (m—d) (py (kD)
D(f: Pay Q) = 33— == PP (@) [ (1) /™ (w,y) — QU (0) ) (x,0)]
k=1i=1 "™ (1.8)
~om (DR k) ki ; ki
_ZZWP(" (@) [Q5 () F* (a,y) — Q5= () £ %9 (a,b)],
k=1i=1 ™
(f, Pn,QnL) = (n'a)n /z Pn(t)f(n+1’0)(t b) dt+ / Qm f(O m+1 ((1 S) dS
Jrz m+k+1/ Q ( )[P(nfk)( )f(k,m+1)( )7P(n7k)( )f(k,erl)( )] dt
m'n'an A m\S n x xT,S n a a,s (1.9)
n+1+1 :
m,n,a = [ Pl O ) - QB £, dr
T(.f) Pnan) = m'n':+n / / n Qm n+1,m+1)(t75) dt dS. (110)

Further, we discuss some important special cases of G. Darboux’s formula (1.6) for functions with two
independent variables and give some estimates of the integral remainders. As an application, we calculate
G. Darboux’s formula of the function In(x + y) finally.

2. PROOF OF THEOREM 1
Applying Theorem A to the function f (x y) with respect to the variable x yields
(n k) (k,0) _ p(n—k) (k,0)
f(a,y) = f(a,y) +Z n,an (@) O (@, y) = PI" M (a) f#0) (a,y)]
= (2.1)
_1\» ®
) / Po(t)f 0 (1, y)

a

nla,
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Similarly, applying Theorem A to the functions f(a,y), f*9(z,y), f*9(a,y) and fOFTLO(t, ) with
respect to the variable y gives us

Flap) = fla0) + Y- QU0 109 w,n) - Q) 0,0

1 (2.2)
+ (—1)m Yy Qm(S)f(077rL+1)(a S) ds
m'bm b ’ ’
(k,0) (k,0) (D) k) (m—i) (1 £ (ki)
I (.’L',y):f ’ (S(:,b)—l—z m'b [Qm (y)f ’ (:v,y)—Qm (b)f ’ (l‘,b)}
Comop (2:3)
_1 m Yy
(k,m+1)
+ i [ Qula s @) as,
FE0(a,y) = f*0(a,b) + )N e y) - QT 0) 4 (a,0)]
i=1 (2.4)
+ (—1)m /y Qm(s)f(k,m+1)(a s) ds
m'b b )
f(n—i-l,O)( )_ n+1 0) t b +§: )1+1 (m 1)( )f(n+1,7)(t ) Q(m z)(b)f(7l+1,i)(t b)]
ol y y :
i=1 (2.5)
(n+1,m+1)
m!bm /b Qus)f (t, ) ds.
Substituting formulas (2.2), (2.3), (2.4), and (2.5) into (2.1) and rearranging leads to
~ D e g 00) (=) () §(1:0)
f(a,y) Zj n,an [P 8 (@) f 50 @, 0) = P (a) 50 a, 1)
" (1 -
+D_ QT W) (a,y) = QG (0) /) (a,0)]
i=1 m
N zn: Zm: D pew (2)[QU D (1) 75 (2, ) — Q=D () £ (a, )]
== m!nla,b, " m ’ m ’
O, (—1)kH B . , . ,
=33 L b @) Q=00 75 (0,) — Q4 )£ a0, )]
i1 =1 T 0nOm (2.6)
_1\n =
) | a0y ar+ © / Qum(5) /O™ (a, 5) ds
n.an a
1)kt (n—k) (- £(ksm+1) (n—k)(,y ¢(k,m+1)
+§:j i | Qu [P @ 5) = P @) 1 5] s
Dl (m—i) ) p(n+1.0) (m—i) () f(n+L0)
*mean - / PO [Q4 () £ (1) — QU= ()00 (1, b)]
ym (n+1,m+1)
m'n'anb / / s)f (t,s)dtds.
The proof is complete.
3. SOME SPECIAL CASES OF THEOREM 1
In this section, we will deduce some special cases of Theorem 1.
Definition 1 ([2]). Let Px(t) be a polynomial such that
Pl(t)=Pe_1(t), Py(t)=1, k=1,2,..., (3.1)

then we call Py(t) a harmonic polynomial or an Appell polynomial.
It easy to see that the following proposition holds.

Proposition 1. Let P,(t) be an Appell polynomial of degree n and the coefficient of the term t" equal
a,. Then a, = %
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Theorem 2 (Harmonic Darboux’s formula of functions with two variables). Let D C R? be a convex
region and (a,b) € D. Define f : D — R such that f9)(x,y) is continuous on D for 0 < i < n and
0 < j < m. Further, let P,(t) and Q. (s) be two harmonic polynomials. Then

where
Clf, Par @) = 31 [Pula) 150 ,) - Pu(@) 0 a, )]
= (3.3)
+Z 1+1|: f(O 7)(a y) Q»(b)f(o’i)(a,b)},
=1
D(F. P Q) = 32 3 (-1 Py(a) [Qu(w) 14 () — Qu(b) ) a1
et (3.4)
=3 DD R0 [ Qi) £ 0, y) — Qulb) £ (a,b)],
k=11i=1
S(f, Pnan) _ (_ )n /z Pn( )f(TH-l O)(t b) dt + / Q f(O m+1)(a S)d
4 [1 Qo) [P S ) - Pl D @) s )
+ Z( et [ [@ )£ (1) — Quo) FO (1.0)] a,
i=1 @
T, Pac@n) = 107 [ [ PA0Qu() 77 15) dts. (3.6
a b
Proof. Let P,(t) and Q,,(s) be harmonic polynomials and
= b= PO = B0, Qls) = Quls) (3.7
in Theorem 1, then Theorem 2 follows. (]

Theorem 3. Let D C R? be a convex region, (a,b) € D, and f : D — R satisfy that f%9)(x,y) is
continuous on D for 0 <i<mn and0<j<m. For0< A <1 and0<pu <1, we have

f(@,y) = fla,b) + C(f, A\, ) + D(fs A, 1) + S(fs A ) + T(f, A ), (3-8)
where
C(f. M p) = Z (o ;,x)k [(A = 1)k fF0 (g, b) — AF fH0) (3, )]
k:1m b. i (3.9)
#3 O - 1O 0,0) - i 7O ),
"M (a— )b — y)NE ) , ]
D(f, A m) =) ( )k(!l; uyA [t £ 5D (@, y) — (= 1) 59 (2, b)]
k=1nz'=1m v — (3.10)
_ ZZ ((l - {L‘) ( k_'z:'y) ( — ) [,uif(k’i)(a,y) . (,u . l)if(k’i)(a,b)],
k=11=1 o
S(f, A p) = (_n!)n /x[t — (Aa+ (1= Na2)" 0 (¢, ) dt
+ (—Tgm /by[s — (ub+ (1 = p)y)|™ fO™ D (a, s)ds
" la— )k [ (3.11)
+ ( mlkl) / [(ub+ (1= p)y) — s]™ [(A = DF fEm D (a, 5) = AFfEHD (2 5)] ds
k=1
n,z, / [(Aa+ (1= Na) =" [(u — 1) D (8, 0) — pt f 70D (2,)] dt,

T(f,A,m:m / /b (Ot (1= N)2) — P [(ub+ (1 — p)y) — )" FEEm D (1 g deds. (3.12)
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Proof. Taking P, (t) = [t — (Aa+ (1 — Na)]™ and @ (s) = [s — (ub+ (1 — p)y)]™ and noticing that

anp =1, bm =1,
e n! i m! i (3.13)
PO = T~ (a+ (L= N, Q) = s — (ub+ (1= )]
in Theorem 1 leads to Theorem 3 straightforwardly. O

Remark 3. If letting P, (t) = (t—2)™ and Q,, = (s—y)™ in Theorem 1, or equivalently, taking A = 0 and
i = 0 in Theorem 3, then A. Sard’s formula of functions with two independent variables, Theorem C,
follows. Therefore, Theorem 1 generalizes the noted A. Sard’s formula for functions with two independent
variables, Theorem C, which is also stated in [3] and [11, p. 138 and p. 157].

Definition 2 ([1, 23.1.1]). Bernoulli’s polynomials By (z) for k being nonnegative integers are defined
by

1 NS p ) el <2m teR (3.14)
et —1 k! ’ ’ ’ '

where By (0) = By, is called Bernoulli’s numbers.

Definition 3 ([1, 23.1.1]). Euler’s polynomials Ey(z) for k being nonnegative integers are defined by

o0

2ewt tk
1= kz g Br@), Jal<m teER, (3.15)
=0

where 2¥Ej, (1) = Ej, is called Euler’s numbers.

Remark 4. Notice that Bernoulli’s numbers and polynomials and Euler’s numbers and polynomials have

been generalized by the authors in [4, 5, 6, 7, 9] recently.
Lemma 1 ([1, 23.1.5] and [8]). The following identities hold
Bi(z) = kBx_1(z), FEj(x)=kEr_1(z), k=1,2,.... (3.16)
Lemma 2 ([1, 23.1.6] and [8]). The following identities hold
Bi(t+1)— Bi(t) =it'™ ', Eit+1)+Ei(t)=2t', i=0,1,.... (3.17)
Lemma 3 ([1, 23.1.20] and [8]). The following identities hold
Br(0) = (-1)*B,(1) = By, k=0,1,2,..., (3.18)
E;(0) = —E;(1) = —Hil(z”l —1)Biyy, i=1,2,.... (3.19)

Theorem 4. Let D C R? be a convex plane region and (a,b) € D. Define f : D — R such that f(9)(z,v)
1s continuous on D for 0 <i<mn and 0 < j <m. Then

f(z,y) = f(a,b) + C(f, Bn, Em) + D(f, Bn, Em) + S(f, Bn, Em) + T(f, Bn, Em), (3.20)
where
_ = (a — x)k (k,0) _1\k+1 £(k,0)
C(f: B, Bm) =D 7 Br[f "V (a,b) + (=1) 1 F 0 (2, 0)]
k:lm e i (3.21)
- Z G (yl)i 01 — )Bi+1 [f(o’i)(aab) + 09 (a,y)],
i=1 :
& 2a— )b —y) (2 - 1)
DU B Bn) =22 K+ 1)t (3.22)
X BB [(=1)" % (@, y) + (=1)* 5 (@, b) — f5D (a,y) — 5D (a,b)],
S(f7 BnaEm) = (a;ﬂaj)n/a Bn(%)f(n-‘rlﬁ) (tab) dt
b—y)™ [ 5= b\ L(0,m+1)
T /bEm<y_b>fO (a,5)ds
" (a—x)k(b—y)™ Y 8 = b\t oma1) (kym+1) (3.23)
+kzl mik! B’“/b Em(ﬁ) [FEm 0 a, 8) + ()M (@, 5)] ds
m ) (b — )20+ — z _ _ )
. 22(& 1') TE'(Z f?l)('Q 1) Bi+1 /a Bn(; _2) [f(nJrl,z) (t,b) + f(nJrl,z) (t,y)] dt,
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T(f, By ) = 2 / / (=% m(z:Z)f(”“’m“)(t,s)dtds.

m'n'

Proof. Taking

Po(t) = (x—a)"Bn(t—a)’ Qu(s) = (y—b)mEm<s—b)

n! T —a m! y—>b
in Theorem 1 and considering Lemma 1, Lemma 2, Lemma 3 and
1
an = —, by, = ia
n! m!
—a)* t—a ; (y —b) s—b
p-hp = E= " p ( ) (m=i) (g} — E( )

yields Theorem 4 easily.

Remark 5. It is easy to verify that the polynomials

Pa(t) = (ac—a)"Bn(ﬁ—a)7 Qun(s) = (;y—b)mEm(s—b)

n! T —a m!

satisfy Appell conditions
Pot)=Ppa(t),  Qn(s) = Qm-1(s).

Thus, the polynomials P, (t) and @,,(s) in Theorem 4 are Appell’s polynomials.
If in Theorem 1 taking
x—a)” t—a y—bm s—b
Py == (120) g0 =g, (220

n! T —a m! y—>b

or

e =]

n! T —a m)!

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

which are harmonic polynomials, then we can obtain more other important special cases of Theorem 1.

Theorem 5 (Obreschkoff’s formula of functions with two variables). Let D C R? be a convex region,
(a,b) € D, and f: D — R be a function such that f0"+P+0) (x ) is absolutely continuous on D. Then

flay) =3 3 m}%%(a — )" (b —y)' f5 (2, y)

k=1 1=0 k ) 7
_ i i (Zl) (3) (:ZJ _ a)k(b _ y)zf(lc,z) (a y)

== (")) ’

k=0 1:=1 k
. ) (Zlq (z = a)*(y = b)' f*(a,b)

k:Oi:O( k )( [ )

m (Tkn) 7 —a)k —g)P (kpta+1) (5 6) ds
+3 G o 0= 9 s
_ S (Z) a—1 k Y _g (k,p+q+1) s

D T (el AUREACE LA UL
+ zp: O (y — b)’ / $(x — )" (a —t)" fOn L (¢ b) dt

= m+n)! (") a ’

_ Z M(b o y)z /I(;E B t)m(a _ t)nf(ernJrl,i) (t, y) dt
1

(3.30)

+m// (@ =1)"(a—1)"(y—s)P(b—s)fUrHrtatl (g s)dids, (3.31)

where m,n,p,q are nonnegative integers.
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Proof. Taking P4, (t) = (t — )™ (t — a)” and Qpt4(s) = (s — y)P(s — b)? and replacing n by m + n,
m by p + ¢ in Theorem 1, considering @,,+n = 1 and b,4, = 1, and emploiting Leibnitz’s formula for
derivative yields

— k\ mln!
<m+n >mn(x—a)k, k=0,1,---,n

PR () = m k! (3.32)
0, k=n+1-- n+m,
m+n —k\ min! i
m+n— - ) k= Oa ]-7 ey T,
P () = < n > AR " (3.33)
0, k=m+1,--- ,m+n,
p+q—i> plq! i
i 7(y_b)a Z:()v]-v"’an
Q;Ij;zq )( ) = < p il (3.34)
07 Z:q+177q+pa
p+q—i> plq! i
i 7(b_y)a Z:()v]-v"’vpv
Q;Ir:]q )( b) = q il (3.35)
07 Z:p+17ap+Qa
further, combining the following combinational identities
<m+nk) min! (Z) <m+nk> mln! (7,?) (3.36)
m (m+n)! (™’ n (m+n)! (™ ’

(p+qz'> el _ (%) (pwi)(p!q’_ () (3.37)

poJrat () ¢ Jral ()
with Theorem 1, then Theorem 4 follows. (Il
4. ESTIMATES OF REMAINDERS

In this section, we shall give some estimates for remainders stated in above sections. The following
lemmas are necessary.

Lemma 4 ([1, 23.1.12]). We have the following

1 In/!
_ min.
/ Bn(I)Bm(x) dor = (_1)n 1mBm+m m,n = 1727"'7 (41)
1 In/!
m-r m:n:
/ En(x)Em(x) dx = 4(_1)”(2 nt2 1)m m4+n+2; m,n = 07 17 e (4.2)

Theorem 6. Under conditions of Theorem 1, the remainder (1.10) can be estimated as follows:

1
T(f, P, Q)| € ———— max {|P, m (n+lmHD) (¢ 5) dtd 4.3
T, P @)l < o ma (1P (0]} maoe {1 (s f (ts)dtds|,  (43)
1
T(f, P, Q)| < ———— ’<n+1,m+1) t, ’ t) dt / m(s)ds|, (4.4
T Po @l < o e {f ( s)} || [ Quis)ds|, (1)

700, Pas Q)| < S s (12, 01w (1Qu (9}, e {50 e[

min! |anby,| tela, s€[b,y] (t,5)€[a,x] x[b,y]
(4.5)

1 ‘ q Y q % ’ Y n ,m p
(. Pus@o)l < i | [ R0 ar [M@uoras] | [ [ [srim i) aras

wherep>1and%+$:1,

Proof. The estimates (4.3), (4.4) and (4.5) is straightforward. The estimate (4.6) can be obtained by
Holder’s inequality of double integral. ]

1

(4.6)

Theorem 7. Under conditions of Theorem 3, we have the following estimates for the remainder (3.12):
— )" (y — b)™ Ty
(‘T a) (y ) f(n+1,m+1)(t’ S) dtds ,
mln! o Jb
(Z‘ _ )n+1(y b m+1 ’/\n+1 _ ()\ _ n+1’ ‘Mm-&-l _ (/”' _ 1)m+1|
(m+1)!(n+1)! (4.8)
X max { ’f("ﬂ’mﬂ)(t, s)‘ },
[b,y]

(t,s)E€la,x]x[b,

T(f, A )] <

(4.7)

T(f, A )] <
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(= )" o (y =)™ TN 4 (L= A [t 4 (L et
min![(ng + 1)(mq + 1))@

z Y P %
x [/ / ’f(”+1’m+1)(t7s)‘ dtds} :
a b

wherep>1and%+%:1.

T(f, A )] <

Proof. Taking P, (t) = [t — (Aa+ (1 — N)z)]™ and Q,,(s) = [s — (ub+ (1 — p)y)]™ in (4.3) and (4.4) and
considering a, = 1 and by, = 1 yields estimates (4.7) and (4.8). The estimate (4.9) follows from Hélder’s
inequality of double integral. (]

Theorem 8. Under conditions of Theorem 4, the remainder (3.24) can be estimated as follows:

(x—a)™(y —b)™ a s—b
<
ITCf, Buy Em)| < mln! {‘B (zfa)‘}slg[%z]{‘Em(y—b)‘}
I (4.10)
/ f(”“’m“)(t, s)dtds|,
a Jb
(x —a)" "y —b)™ 1 nl Aml(4m+t —1)
T, ) 2 [m'(? i ey 1P +2|} (4.11)
(n+1,m+1) t ‘ )
B L) |
Proof. The inequality (4.10) can be obtained directly.
Taking m = n in Lemma 4 gives us
1 N2 12
BQ (Jﬁ) dz = (_l)nfl (TL) BQn — (’I’L) |an| ;
0 (2n)! (2n)! (4.12)
! 4(—1)™(4m+t — 1)(m!)? A4+ — 1)(m))? ’
E? (z)dx = Bomia = Bomyal.
) Eml@)de (2m +2)! 2m+2 Gmray Bl

Considering (4.12) yields

(x —a)™(y —b)™

m'n'

t—a

T(f, By, Em)| < ("H’m“)(t,s)‘ dtds

x—a

s
E.,
)G
(x—a 2 (l 2 s—b ‘ (n+1,m+1) ’
< - - )
- 2m'n' B :C—a m(y—b)} ! (¢, 5)] dtds

< (x — )n+1 _ m+1 / BQ dx +/ E2 max { ‘f(n-H m+1)(t S)‘ }
- 2m!n! (t,s)€[a,z]x[b,y]

($ _ a)n+1( _ b)erl n! 4m[(4m+1 1) .
5 et {0}
- 2 m!(2n)! | Banl+ n!(2m + 2)! | Bam2] (t,s)eI[I;i:}i(x [b,y] / (¢ )
The proof is complete. O

Theorem 9. Under conditions of Theorem 5, the remainder (3.31) can be estimated as follows:

e ] [ a0 = sre- S)qf(m”“’p*q“)(t, G dtds

mmn"pPqd ( r—a >m+n P+q f (m4n+1,p+q+1) (t 3) dtdsl . (4 13)
“(m+n)lp+g)!\m+n p+q '
Proof. This follows from (4.3) easily. O
5. EXAMPLES
Let f(z,y) = In(z + y). By direct compution, we have
nom —)mtr =l m 4 n —1)!
yom (g, yy = ( ) (5.1)

(x +y)min

Ezample 1. In Theorem 3, let D = (0, +00) x (0,400), (a,b) € D and f(z,y) = In(x + y). Considering
(5.1) gives

m

o)~ a9+ 3 BT () - (Al ] SOy (o ly]

k=1 =1
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- Ne(k+i—Dl(z—a —b)! — 1) i
+ZZ (k+ )N )*(y )[((M ) }

== k3! x+ b))kt (x4 y)kti
N~ A= DR+ = D —a)*(y —b)' [ (p— 1) p
_’;; k3! {(a—kb)k“ B (a—i—y)k“]
= Qat (1= N2)" Vs = (ub+ (1= wy)™
+/a (t + b)n+1 dt+/b (a+ s)mH ds (5.2)
m+k)(z —a)k [Y m A—1)F Ak
iyl n)@ o [ - | O - | @

k=1

Z nll o [ = (Aa+ (1 =Nz)" t(fb_nlJr)ZH T+ Mn+i+1 dt
P (t+b) (t+y)
m+n+1)! / / [t—(Aa+ (1= N)z)]™ [s—(,ub—f—(l—u)y)}mdtds.

m'n' (t + 3)m+n+2

Example 2. In Example 1, letting A = 0 and g = 0, then we obtain the following A. Sard’s expasion of
the function In (z + y):

n. - m n m

(k+i—1)(a—x) (m+k)l(a—2)F [V (s—1y)
n(z+y)=n(atb)-3 3 4 Wﬁbkﬂ i ol e /b(a+s)m+k+lds

k=0 i=0

k=0
~(n+)(b—y)' [T (t—a)" mtntl '/ / "(s -y
— dt — dtds. (5.3
+ Z n'l /CL (t —+ b)n+1+1 m'n' t + S m+n+2 S ( )

=

Ezample 3. In Theorem 4, letting D = (0,+00) x (0,400), (a,b) € D and f(z,y) = In(z+y) and
considering (5.1) yields

In(z+y)=In(a+10)

) ] R [ ]

1=

n m Q(k; +1— 1)!(2i+1 — 1)(32 — a) (y b)l 1Bk (_1)k+1 (_1)k+1
+’;; El(i+ 1)! = |:(x+y)k+i + (z + b)Fti

e +Z)k+i e +1b)’€+l} - /I (l(fi_b)a”):l By ) e+ /by (ii_sfﬁl B (= )

n

i kz (m+k)!(z ;;Ii’:(y —b)" By, /bU B (; : Z) [(a - S)1m+k+1 e —’_(;)];?Lik_i'_l] ds

=1

(5.4)

o~ 2 2 — 1)(z —a)"(y = b)'Bip1 [*, (t— 1 1
_ (n+4)X ')(I a)"(y —b) z+1/ Bn< a){ 4 | 1]dt
i=1 TL.(Z + 1)' a Tr—a (t + b)n-‘rH— (t + y)""'”‘
1 — — ¥ By( s=b
m+n+ 1)z —a)" b)" / / ( )dtds
m'n' t+5 m+n+2
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