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A NEW APPROACH TO KY FAN-TYPE INEQUALITIES

PENG GAO

Abstract. The study of the behavior of means under equal increments of their variables provides
a new approach to Ky Fan-type inequalities. Via this new approach we are able to prove some new
results on Ky Fan-type inequalities.

1. Introduction

Let Pn,r(x) be the generalized weighted power means: Pn,r(x) = (
∑n

i=1 ωix
r
i )

1
r , where ωi >

0, 1 ≤ i ≤ n with
∑n

i=1 ωi = 1 and x = (x1, x2, · · · , xn). Here Pn,0(x) denotes the limit of Pn,r(x)
as r → 0+. Unless specified, we always assume 0 < x1 ≤ x2 · · · ≤ xn,m = min{xi},M = max{xi}.
We denote σn =

∑n
i=1 ωi(xi −An)2.

To any given x, t ≥ 0 we associate x′ = (1 − x1, 1 − x2, · · · , 1 − xn),xt = (x1 + t, · · · , xn + t).
When there is no risk of confusion, we shall write Pn,r for Pn,r(x), Pn,r,t for Pn,r(xt) and P

′
n,r for

Pn,r(x′) if 1 − xi ≥ 0 for all i. We also define An = Pn,1, Gn = Pn,0,Hn = Pn,−1 and similarly for
An,t, Gn,t,Hn,t.

Recently, the author[10] proved the following result.

Theorem 1.1. For r > s,m > 0, t ≥ 0, the following inequalities are equivalent:

r − s

2m
σn ≥ Pn,r − Pn,s ≥ r − s

2M
σn,(1.1)

M

1−M
(Pn,r − Pn,s) ≥ P ′

n,r − P ′
n,s ≥ m

1−m
(Pn,r − Pn,s),(1.2)

where in (1.2) we require M < 1.

D.Cartwright and M.Field[5] first proved the validity of (1.1) for r = 1, s = 0. For other
extensions and refinements of (1.1), see [3], [7],[13] and [14]. (1.2) is commonly referred as the
additive Ky Fan’s inequality. We refer the reader to the survey article[2] and the references therein
for an account of Ky Fan’s inequality.

The study of the behavior of means under equal increments of their variables was initiated by
L. Hoehn and I. Niven[12]. J.Aczél and Zs. Pâles[1] studied the monotonicity of An,t − Pn,s,t as a
function of t for any s. The asymptotic behavior of t(Pn,r,t−An,t) was studied by J.Brenner and B.
Carlson[4]. By studying the monotonicities of (t + M)(Pn,r,t−Pn,s,t) and (t + m)(Pn,r,t−Pn,s,t) as
functions of t for r = 1 or s = 1, the author[9] was able to prove some known results on inequalities
of the type (1.1). In fact, the study of the behavior of means under equal increments of their
variables can provide us clues on what might be true for inequalities of Ky Fan’s type and it is the
main goal of this paper to use this approach to give some new results in this direction.
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2. The Main Results

To simplify expressions, we define

∆r,s,t,α =
Pα

n,r,t − Pα
n,s,t

Pα
n,r − Pα

n,s

,

with ∆r,s,t,0 = (ln Pn,r,t

Pn,s,t
)/(ln Pn,r

Pn,s
). We also write ∆r,s,t for ∆r,s,t,1. In order to include the case of

equality for various inequalities in our discussions, for any given inequality, we define 0/0 to be the
number which makes the inequality an equality.

Suppose we want to prove An −Gn ≥ 0. One way is to show f(t) = An,t −Gn,t is a decreasing
function of t, since limt→∞ f(t) = 0. Since x is arbitrary, it suffices to show f ′(0) = 1−Gn/Hn ≤ 0.
How to show this? It is natural to show g(t) = 1−Gn,t/Hn,t is an increasing function of t and this
idea leads to

Theorem 2.1. Let r > s, t ≥ 0, x1 > 0.
(i). If ∆r,s,t,α ≤ 1, then ∆r,s,t,β ≤ 1 for β ≤ α.
(ii). ∆r,s,t,α ≤ 1 for α ≤ 0.

Proof. (i). Let f(t) = |Pα
n,r,t−Pα

n,s,t|, since x is arbitrary, ∆r,s,t,α ≤ 1 is then equivalent to f ′(0) ≤ 0
or the second inequality below

P β−r
n,r

P β−s
n,s

≤
Pα−r

n,r

Pα−s
n,s

≤
P r−1

n,r−1

P s−1
n,s−1

.

Now ∆r,s,t,β ≤ 1 follows from the first inequality above.
(ii). By part (i), it suffices to show ∆r,s,t,0 ≤ 1, which is an analogue to the result of J.Chen and

Z.Wang [6]. Let f(t) = lnPn,r,t − lnPn,s,t, it suffices to show f ′(0) ≤ 0 or

(2.1)
∑n

i=1 ωix
r−1
i∑n

i=1 ωixr
i

≤
∑n

i=1 ωix
s−1
i∑n

i=1 ωixs
i

.

We use the idea of [6] to show (2.1) holds if and only if it holds for n = 2. Assuming this, and
let 0 < x1 ≤ x2 ≤ · · · ≤ xn, n ≥ 3. Then there exists µ > 0 and ν = ω1ωn/µ > 0 such that

S =
∑n

i=1 ωix
r−1
i∑n

i=1 ωixr
i

=
µxr−1

1 + ωnxr−1
n

µxr
1 + ωnxr

n

=
ω1x

r−1
1 + νxr−1

n

ω1xr
1 + νxr

n

.

It’s clear (ω1 − µ)(ωn − ν) ≤ 0. Without loss of generality, we may assume ω1 ≥ µ. So

(2.2) S =
(ω1 − µ)xr−1

1 +
∑n−1

i=2 ωix
r−1
i

(ω1 − µ)xr
1 +

∑n−1
i=2 ωixr

i

≤
(ω1 − µ)xs−1

1 +
∑n−1

i=2 ωix
s−1
i

(ω1 − µ)xs
1 +

∑n−1
i=2 ωixs

i

,

where the inequality follows from induction. Also by induction

(2.3) S =
µxr−1

1 + ωnxr−1
n

µxr
1 + ωnxr

n

≤ µxs−1
1 + ωnxs−1

n

µxs
1 + ωnxs

n

.

So (2.2), (2.3) imply

S ≤
ω1x

s−1
1 +

∑n−1
i=2 ωix

s−1
i + ωnxs−1

n

ω1xs
1 +

∑n−1
i=2 ωixs

i + ωnxs
n

,

the desired inequality.
Thus it suffices to prove (2.1) for n = 2. In this case, let

g(p) =
ω1x

p−1
1 + ω2x

p−1
2

ω1x
p
1 + ω2x

p
2

,
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then simple calculation shows

g′(p) =
ω1ω2(x1x2)p−1(lnx1 − lnx2)(x2 − x1)

(ω1x
p
1 + ω2x

p
2)2

< 0

for x1 6= x2 and it follows g(r) ≤ g(s) for r > s and this completes the proof. �

We remark here in general Pn,r,t − Pn,s,t as a function of t is not monotonic for any x, r, s. For
example, when r = 0, s = −1 and let f(t) = Gn,t −Hn,t. Then f ′(0) = Gn/Hn −H2

n/P 2
n,−2. By a

change of variables xi → 1/xn−i+1 we can rewrite f ′(0) as f ′(0) = (A3
n −GnP 2

n,2)/(A2
nGn) and by

considering the case n = 2, it is easy to see that A3
n and GnP 2

n,2 are not comparable in general.
Now suppose we want to prove the additive Ky Fan’s inequality An−Gn ≥ σn/2xn. One way is to

show f(t) = (xn+t)(An,t−Gn,t) is a decreasing function of t, or f ′(0) = An−Gn+xn(1−Gn/Hn) ≤
0. How to show this? It’s natural to show g(t) = An,t−Gn,t +(xn +t)(1−Gn,t/Hn,t) is a decreasing
function of t and this idea leads to

Theorem 2.2. For 0 < x1 ≤ · · · ≤ xn, the following inequalities are equivalent:
(i). An − Gn ≥ σn/2xn; (ii). An − Gn ≤ σn/2x1; (iii). An − Gn ≤ xn

Hn
(Gn − Hn); (iv).

An −Gn ≥ x1
Hn

(Gn −Hn); (v). Gn −Hn ≥ Hnσn/2x2
n; (vi). Gn −Hn ≤ Hnσn/2x2

1.
In particular, since inequality (i) holds, all the inequalities above are valid.

Proof. We first show (ii) ⇒ (iii) ⇒ (i) and similarly one can show (i) ⇒ (iv) ⇒ (ii).
(iii) ⇒ (i): this follows from the discussion above.
(ii) ⇒ (iii): Let f(t) = An,t − Gn,t + (xn + t)(1 − Gn,t/Hn,t), t ≥ 0. It is easy to see that

limt→∞ f(t) = 0 so it suffices to show f ′(t) ≥ 0 in order to prove (iii). Since x is arbitrary, it
suffices to show f ′(0) ≥ 0. Calculation yields

(2.4) f ′(0)/Gn = 2(
1

Gn
− 1

Hn
) + xn(

1
H2

n

− 1
P 2

n,−2

).

By a change of variables xi → 1/xn−i+1, the right-hand side inequality of (2.4) becomes

2(Gn −An) +
1
x1

σn ≥ 0

by (ii).
Now we show (i) and (v) are equivalent, similarly one can show (i) and (vi) are equivalent.
(i) ⇒ (v): We have shown (i) and (iii) are equivalent and hence (v) follows.
(v) ⇒ (i): Let f(t) = An,t −Gn,t − σn/2(xn + t). (i) holds if f ′(0) ≤ 0, which is just (v). �

Theorem 2.3. For 0 < x1 ≤ x2 ≤ · · · ≤ xn,

(2.5) x1Anσn ≤ P 3
n,3An − P 4

n,2 ≤ xnAnσn

with equality holding if and only if x1 = · · · = xn and this inequality implies inequality (1.1) for
r = 1, s = −1.

Proof. We use similar arguments as in the proof of Theorem 2.2, let f(t) = (xn + t)(An,t −
Hn,t), g(t) = An,t − Hn,t − (xn + t)(1 − H2

n,t/P 2
n,t,−2). The right-hand side inequality of (1.1) for

r = 1, s = −1 holds if f ′(0) ≤ 0, which holds if g′(0) ≥ 0, by a change of variables xi → 1/xn−i+1,
one checks g′(0) ≥ 0 is implied by the left-hand side inequality of (2.5). Similarly, one shows the
right-hand side inequality of (2.5) implies the left-hand side inequality of (1.1) for r = 1, s = −1.
This proves the second statement of the theorem.

We now prove the left-hand side inequality of (2.5) and the proof for the right-hand side inequality
of (2.5) is similar. We may assume 0 < x1 = 1 < xn = b, xi ∈ (1, b) and define two functions(ω =
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(ω1, ω2, · · · , ωn)):

f(ω,x) = P 3
n,3An − P 4

n,2 − x1Anσn,

g(x) = P 3
n,3x + x3An − 2P 2

n,2x− xx1σn − x1An(x2 − 2Anx)− λ.

Note here in the definition of g(x), Pn,3, Pn,2, An are not functions of x, they take values at some
points (ω,x) to be specified and λ is also a constant to be specified.

We prove the left-hand side inequality of (2.5) by induction on n. It suffices to show f(ω,x) ≤ 0
on the region Rn × Sn−2, where Rn = {(ω1, ω2, · · · , wn) : 0 ≤ wk ≤ 1, 1 ≤ k ≤ n,

∑n
k=1 wk = 1}

and Sn−2 = {(x2, · · · , xn−1) : xk ∈ [1, b], 2 ≤ k ≤ n − 1}. We first show f takes its minimal value
at n ≤ 2. The base case of n ≤ 2 is clear. Now assume n ≥ 3.

There is a point (ω∗,x∗) of Rn×Sn−2 where f is minimized subject to the constraint
∑n

k=1 ωk = 1.
If x∗i = x∗i+1 for some 1 ≤ i ≤ n− 1, by combining x∗i with x∗i+1 and ω∗i with ω∗i+1, we are back to
the case of n− 1 variables with different weights. Similarly, if ω∗i = 1 for some i then we are back
to the case n = 1. If ω∗i = 0 for some i > 1, we are back to the case n− 1. If ω∗1 = 0, since

P 3
n,3An − P 4

n,2 − x∗1Anσn ≥ P 3
n,3An − P 4

n,2 − x∗2Anσn,

we are again back to the case n − 1. So without loss of generality, from now on we may assume
for 1 ≤ i, j ≤ n, i 6= j, ωi 6= 0, 1, xi 6= xj and this implies (ω∗,x∗) is an interior point of Rn × Sn−2.
Thus we may use the Lagrange multiplier method to obtain a real number λ so that at (ω∗,x∗):

(2.6)
∂f

∂wi
= λ

∂

∂ωi
(

n∑
k=1

wk − 1),
1
ωj

∂f

∂xj
= 0

for all 1 ≤ i ≤ n and 2 ≤ j ≤ n− 1.
By (2.6), a computation shows each x∗k (2 ≤ k ≤ n− 1) is a common root of the equations g(x)

and g′(x)(where Pn,3, Pn,2, An takes their values at (ω∗,x∗)). Now n ≥ 3 implies g(x) and g′(x)
have in common at least one distinct, positive root,1 < x∗2 < b. Moreover, g(1) = g(b) = 0 by
(2.6) and it follows from Rolle’s Theorem that there must be at least three positive roots of g′(x),
but g′(x) is a quadratic polynomial and this contradiction implies it suffices to prove the left-hand
side inequality of (2.5) for the case n = 2. Now for n = 2, let 0 < x1 = x ≤ x2 = 1, ω1 = q and
ω2 = 1− q, we have

P 3
2,3A2 − P 4

2,2 − x1A2σ2 = q2(1− q)x(1− x)3 ≥ 0

and this completes the proof. �

Theorem 2.4. For 0 < x1 ≤ · · · ≤ xn, the following inequalities are equivalent:
(i). An −Hn ≥ Hn

xnAn
σn; (ii). An −Hn ≤ σn/x1.

In particular, An −Hn ≥ σn/xn implies An −Hn ≤ σn/x1. Moreover, we also have

(2.7) An −Hn ≥
P 2

n,2 − 2AnHn + H2
n

xn
,

with equality holding if and only if x1 = · · · = xn, which implies

(2.8) An −Hn ≤
Hn

x1An
σn,

and (2.8) further implies An −Hn ≤ σn/x1.

Proof. We first show inequality(i) is equivalent to (ii). Let f(t) = (x1 + t)(An,t − Hn,t), g(t) =
(xn + t)An,t(An,t −Hn,t)/Hn,t.

(i) ⇒ (ii): By using similar arguments as in the proof of Theorem 2.2, (ii) holds if f ′(0) ≥ 0, by
a change of variables xi → 1/xn−i+1, one checks f ′(0) ≥ 0 is equivalent to (i).
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(ii) ⇒ (i): Similarly, (ii) holds if g′(0) ≤ 0. By a change of variables xi → 1/xn−i+1, one checks
g′(0) ≤ 0 is equivalent to

(2.9) An −Hn ≤
P 2

n,2 − 2AnHn + H2
n

x1
=

σn

x1
+

(An −Hn)2

x1
.

Thus (ii) implies (2.9), hence (i).
Similarly, one can show (2.7) implies (2.8) and hence An−Hn ≤ σn/x1. It now remains to show

(2.7).
We may assume 0 < x1 = a < xn = 1, xi ∈ (a, 1) and define two functions(ω = (ω1, ω2, · · · , ωn)):

f(ω,x) = xn(An −Hn)− (P 2
n,2 − 2AnHn + H2

n),

g(x) = xn(x +
H2

n

x
)− (x2 − 2xHn +

2AnH2
n

x
− 2H3

n

x
)− λ,

then by using a similar method as in the proof of Theorem 2.3 while noting x2g′(x) is a cubic
polynomial with no linear term, hence can have at most two positive roots, we reduce the proof of
(2.7) to the case n = 2. In this case let 0 < x1 = x < x2 = 1, ω1 = q, ω2 = 1− q, one checks easily:

A2 −H2 − (
P 2

2,2 − 2A2H2 + H2
2

x2
) =

q(1− q)2x(1− x)3

(q + (1− q)x)2
≥ 0,

and this completes the proof. �

3. Some Refinements of Ky Fan-type Inequalities

Theorem 3.1. For −1 ≤ r 6= 1 ≤ 2, 0 < x1 ≤ x2 · · · ≤ xn,

(3.1) |An − Pn,r| ≥
|1− r|σn

(2− cr)xn + crBr
,

where Br = min{An, Pn,r}, cr = min{(2 + 2r)/3, (4 − 2r)/3} and equality holds if and only if
x1 = · · · = xn.

Proof. First let n = 2, 0 < x1 = x ≤ x2 = 1, ω1 = q, ω2 = 1 − q, we will show for −1 ≤ r 6= 1 ≤ 2
and cr as given above

(3.2) ((2− cr) + crx)|An − Pn,r| ≥ |1− r|σn.

This will then prove (3.1) for n = 2. Let f(x) = ((2 − cr) + crx)(qx + 1 − q − (qxr + 1 − q)1/r) −
(1 − r)q(1 − q)(x − 1)2, 0 < x ≤ 1. We need to show f(x) ≥ 0 for −1 ≤ r < 1 and f(x) ≤ 0 for
1 < r ≤ 2. It’s easy to check that f(1) = f ′(1) = f ′′(1) = 0 and

f ′′′(x) = q(1− q)(1− r)(q + (1− q)x−r)
1−3r

r x−2r−2g(x),

where

g(x) = qxr(cr(2− r)x− (2− cr)(1 + r)) + (1− q)(cr(1 + r)x− (2− cr)(2− r)).

One checks easily for the cr as defined above, we have cr(2 − r)x − (2 − cr)(1 + r) ≤ 0 and
cr(1 + r)x − (2 − cr)(2 − r) ≤ 0 for 0 < x ≤ 1. Hence g(x) ≤ 0 and f ′′′(x) ≤ 0 for 0 < x ≤ 1
with respect to the choice of cr. Thus by the mean value theorem, f(x) = f ′′′(η)(x − 1)3 ≥ 0 for
0 < x ≤ 1 and some x < η < 1 and (3.2) then follows.

Now for the general case, we treat the case −1 ≤ r < 1 here and the other cases are similar. We
may assume 0 < x1 = a < xn = 1, xi ∈ (a, 1) and define two functions(ω = (ω1, ω2, · · · , ωn)):

f(ω,x) = ((2− cr)xn + crPn,r)(An − Pn,r)− (1− r)σn,

g(x) = crP
1−r
n,r xr(An − Pn,r)/r + ((2− cr)xn + crPn,r)(x− P 1−r

n,r xr/r)

−(1− r)(x2 − 2xAn)− λ,
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then by using a similar method as in the proof of Theorem 2.3, we can reduce the general case to
the case n = 2 and this completes the proof. �

Theorems 2.2 and 2.4 suggest that there should exist some relations between the right-hand side
inequality of (1.1) and the left-hand side inequality of (1.1). We now raise the following

Conjecture 3.1. For 0 < x1 ≤ · · · ≤ xn ≤ 1/2, q = min{ωi}

(3.3) 2((1− q)xn + qx1)(An −Gn) ≥ σn.

One checks by direct calculation(see the proof of Theorem 3.1, replacing cr by 2q there) that the
above conjecture holds for n = 2, we don’t know whether it holds for all n. We now give a weaker
result.

Theorem 3.2. For 0 < x1 ≤ x2 · · · ≤ xn, q = min{ωi}

(3.4) 2((1− q)xn + qGn)(An −Gn) ≥ σn

with equality holding if and only if x1 = · · · = xn.

Proof. Let f(xn) = 2((1− q)xn + qGn)(An −Gn)− σn, then

f ′(xn)
2ωn

= (
1− q

ωn
+ q

Gn

xn
)(An −Gn) + ((1− q)xn + qGn)(1− Gn

xn
)− (xn −An)

≥ (1− q + q
Gn

xn
)(An −Gn) + ((1− q)xn + qGn)(1− Gn

xn
)− (xn −An).(3.5)

We may assume 0 ≤ x1 ≤ x2 · · · ≤ xn = 1 and rewrite the right-hand side of (3.5) as

(3.6) gn(x1, · · · , xn−1) = (1− q + qGn)(An −Gn) + (1− q + qGn)(1−Gn)− (1−An).

We want to show gn ≥ 0. Let a = (a1, · · · , an−1) ∈ [0, 1]n−1 be the point in which the absolute
minimum of gn is reached.

We may assume a1 ≤ a2 ≤ · · · ≤ an−1. If ai = ai+1 for some 1 ≤ i ≤ n − 2 or an−1 = 1,
by combining ai with ai+1 and ωi with ωi+1 or an−1 with 1 and ωn−1 with ωn, while noticing
increasing q will decrease the value of gn, we can reduce the determination of the absolute minimum
of gn to that of gn−1 with different weights. Thus without loss of generality, we may assume
a1 < a2 < · · · < an−1 < 1. If a is a boundary point of [0, 1]n−1, then a1 = 0, (3.6) is reduced to

gn = (1− q)An + (1− q)− (1−An) = (2− q)An − q ≥ (2− q)ωn − q ≥ (2− q)q − q ≥ 0.

Now we may assume a1 > 0 and a is an interior point of [0, 1]n−1, then we obtain

∇gn(a1, · · · , an−1) = 0

such that a1, · · · , an−1 solve the equation

q
Gn

x
(An −Gn) + (1− q + qGn)(1− Gn

x
) + q

Gn

x
(1−Gn)− (1− q + qGn)

Gn

x
+ 1 = 0.

The above equation has at most one root(regarding Gn as a constant), so we only need to show
gn ≥ 0 for the case n = 2. Now by letting 0 < x1 = x ≤ x2 = 1, we will actually show

h(x) = (1− q + qx)(A2 −G2) + (1− q + qx)(1−G2)− (1−A2) ≥ 0.

It will then imply g2 ≥ 0 since G2 ≥ x.
It’s easy to check h(1) = h′(1) = 0 and h′′(x) = 2ω1[q+x−2+ω1((1−q)(1−ω1)−q(1+ω1)x)]. Since

h′′′(x) = 2ω1(1−ω1)x−3+ω1a(x) with a(x) = (2−ω1)(q−1)+q(ω1+1)x and a(0) = (2−ω1)(q−1) ≤
0, a(1) = ω1 + 3q − 2 ≤ 0. We know h′′′(x) ≤ 0 and hence h′′(x) ≥ h′′(1) ≥ 0. Hence by the mean
value theorem, h(x) = h′′(η)(x− 1)3 ≥ 0 for 0 < x ≤ 1 and some x < η < 1 and the theorem then
follows. �
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The author has shown[8] for x1 6= xn, n ≥ 2 and 1 > r ≥ 0

(3.7) An − Pn,r >
x1−r

n − P 1−r
n,r

2x1−r
n (xn −An)

σn + q
(An − Pn,r)2

2(xn −An)
.

We now show in general (3.1) and (3.7) are not comparable for 0 ≤ r < 1. It suffices to show
(x1−r

n − P 1−r
n,r )((2 − cr)xn + crPn,r)xr−1

n σn + q(An − Pn,r)2((2 − cr)xn + crPn,r) is not comparable
to 2(1− r)(xn −An)σn. Consider the case n = 2, 0 < x1 = x ≤ x2 = 1, ω1 = q1, ω2 = 1− q1, let

f(x) = (1− P 1−r
n,r )(2− cr + crPn,r)σn + q(An − Pn,r)2(2− cr + crPn,r)− 2(1− r)(1−An)σn

where we regard Pn,r, An, σn as functions of x. Calculation yields f(1) = f ′(1) = f ′′(1) = f ′′′(1) = 0
and

f (4)(1) = 12q1(1− q1)2(1− r)g(cr, q1),
where

(3.8) g(cr, q1) = q(1− q1)(1− r) + 4q1r + 2(1− q1 − crq1 − r).

We then have g(cr, 0) = 2(1− r) > 0 and g(cr, 1) = 2(r− cr) < 0 for r < 4/5. This shows (3.1) and
(3.7) are not comparable at least for r < 4/5.

We note also here if we take cr = 2q in (3.8) for the case r = 0, we see g(2q, 0) = 2 and if we
choose q1 > 3/5 then q = 1− q1 and g(2q, q1) = (1− q1)(3− 5q1) ≤ 0 and this shows (3.4) and (3.7)
are also not comparable.

4. A Result on Symmetric Means

Let x = (x1, · · · , xn) be an n-tuple of positive real numbers, r ∈ {0, 1, · · · , n} and

Er(x) =
∑

1≤i1<···<ir≤n

r∏
i=1

xij , E0 = 1;Pr(x) =
Er(x)(

n
r

) .

Er(x) is called the rth symmetric function of x and Pr(x) the mean of Er(x). The following result
is known(see [11], Theorems 51 and 52).

Theorem 4.1.

(4.1) p1/n
n ≤ p

1/(n−1)
n−1 ≤ · · · ≤ p

1/2
2 ≤ p1.

and for 0 < r < n an integer,

(4.2) pr−1pr+1 ≤ p2
r .

In fact (4.2) implies (4.1)(see also [11]). We now use (4.2) to show

Theorem 4.2. For t ≥ 0, 0 < r < n,

(4.3) p1/r
r (xt)/p

1/(r+1)
r+1 (xt)

is a decreasing function of t. In particular, (4.1) follows.

Proof. Let f(t) = ln(p1/r
r (xt)/p

1/(r+1)
r+1 (xt)), it suffices to show f ′(0) ≤ 0. One checks this is equiv-

alent to (4.2). Since limt→∞ p
1/r
r (xt)/p

1/(r+1)
r+1 (xt) = 1, (4.1) hence follows and this completes the

proof. �

We note the above theorem is similar to the following result of P.F.Wang and W.L.Wang[15].

Theorem 4.3. If xi ∈ (0, 1/2](i = 1, · · · , n), then

(4.4)
E

1/n
n (x)

E
1/n
n (x′)

≤
E

1/(n−1)
n−1 (x)

E
1/(n−1)
n−1 (x′)

≤ · · · ≤ E
1/2
2 (x)

E
1/2
2 (x′)

≤ E1(x)
E1(x′)

.
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In fact the method used to prove the above theorem can be extended easily to give a proof of
Theorem 4.2, see [2] for the details.
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