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GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL
INEQUALITY FOR MONOTONIC MAPPINGS AND ITS
APPLICATIONS

KUEI-LIN TSENG, GOU-SHENG YANG, AND SEVER S. DRAGOMIR

ABSTRACT. In this paper, we establish some generalizations of weighted trape-
zoid inequality for monotonic mappings, and give several applications for
r — moment, the expectation of a continuous random variable and the Beta

mapping.

1. INTRODUCTION

The trapezoid inequality, states that if f” exists and is bounded on (a, ), then

b 3
b—a (b—a)
(11) J e ORIO EE N T
where
1"l == sup |f"| < oo.
z€(a,b
Now if we assume that I, : a = 2o < 21 < --+ < x, = b is a partition of the

interval [a, b] and f is as above, then we can approximate the integral f; f (z)dz by
the trapezoidal quadrature formula Ar (f,I,), having an error given by Rr (f, I.),
where

1

f (i) + f (Tig1)] by

n

(1.2 Ar(f.1) =5

Il
o

g

and the remainder satisfies the estimation
1 n—1
(13) Rr (f )| < 5 1" loe D1
i=0

with l; ;= 2;41 —x; fori=0,1,...,n— 1.

For some recent results which generalize, improve and extend this classic inequal-
ity (1.1), see the papers [2] — [8].

Recently, Cerone-Dragomir [3] proved the following two trapezoid type inequal-
ities:
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Theorem A. Let f: [a,b] — R be a monotonic non-decreasing mapping. Then

b
(1.4) [ @it~ -0 @+ 0= £ 0)

b

S(b—:c>f(b)—(x—a)f(a>+/ sen (z — ) f () dt

a

<@ —a)[f (@)~ @]+ (b n) [ ()~ f ()
< [30-a+|o- 2 ro- s

for all © € [a,b]. The above inequalities are sharp.
Let I,,1l; (i =0,1,...,n—1) be as above and let £, € [x;,2;11] (1 =0,1,...,n—1)
be intermediate points. Define the sum

|
—

n

Tp (fiIn,€) == ) [(& — i) [ (i) + (i1 = &) f (i)

7

I\
=]

We have the following result concerning the approximation of the integral f; f(z)dx
in terms of Tp.
Theorem B. Let f be defined as in Theorem A, then we have

b
(15) [ @ =T (. 10,©) + Re (7:10,6).
The remainder term Rp (f,I,€) satisfies the estimate

(1.6) [Bp (f,1n:€)|

n—1

< [(@iv1 — &) f (@it1) — (& — @) f(23)]

i=0
+Z/ sen (€, — 1) £ (t) dt

n—1

= 2% (&) — f ()] + ; (i1 — &) [f (ig1) — £ (§;)]
= Z; { % ] Uf (xig1) — f (23)]
B om e =2 1 0) = f (o)
[f(b) = [ (a)]

where y(l) = max{li li=0,1,...,n—1}.

In this paper, we establish weighted generalizations of Theorems A-B, and give
several applications for r—moments and the expectation of a continuous random
variable, the Beta mapping and the Gamma mapping.

2. SOME INTEGRAL INEQUALITIES

Theorem 1. Let g : [a,b] — R be non-negative and continuous with g (t) > 0 on
(a,b) and let h: [a,b] — R be differentiable such that h' (t) = g (t) on [a,b].
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(a) Suppose f :[a,b] — R is a monotonic non-decreasing mapping. Then

(2.1)

b
/ f)g (t) dt — [(z — h(a)) f (a) + (h(b) — =) f (b)]

b
< (h(v) — 2) £ (b) — (2 — h(0)) f (a) + / sen (™ (x) — 1) £ (£) g (1) dt
< (@ —h(@) - [f (@) = £ (@)] + (h(b) — ) - [f 0) - f (b~ ()]

< l;/ﬂbgm o= ML 17 ) - s

for all x € [h(a), h(D)].
(b) Suppose f :[a,b] — R is a monotonic non-increasing mapping. Then

A
&
+

< (z = h(a)) - [f (a) = f (A7 (@)] + (h(b) — 2) - [ (W' (2)) — [ (0)]

b h h(b
< [;/ g0+ o= "0 iy @) - o)
for all x € [h(a), h()].
The above inequalities are sharp.
Proof. (1)
(a) Let € [h(a),h(b)]. Using integration by parts, we have the following
identity
b
(23) | @=nandr
a , ,
—@-h) s 0| + [ sog@

It is well known [3, p. 813] that if u,v : [a,b] — R are such that p is
continuous on [a, b] and v is monotonic non-decreasing on [a, b], then

b b
/u(t)dV(t) s/ (O] dv (1)




4 KUEI-LIN TSENG, GOU-SHENG YANG, AND SEVER S. DRAGOMIR

Now, using identity (2.3) and inequality (2.4), we have

b
(2.5) / f)g (t) dt — [(z — h(a)) [ (a) + (h(b) — =) f (b)]

b
< [ o= noldr 0
h~(z) b
_ / (- h(t)) df (1) + / (h(t) — ) df (t)

h=1 ()

R~ (x)
+/ f (gt dt

b
—/ f () g(t)dt
h=1(z) h—1(z)

b
= (h(b) =) f (b) — (z = h(a)) f (a) + / sgn (A~ () —t) f (t) g (1) dt

h™ ()

= (z—h() f (@)

+ ((t) — )

and the first inequalities in (2.1) are proved.
As f is monotonic non-decreasing on [a, b] , we obtain

h=1(x) h1(x)
/ F()g0)dt < f (7 (@) / g (t)dt

= (z —h(a)) f (h7 ()

and

then

/ sgn (A~ (@) =) f (1) g () dt < (v = h(a)) f (h7" (@) + (& = h(b)) f (R () -

Therefore,

b
(2.6)  (h(b) —x) f (b) = (z — h(a)) [ (a) +/ sgn (A1 () — ) f (t) g (t) dt
< (h(b) — ) f (b) = (x = h(a)) f (a)
+ (@ = h(a) f (b7 (@) + (@ = b)) f (B (2))
= (z = na) - [f ("7 (@) = f(a)] + (h(b) — 2) - [£ (b) = f (h™"(2))]

which proves that the second inequality in (2.1).
As f is monotonic non-decreasing on [a, b], we have

fla) < f (R () < £ (b)
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and

27)  (@—h@) - [f (A (@) = f(@)] + (h(b) —2) - [f (b) = f (A} (2))]
< max{z — h(a), h(b) =z} - [f (b7 (2)) = f(a) + f (b) = f (h™'(2))]

= MO |, ML 7 ) - s
b
- l;/ g(t)dH‘xWH 1 8~ £ (a)].

Thus, by (2.5), (2.6) and (2.7), we obtain (2.1).
Let

g(t) =1, t €la,b]
h(t)=t, t €a,b]

0, te€la,b)
ﬂw:{l,t:b

/ F(t)g (t) dt — [(x — h(a))  (a) + (h(b) — ) f (b)]

b
— (h(b) = 2)  (b) — (x — h(a)) f (a) + / sen (™ (x) = t) £ () g () dt
= (e~ @) - [f (" (@) = £ (@] + (h(b) — ) - [/ ) - f (h""())]
(

—[;LZQMtﬁxmwghm‘.

—a

(=

which proves that the inequalities (2.1) are sharp.
(b) If f is replaced by —f in (a), then (2.2) is obtained from (2.1).
This completes the proof. i

Remark 1. If we choose g (t) = 1,h(t) =t on [a,b], then the inequalities (2.1)
reduce to (1.4).

h(a)+h(b)
——5——, then we get

b b
[ rwg@a-1 (@) 7 (6) [ swa
1 b

Corollary 1. If we choose x =

(2.8) e

<5 [ a1 e~ f @)

o/ sen (1 (M) ) sy g oy

b
/ g () dt - [f (5) — f (a)]

<

NN
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where f and g are defined as in (a) of Theorem 1, and

b b
[ 10 @rae - LG [y a
b
<5 [ 9at- (@)~ £ )

+/absgn (t—h‘l (W)) f(t)g(t)dt

b
<3 [ o®at- 1@ -1 0)

where [ and g are defined as in (b) of Theorem 1.

The inequalities (2.8) and (2.9) are the “weighted trapezoid” inequalities.

Note that the trapezoid inequality (2.8) and (2.9) are, in a sense, the best possible
inequalities we can obtain from (2.1) and (2.2). Moreover, the constant 3 is the
best possible for both inequalities in (2.8) and (2.9), respectively.

(2.9)

Remark 2. The following inequality is well-known in the literature as the Fejér
inequality (see for example [9]):

(2.10) f(“b)/ dt</ f0g ) at < QTS0 );f()/a g (1) dt,

where f : [a,b] — R is convex and g : [a,b] — R is positive integrable and symmetric
tO a+b

Usmg the above results and (2.8) — (2.9), we obtain the following error bound of
the second inequality in (2.10):

(2.11) 0< M/ / f(t)
b
<5 [ sat- (1) -7 (@)
b
+/ sgn (hl(h(a);h(b)) —t) f(t)gt)dt

b
<5 [ sat- (1) -1 (@)

provided that f is monotonic non-decreasing on |[a, b].

(2.12) 0< M/ / f(t)
<3 [ oway@- s
+42@(t;zn“”+““0f@M@Mt

<5 [ o 1r@-rw)

provided that f is monotonic non-increasing on [a, b)].
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3. APPLICATIONS FOR QUADRATURE FORMULA

Throughout this section, let g and A be defined as in Theorem 1.

Let f :[a,b] > Ryandlet I, : a = 29 < 21 < --- < z, = b be a partition
of [a,b] and &; € [h(x;), h(ziy1)] (¢ = 0,1,...,n — 1) be intermediate points. Put
li := h(zip1) — h(z;) = [ g (t) dt and define the sum

n—1

Tp (f,9,0, 10, 6) i= > [(& = hl@a)) f (i) + (Awigr) = &) f (wiga)]-

=0

We have the following result concerning the approximation of the integral f; f)g(t)dt
in terms of Tp.

Theorem 2. Let v (l) := max{l;|i =0,1,...,n—1}, f be defined as in Theorem
1 and let

b
(3.1) / F(O)g (8 dt = To (f9. 1, Tns€) + B (.9, s Ty €).

Then, the remainder term Rp (f,g,h, I,,€) satisfies the following estimates:

(a) Suppose [ is monotonic non-decreasing on [a,b], then

(32) |RP (fmg?hal’fhg)'

I
—-

< ‘ [(h(zit1) = &) [ (@it1) — (§ — h () f(4)]

1=0
=3 T () — ) F (D g (1) dr
i=0 v Ti
S (57, h(xl)) [f (hil (gz)) - f(xl)]
1=0
E3 (i) — ) [f (i) — £ (0 (€)]
=0
Si |:;ll—|— fz h(xz) +2h(ifz+1) :| [f(l'erl)_f(xz)}
1=0

(b) Suppose f is monotonic non-increasing on [a,b], then

(33) |RP (fvgaha-[n;g)‘

n—1

<D & = h(@) f (@) = (h(wig1) — &) f (wig1)]
=0

n=l oz
+ Z/w sgn (t—hH(€)) F(t) g (t) dt

=0 g
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<3 (6 ) [ )~ £ (7 (€)]

=0

+ i (h(ziv1) — &) [f (R (&) — f(ig1)]
=0

<3 [gto+ e - HEHEE L )~ f o)

i=0
< By(l)+i_ max - h () +2h (Tiv1) ] [F () — £ ()]
<v([f (@)= f(®)]

Proof. (1)
(a) Apply Theorem 1 on the intervals [x;, z;41] (¢ =0,1,..., n—1) to get

[ 0@ e~ 16~ ) 7 () + (i) €0 F i)
< (h(@iv1) = &) [ (@ia) — (& — hl@i)) f (2:)
w [ s i€ -0 F @ g0 d

< (& — h(zy)) - [f (hil(gi)) - f (xz)]
+ (M@ig1) = &) - [f (@iz1) — f (h_l(fi))]

g, — Mad + 1win) ] F @) — (2]

< 1l»+
12" 2

for all i € {0,1,...,n—1}.
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Using this and the generalized triangle inequality, we have

(34) |RP (fvg,haIna€)|

i=0 ' Ti
< ST i) — €) F (@ess) — (& — b (22) £ ()]
1=0
3 T () — 1) £ (1) g () de
i=0 v Ti
< (57, —h (xl)) [f (hil (gz)) - f (xi)]
1=0
Y (i) — ) [F (o) — £ (7 ()]
1=0
<3 [pt+ e - I ir ) o)
1=0
< |gr @+ g Je - HEEE 1r )

Next, we observe that

h(.TZ) + h(l'i—i-l) 1

. , — <l (i=0,1,...,n—1);
(3 5) €z 2 = 2l’L (’L 07 ) , )7
and then
h(zi) +h(zig1)| 1
B e VA N s o VA O i )
(3.6) omax g 5 <5v()

Thus, by (3.4), (3.5) and (3.6), we obtain (3.2).
(b) The proof is similar as (a) and we omit the details.
This completes the proof. il

Remark 3. If we choose g (t) = 1,h(t) =t on [a,b], then the inequalities (3.2)
reduce to (1.6).

Now, let &, = % (i=0,1,...,n—1) and let Trw (f,g,h,I,) and
Rp (f,g,h,I,) be defined as

Tit1

n—1
Tow (£9:h. 1) = To (F,9uh 1 €) = 3 31 (@) + £ )] [ g (0
=0 x

and
RPW (f7gvhaln) = RP (f).ga h’vlng)

b 1n71 Tit1
— [tOg@a-3 Y @)+ s @) [ o
a i=0 Ti

If we consider the weighted trapezoidal formula Tpw (f,g,h, IL,), then we have
the following corollary:
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Corollary 2. Let f, g, h be defined as in Theorem 2 and let &, = W
(i=0,1,...,n—1). Then

/ f TPW (fvgah,jn)+RPW (fagaha-[n)

where the remainder satisfies the following estimates:

(a) Suppose f is monotonic non-decreasing on [a,b], then

(3.7 |Rpw (fvg,h )|
- Z </$1+1 dt) [f (zit1) — f (23)]

i=0 ¥ Ti

Z ( / Rt dt) F @isn) — £ ()]

i

IN
N |

(0
<52 B -1 @),

(b) Suppose f is monotonic non-increasing on [a,b], then

Z(/ (00 1f () - £ (1)

s / s (17t (R G))) fgg n

1=0
1 «— i+1
§§; ( / | dt) [ (@) = f (wis1)]
<O 5@ - F ).

- 2
Remark 4. In Corollary 2, suppose f is monotonic on [a,b],
i (h(b) — h(a))}

i =0,1,...
n (Z [ an)7

xTr; = hil |:h (a) +
and

li = h(xipr) — h(z;) = M: l/ g (t)dt. (t=0,1,...,n—1).

n n

If we want to approximate the integral fab f@®) g @) dt by Tpw (f,g,h,I,) with an
accuracy less that € > 0, we need at least n. € N points for the partation I,,, where

b
ne = [21/ g(0)dt-1f ()~ f (@)

and [r] denotes the Gaussian integer of r (r € R).

+1
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4. SOME INEQUALITIES FOR RANDOM VARIABLES

Throughout this section, let 0 < a < b, r € R, and let X be a continuous
random variable having the continuous probability density mapping g : [a,b] — R
with g (t) > 0 on (a,b), h : [a,b] — R with A’ (t) = g(¢) for ¢ € (a,b) and the
r—moment

E, (X) = / g (0)de.

which is assumed to be finite.

Theorem 3. The inequalities

(4.1) ‘E (X) — “T"Q”’T < %(bT —a) +/bsgn <h‘1 (;) —t> () dt
S%(b’“—a’“) asr >0

and

(4.2) ‘E (X) - “T"Q”’T < %(ar — ) -l—/bsgn <t— ot G)) g (t) dt
S%(ar—br) asr <0,

hold.

Proof. If we put f(t) = t" (¢t € [a,b]), h(t) = fatg(x) dz (t € [a,b])and =z =
M = % in Corollary 1, then we obtain (4.1) and (4.2). This completes
the proof. I

The following corollary which is a special case of Theorem 3.

Corollary 3. The inequalities

[t (o (3t

2 2

hold where E (X) is the expectation of the random variable X .

5. INEQUALITIES FOR BETA MAPPING AND GAMMA MAPPING

The following two mappings are well-known in the literature as the Beta mapping
and the Gamma mapping, respectively:

1
B(z,y) = / r A=Y a2 >0,y > 0.
OOO
I'(x) :/ e~ 't""tdt, x>0.
0

The following inequality which is an applicaton of Theorem 1 for the Beta map-
ping holds:
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Theorem 4. Let p, ¢ > 0. Then we have the inequality
(5.1) B(p+1,q+1)

<x+/absgn [t—((p+1)x)ﬁ]tp(1—t)th

<z+ (pil—m) 1=+ Do)’

1 1
< 4z
T 2(p+1) ‘ 2(p+1)‘

1
for all x € [07 m} .

Proof. f weputa=0,b=1, f(t)=(1—-1)?, gt) =tP and h (t) = tp+ (t€0,1))

in Theorem 1, we obtain the inequality (5.1) for all x € {O, +1] Th1s completes
the proof. i

The following remark which is an applicaton of Theorem 4 for the Gamma map-
ping holds:

Remark 5. Taking into account that 3 (p+ 1,9+ 1) = %, the inequality
(5.1) is equivalent to

I'(p+1DI'(g+1) b T ,
T(p+q+2) —x‘ﬁx—i—/a sgn{t—((p+1)a;)p }t (1—t)%dt

<z+ (L—Qw) [1—((p+1)x)ﬁ}q

p
1

§2<p+1>+""”2<p+1>‘

i.e.,

(p+ )+ 1)I(g+1) —z(p+ 1)I(p+ g+ 2)]

< x—|—/bsgn 1)m)%]t 1-=0)%dt| (p+1)I'(p+q+2)
< :17+< > 1((p+1)z)vi1r] (p+ 1T (p+q+2)
< §+x(p+1>—§H~r<p+q+2>

and as (p+ )I'(p+ 1) =T (p + 2), we get
(62) TP +2T(g+1) —2(p+ DT +q+2)

< lz+ bsgn{ ((p+1) )il}t”(l—t)th (p+1l(p+a+2)
S x+ ) 1—((p+1)x)vilﬂ (p+DT(p+q+2)
< _§+ )_QH I'(p+q+2)
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