

An Identity for n-time Differentiable Functions and Applications for Ostrowski Type Inequalities

This is the Published version of the following publication

Barnett, Neil S and Dragomir, Sever S (2003) An Identity for n-time Differentiable Functions and Applications for Ostrowski Type Inequalities. RGMIA research report collection, 6 (2).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17824/

AN IDENTITY FOR n-TIME DIFFERENTIABLE FUNCTIONS AND APPLICATIONS FOR OSTROWSKI TYPE INEQUALITIES

N.S. BARNETT AND S.S. DRAGOMIR

ABSTRACT. An identity for n-time differentiable functions of a real variable in terms of multiple integrals and applications for Ostrowski type inequalities are given.

1. Introduction

The following result is known in the literature as Ostrowski's inequality [1].

Theorem 1. Let $f:[a,b] \to \mathbb{R}$ be a differentiable mapping on (a,b) with the property that $|f'(t)| \le M$ for all $t \in (a,b)$. Then

(1.1)
$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \leq \left[\frac{1}{4} + \frac{\left(x - \frac{a+b}{2}\right)^{2}}{\left(b-a\right)^{2}} \right] (b-a) M,$$

for all $x \in [a,b]$. The constant $\frac{1}{4}$ is the best possible in the sense that it cannot be replaced by a smaller constant.

The following Ostrowski type result for absolutely continuous functions whose derivatives belong to the Lebesgue spaces $L_p[a, b]$ also holds (see [2], [3] and [4]).

Theorem 2. Let $f:[a,b] \to \mathbb{R}$ be absolutely continuous on [a,b]. Then, for all $x \in [a,b]$, we have:

$$(1.2) \quad \left| f\left(x\right) - \frac{1}{b-a} \int_{a}^{b} f\left(t\right) dt \right|$$

$$\leq \begin{cases} \left[\frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a}\right)^{2} \right] (b-a) \|f'\|_{\infty} & \text{if } f' \in L_{\infty}\left[a,b\right]; \\ \frac{1}{(p+1)^{\frac{1}{p}}} \left[\left(\frac{x-a}{b-a}\right)^{p+1} + \left(\frac{b-x}{b-a}\right)^{p+1} \right]^{\frac{1}{p}} (b-a)^{\frac{1}{p}} \|f'\|_{q} & \text{if } f' \in L_{q}\left[a,b\right]; \\ \left[\frac{1}{2} + \left|\frac{x - \frac{a+b}{2}}{b-a}\right| \right] \|f'\|_{1}; \end{cases}$$

where $\left\|\cdot\right\|_r$ $(r \in [1, \infty])$ are the usual Lebesgue norms on $L_r[a, b]$, i.e.,

$$\left\|g\right\|_{\infty} := ess \sup_{t \in [a,b]} \left|g\left(t\right)\right|$$

Date: March 3, 2003.

1991 Mathematics Subject Classification. Primary 26D15; Secondary 26D10.

Key words and phrases. Integral Identities, Ostrowski's Inequality,

and

$$\left\|g\right\|_{r}:=\left(\int_{a}^{b}\left|g\left(t\right)\right|^{r}dt\right)^{\frac{1}{r}},\ r\in[1,\infty).$$

The constants $\frac{1}{4}$, $\frac{1}{(p+1)^{\frac{1}{p}}}$ and $\frac{1}{2}$ respectively are sharp in the sense presented in Theorem 1.

In [5], S.S. Dragomir and S. Wang gave a simple proof of the following integral identity intimately connected with the Ostrowski inequality (1.1):

Lemma 1. Let $f:[a,b] \to \mathbb{R}$ be an absolutely continuous mapping [a,b]. Then we have the identity:

(1.3)
$$f(t_0) = \frac{1}{b-a} \int_a^b f(t_1) dt_1 + \frac{1}{b-a} \int_a^b p(t_0, t_1) f^{(1)}(t_1) dt_1;$$

for all $t_0 \in [a, b]$, where

$$p(t_0, t_1) := \begin{cases} t_1 - a & \text{if} \quad t_1 \in [a, t_0] \\ t_1 - b & \text{if} \quad t_1 \in (t_0, b] \end{cases}.$$

Proof. Since we use this identity in proving one of the main results below, we give here a simple proof as follows.

Integrating by parts, we have

$$\int_{a}^{t_0} (t_1 - a) f'(t_1) dt_1 = (t_0 - a) f(t_0) - \int_{a}^{t_0} f(t_1) dt$$

and

$$\int_{t_0}^b (t_1 - b) f'(t_1) dt_1 = (b - t_0) f(t_0) - \int_{t_0}^b f(t_1) dt.$$

Summing the above two equalities, we get

$$\int_{a}^{t_0} (t_1 - a) f'(t_1) dt_1 + \int_{t_0}^{b} (t_1 - b) f'(t_1) dt_1 = (b - a) f(t_0) - \int_{a}^{b} f(t_1) dt_1$$

and the equality (1.3) is proved.

For related results on this identity, see [6] and [7].

In this paper, a generalization of the identity (1.3) is provided. Some related inequalities generalizing Ostrowski's result are also pointed out.

2. The Results

We are now able to state and prove the following generalisation of the above result for n-time differentiable mappings.

Theorem 3. Let $f:[a,b] \to \mathbb{R}$ be a (n-1)-time differentiable mapping $(n \ge 2)$ on [a,b] with $f^{(n-1)}:[a,b] \to \mathbb{R}$ is absolutely continuous on [a,b]. Then for all

 $t_0 \in [a, b]$ we have the identity:

$$(2.1) f(t_0) = \frac{1}{b-a} \int_a^b f(t_1) dt_1 + \sum_{i=1}^{n-1} \left[a, b; f^{(i-1)} \right]$$

$$\times \frac{1}{(b-a)^i} \int_a^b \cdots \int_a^b p(t_0, t_1) p(t_1, t_2) \cdots p(t_{i-1}, t_i) dt_1 \dots dt_i$$

$$+ \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b p(t_0, t_1) \cdots p(t_{n-1}, t_n) f^{(n)}(t_n) dt_1 \dots dt_n,$$

where $[a, b; f^{(i-1)}]$ is the divided difference of $f^{(i-1)}$ in the points $\{a, b\}$, i.e.,

$$\left[a, b; f^{(i-1)}\right] = \frac{f^{(i-1)}(b) - f^{(i-1)}(a)}{b - a}$$

and p is as above.

Proof. Let us prove by mathematical induction. For n = 2, we have to prove the identity

$$(2.2) f(t_0) = \frac{1}{b-a} \int_a^b f(t_1) dt_1 + [a,b;f] \frac{1}{b-a} \int_a^b p(t_0,t_1) dt_1 + \frac{1}{(b-a)^2} \int_a^b \int_a^b p(t_0,t_1) p(t_1,t_2) f^{(2)}(t_2) dt_1 dt_2.$$

Applying (1.3) for the mapping $f'(\cdot)$ we can write

$$f^{(1)}(t_1) = \frac{1}{b-a} \int_a^b f'(t_2) dt_2 + \frac{1}{b-a} \int_a^b p(t_1, t_2) f^{(2)}(t_2) dt_2.$$

Again using (1.3), we have

$$f(t_0) = \frac{1}{b-a} \int_a^b f(t_1) dt_1 + \frac{1}{b-a} \int_a^b p(t_0, t_1) \left[\frac{1}{b-a} \int_a^b f'(t_2) dt_2 + \frac{1}{b-a} \int_a^b p(t_1, t_2) f^{(2)}(t_2) dt_2 \right] dt_1$$

$$= \frac{1}{b-a} \int_a^b f(t_1) dt_1 + [a, b; f] \frac{1}{b-a} \int_a^b p(t_0, t_1) dt_1$$

$$+ \frac{1}{(b-a)^2} \int_a^b \int_a^b p(t_0, t_1) p(t_1, t_2) f^{(2)}(t_2) dt_1 dt_2$$

and the inequality (2.2) is proved.

Assume that (2.1) holds for a natural number "n" and let us prove it for "n+1", i.e., we have to prove the identity:

$$(2.3) f(t_0) = \frac{1}{b-a} \int_a^b f(t_1) dt_1 + \sum_{i=1}^n \left[a, b; f^{(i-1)} \right]$$

$$\times \frac{1}{(b-a)^i} \int_a^b \cdots \int_a^b p(t_0, t_1) p(t_1, t_2) \cdots p(t_{i-1}, t_i) dt_1 \dots dt_i$$

$$+ \frac{1}{(b-a)^{n+1}} \int_a^b \cdots \int_a^b p(t_0, t_1) \cdots p(t_{n-1}, t_n) p(t_n, t_{n+1})$$

$$\times f^{(n+1)}(t_{n+1}) dt_1 \dots dt_{n+1}.$$

Using Lemma 1, we can state that

$$f^{(n)}(t_n) = \frac{1}{b-a} \int_a^b f^{(n)}(t_{n+1}) dt_{n+1} + \frac{1}{b-a} \int_a^b p(t_n, t_{n+1}) f^{(n+1)}(t_{n+1}) dt_{n+1}$$
$$= \left[a, b; f^{(n-1)} \right] + \frac{1}{b-a} \int_a^b p(t_n, t_{n+1}) f^{(n+1)}(t_{n+1}) dt_{n+1}.$$

By mathematical induction hypothesis, we get

$$f(t_0) = \frac{1}{b-a} \int_a^b f(t_1) dt_1 + \sum_{i=1}^{n-1} \left[a, b; f^{(i-1)} \right]$$

$$\times \frac{1}{(b-a)^i} \int_a^b \cdots \int_a^b p(t_0, t_1) p(t_1, t_2) \cdots p(t_{i-1}, t_i) dt_1 \dots dt_i$$

$$+ \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b p(t_0, t_1) \cdots p(t_{n-1}, t_n)$$

$$\times \left[\left[a, b; f^{(n-1)} \right] + \frac{1}{b-a} \int_a^b p(t_n, t_{n+1}) f^{(n+1)} (t_{n+1}) dt_{n+1} \right] dt_1 \dots dt_n$$

$$= \frac{1}{b-a} \int_a^b f(t_1) dt_1 + \sum_{i=1}^n \left[a, b; f^{(i-1)} \right]$$

$$\times \frac{1}{(b-a)^i} \int_a^b \cdots \int_a^b p(t_0, t_1) p(t_1, t_2) \cdots p(t_{i-1}, t_i) dt_1 \dots dt_i$$

$$+ \frac{1}{(b-a)^{n+1}} \int_a^b \cdots \int_a^b p(t_0, t_1) \cdots p(t_{n-1}, t_n) p(t_n, t_{n+1})$$

$$\times f^{(n+1)} (t_{n+1}) dt_1 \dots dt_{n+1}$$

and the identity (2.3) is thus proved.

Denote

$$R_n(f,t_0) := \frac{1}{(b-a)^n} \int_a^b \cdots \int_a^b p(t_0,t_1) \cdots p(t_{n-1},t_n) f^{(n)}(t_n) dt_1 \dots dt_n.$$

We are interested in pointing out some upper bounds for the absolute value of $R_n\left(f,t_0\right),\,t_0\in\left[a,b\right]$.

The following general result holds.

Theorem 4. Assume that f is as in Theorem 3. Then one has the estimate:

$$\begin{aligned}
&(2.4) \quad |R_{n}(f,t_{0})| \\
&\leq \begin{cases}
&\frac{(b-a)^{n-2}}{2^{n-1}} \left[\frac{(b-a)^{2}}{4} + \left(t_{0} - \frac{a+b}{2}\right)^{2} \right] ||f^{(n)}||_{\infty,[a,b]}, & \text{if } f^{(n)} \in L_{\infty}[a,b]; \\
&\frac{(b-a)^{n-2}}{(q+1)^{\frac{n}{q}}} \left[(b-t_{0})^{q+1} + (t_{0}-a)^{q+1} \right]^{\frac{1}{q}} ||f^{(n)}||_{p,[a,b]}, & \text{if } f^{(n)} \in L_{p}[a,b]; \\
&\frac{1}{p} + \frac{1}{q} = 1, p > 1; \\
&(b-a)^{n-2} \left[\frac{b-a}{2} + \left| t_{0} - \frac{a+b}{2} \right| \right] ||f^{(n)}||_{1,[a,b]}
\end{aligned}$$

for any $t_0 \in [a, b]$.

Proof. Observe, by Hölder's inequality, that

$$(2.5) \quad |R_{n}(f,t_{0})| \\ \leq \frac{1}{(b-a)^{n}} \int_{a}^{b} \cdots \int_{a}^{b} |p(t_{0},t_{1}) p(t_{1},t_{2}) \cdots p(t_{n-1},t_{n})| \left| f^{(n)}(t_{n}) \right| dt_{1} \dots dt_{n} \\ = \frac{1}{(b-a)^{n}} \begin{cases} \|f^{(n)}\|_{\infty,[a,b]} \int_{a}^{b} \cdots \int_{a}^{b} |p(t_{0},t_{1})| |p(t_{1},t_{2})| \cdots |p(t_{n-1},t_{n})| dt_{1} \dots dt_{n}, \\ \left(\int_{a}^{b} \cdots \int_{a}^{b} |f^{(n)}(t_{n})|^{p} dt_{1} \dots dt_{n} \right)^{\frac{1}{p}} \\ \times \left(\int_{a}^{b} \cdots \int_{a}^{b} |p(t_{0},t_{1})| |p(t_{1},t_{2})| \cdots |p(t_{n-1},t_{n})|^{q} dt_{1} \dots dt_{n} \right)^{\frac{1}{q}} \\ \text{for } p > 1, \ \frac{1}{p} + \frac{1}{q} = 1; \\ \sum_{(t_{1},\dots,t_{n}) \in [a,b]^{n}} \{|p(t_{0},t_{1})| |p(t_{1},t_{2})| \cdots |p(t_{n-1},t_{n})| dt_{1} \dots dt_{n}, \\ \left(b - a \right)^{\frac{n-1}{p}} \|f^{(n)}\|_{p,[a,b]} \left(\int_{a}^{b} \cdots \int_{a}^{b} |p(t_{0},t_{1})| |p(t_{1},t_{2})| \cdots |p(t_{n-1},t_{n})| dt_{1} \dots dt_{n}, \\ \left(b - a \right)^{\frac{n-1}{p}} \|f^{(n)}\|_{p,[a,b]} \left(\int_{a}^{b} \cdots \int_{a}^{b} |p(t_{0},t_{1})| |p(t_{1},t_{2})| \cdots |p(t_{n-1},t_{n})| dt_{1} \dots dt_{n}, \\ \left(b - a \right)^{n-1} \sup_{(t_{1},\dots,t_{n}) \in [a,b]^{n}} \{|p(t_{0},t_{1})| |p(t_{1},t_{2})| \cdots |p(t_{n-1},t_{n})| \} \|f^{(n)}\|_{1,[a,b]}. \end{cases}$$

Now, denote

$$(2.6) I_{n}(t_{0}) := \int_{a}^{b} \cdots \int_{a}^{b} |p(t_{0}, t_{1})| |p(t_{1}, t_{2})| \cdots |p(t_{n-1}, t_{n})| dt_{1} \dots dt_{n}$$

$$= \int_{a}^{b} \cdots \int_{a}^{b} |p(t_{0}, t_{1})| |p(t_{1}, t_{2})| \cdots$$

$$\times \left(\int_{a}^{b} |p(t_{n-1}, t_{n})| dt_{n} \right) dt_{1} \dots dt_{n-1}$$

$$= \int_{a}^{b} \cdots \int_{a}^{b} |p(t_{0}, t_{1})| |p(t_{1}, t_{2})| \cdots \left(\frac{(b - t_{n-1})^{2} + (t_{n-1} - a)^{2}}{2}\right) dt_{1} \dots dt_{n-1}.$$

Obviously, since

$$\frac{\left(b-t_{n-1}\right)^2+\left(t_{n-1}-a\right)^2}{2}=\frac{\left(b-a\right)^2}{4}+\left(t_{n-1}-\frac{a+b}{2}\right)^2\leq\frac{\left(b-a\right)^2}{2}$$

for any $t_{n-1} \in [a, b]$, we deduce by (2.6) that

(2.7)
$$I_n(t_0) \le \frac{(b-a)^2}{2} I_{n-1}(t_0) \text{ for } n \ge 2$$

and

(2.8)
$$I_1(t_0) = \frac{(b-a)^2}{4} + \left(t_0 - \frac{a+b}{2}\right)^2.$$

Using an inductive argument we get that

$$I_n(t_0) \le \frac{(b-a)^{2(n-1)}}{2^{n-1}} I_1(t_0) \text{ for } n \ge 2,$$

giving the following bound

$$(2.9) I_n(t_0) \le \frac{(b-a)^{2(n-1)}}{2^{n-1}} \left[\frac{(b-a)^2}{4} + \left(t_0 - \frac{a+b}{2}\right)^2 \right].$$

Using the first part of (2.5) and (2.9), we deduce the first inequality in (2.4). Consider now

$$(2.10) J_{n,q}(t_0) := \int_a^b \cdots \int_a^b |p(t_0, t_1)|^q |p(t_1, t_2)|^q \cdots |p(t_{n-1}, t_n)|^q dt_1 \dots dt_n$$

$$= \int_a^b \cdots \int_a^b |p(t_0, t_1)|^q |p(t_1, t_2)|^q$$

$$\times \cdots \left(\int_a^b |p(t_{n-1}, t_n)|^q dt_n \right) dt_1 \dots dt_{n-1}$$

$$= \int_a^b \cdots \int_a^b |p(t_0, t_1)|^q |p(t_1, t_2)|^q \cdots$$

$$\times \left[\frac{(b - t_{n-1})^{q+1} + (t_{n-1} - a)^{q+1}}{q+1} \right] dt_1 \dots dt_{n-1}.$$

Obviously, since

$$\frac{(b-t_{n-1})^{q+1} + (t_{n-1}-a)^{q+1}}{q+1} \le \frac{(b-a)^{q+1}}{q+1}$$

for each $t_{n-1} \in [a, b]$, we deduce by (2.10), that

(2.11)
$$J_{n,q}(t_0) \le \frac{(b-a)^{q+1}}{q+1} J_{n-1,q}(t_0), \quad n \ge 2$$

and

(2.12)
$$J_{1,q}(t_0) = \frac{(b-t_0)^{q+1} + (t_0-a)^{q+1}}{q+1}.$$

Using an induction argument, we conclude that

$$(2.13) J_{n,q}(t_0) \le \left[\frac{(b-t_0)^{q+1} + (t_0-a)^{q+1}}{q+1} \right] \frac{(b-a)^{(q+1)(n-1)}}{(q+1)^{n-1}}, \text{ for } n \ge 2.$$

Employing the second inequality in (2.5) and (2.13) we deduce

$$|R_{n}(f,t_{0})| \leq \frac{1}{(b-a)^{n}} \frac{1}{(b-a)^{\frac{n-1}{p}}} \frac{(b-a)^{\frac{(q+1)(n-1)}{q}}}{(q+1)^{\frac{n-1}{q}}} \times \left[\frac{(b-t_{0})^{q+1} + (t_{0}-a)^{q+1}}{q+1} \right]^{\frac{1}{q}} \|f^{(n)}\|_{p,[a,b]}$$

$$= \frac{(b-a)^{n-2}}{(q+1)^{\frac{n}{q}}} \left[(b-t_{0})^{q+1} + (t_{0}-a)^{q+1} \right]^{\frac{1}{q}} \|f^{(n)}\|_{p,[a,b]},$$

and the second inequality in (2.4) is proved.

For the last part, observe that

$$(2.14) K_{n}(t_{0}) := \sup_{(t_{1},...,t_{n})\in[a,b]^{n}} \{|p(t_{0},t_{1})| |p(t_{1},t_{2})| \cdots |p(t_{n-1},t_{n})|\}$$

$$\leq \sup_{(t_{1},...,t_{n})\in[a,b]^{n}} \{|p(t_{0},t_{1})|\} \cdots \sup_{(t_{1},...,t_{n})\in[a,b]^{n}} \{|p(t_{n-1},t_{n})|\}$$

$$\leq (b-a)^{n-1} \sup_{t_{1}\in[a,b]} |p(t_{0},t_{1})|$$

$$= (b-a)^{n-1} \max(t_{0}-a,b-t_{0})$$

$$= (b-a)^{n-1} \left[\frac{b-a}{2} + \left|t_{0} - \frac{a+b}{2}\right|\right].$$

Finally, using the third inequality in (2.5) and (2.14), we deduce the last inequality in (2.4).

Remark 1. In [8], the present authors have pointed out the following inequality when the second derivative is bounded

$$(2.15) \left| f(t_0) - \frac{1}{b-a} \int_a^b f(t_1) dt_1 - \frac{f(b) - f(a)}{b-a} \left(t_0 - \frac{a+b}{2} \right) \right|$$

$$\leq \frac{1}{2} \left\{ \left[\frac{\left(t_0 - \frac{a+b}{2} \right)^2}{\left(b-a \right)^2} + \frac{1}{4} \right]^2 + \frac{1}{12} \right\} (b-a)^2 \left\| f^{(2)} \right\|_{\infty,[a,b]};$$

provided $f^{(2)} \in L_{\infty}[a,b]$, and $t_0 \in [a,b]$. If one uses the general result incorporated in Theorem 4 for n=2, then one gets the inequalities

$$(2.16) \left| f(t_0) - \frac{1}{b-a} \int_a^b f(t_1) dt_1 - \frac{f(b) - f(a)}{b-a} \left(t_0 - \frac{a+b}{2} \right) \right|$$

$$\leq \left\{ \frac{\frac{1}{2} \left[\frac{(b-a)^2}{4} + \left(t_0 - \frac{a+b}{2} \right)^2 \right] \left\| f^{(2)} \right\|_{\infty,[a,b]}, \quad if \quad f^{(2)} \in L_{\infty} [a,b]; \right.$$

$$\left. \left\{ \frac{\frac{1}{(q+1)^{\frac{2}{q}}} \left[(b-t_0)^{q+1} + (t_0-a)^{q+1} \right]^{\frac{1}{q}} \left\| f^{(2)} \right\|_{p,[a,b]}, \quad if \quad f^{(2)} \in L_p [a,b]; \right.$$

$$\left[\frac{b-a}{2} + \left| t_0 - \frac{a+b}{2} \right| \right] \left\| f^{(2)} \right\|_{1,[a,b]}$$

for each $t_0 \in [a,b]$. We note that the bound provided by (2.15) is better than the first inequality in (2.16).

Problem 1. Find sharp upper bounds for

$$\left| f(t_0) - \frac{1}{b-a} \int_a^b f(t_1) dt_1 - \frac{f(b) - f(a)}{b-a} \left(t_0 - \frac{a+b}{2} \right) \right|$$

in terms of the Lebesgue norms $\|f^{(2)}\|_{p,[a,b]}$, $p \in [1,\infty]$.

Problem 2. Consider the same problem for the general case of n-time differentiable functions.

References

- [1] A. OSTROWSKI, Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel, 10 (1938), 226-227.
- [2] S.S. DRAGOMIR and S. WANG, A new inequality of Ostrowski's type in L_1 -norm and applications to some special means and to some numerical quadrature rules, $Tamkang\ J.$ of Math., 28 (1997), 239-244.
- [3] S.S. DRAGOMIR and S. WANG, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, *Appl. Math. Lett.*, 11 (1998), 105-109.
- [4] S.S. DRAGOMIR and S. WANG, A new inequality of Ostrowski's type in L_p -norm and applications to some special means and to some numerical quadrature rules, *Indian J. of Math.*, **40**(3) (1998), 245-304
- [5] S.S. DRAGOMIR and S. WANG, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and for some numerical quadrature rules, *Appl. Math. Lett.*, 11 (1998), 105-109.
- [6] H. DAVENPORT, The zeros of trigonometrical polynomials, Mathematica, 19(1972), 88-90.
- [7] H.L. MONTGOMERY, Topics in Multiplicative Number Theory, Lecture Notes in Mathematics, 227(1971), 178 pp.
- [8] S.S. DRAGOMIR and N.S. BARNETT, An Ostrowski type inequality for mappings whose second derivatives are bounded and applications, J. Indian Math. Soc. (N.S.), 66 (1999), no. 1-4, 237-245.

School of Computer Science & Mathematics, Victoria University of Technology, PO Box 14428, Melbourne City MC, 8001, Victoria, Australia.

E-mail address: neil@matilda.vu.edu.au

URL: http://sci.vu.edu.au/staff/neilb.html

 $E ext{-}mail\ address: severl@matilda.vu.edu.au}$

URL: http://rgmia.vu.edu.au/SSDragomirWeb.html