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AN IDENTITY FOR »-TIME DIFFERENTIABLE FUNCTIONS
AND APPLICATIONS FOR OSTROWSKI TYPE INEQUALITIES

N.S. BARNETT AND S.S. DRAGOMIR

ABSTRACT. An identity for n-time differentiable functions of a real variable
in terms of multiple integrals and applications for Ostrowski type inequalities
are given.

1. INTRODUCTION
The following result is known in the literature as Ostrowski’s inequality [I].

Theorem 1. Let f : [a,b] — R be a differentiable mapping on (a,b) with the
property that |f' (t)| < M for allt € (a,b). Then
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for all x € [a,b]. The constant % is the best possible in the sense that it cannot be
replaced by a smaller constant.

The following Ostrowski type result for absolutely continuous functions whose
derivatives belong to the Lebesgue spaces Ly, [a, b] also holds (see [2], [3] and [4]).

Theorem 2. Let f : [a,b] — R be absolutely continuous on [a,b]. Then, for all
x € [a,b], we have:
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where ||-||,. (r € [1,00]) are the usual Lebesque norms on L, [a,b], i.e.,
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t€la,b]
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b %
lgll,. := (/ lg ()" dt) , 7€ [1,00).

and % respectively are sharp in the sense presented in

and

The constants 1, 1
(p+1)P

1
Theorem [

In [5], S.S. Dragomir and S. Wang gave a simple proof of the following integral
identity intimately connected with the Ostrowski inequality (|1.1)):

Lemma 1. Let f: [a,b] — R be an absolutely continuous mapping |a,b]. Then we
have the identity:

b b
13)  flo)= / (1) diy 5 / p(to, 1) £V (1) dty;

for all ty € [a,b], where

t1—a Zf t1 € [G,, to]
p(toﬂfl) = .
to—b if t € (to,b]

Proof. Since we use this identity in proving one of the main results below, we give
here a simple proof as follows.
Integrating by parts, we have

/D(tl—@f’(mdtl:(to—a>f(to>— ft)di

and
b b
/t (=) () = (b —t0) £ () = [ Fltr)ar

Summing the above two equalities, we get
to b b
[ w-ar@ans [ @-nrwan=o-ast)- [ e
a to a
and the equality (|1.3) is proved. O
For related results on this identity, see [6] and|[7].

In this paper, a generalization of the identity (1.3 is provided. Some related
inequalities generalizing Ostrowski’s result are also pointed out.

2. THE RESULTS

We are now able to state and prove the following generalisation of the above
result for n—time differentiable mappings.

Theorem 3. Let f : [a,b] — R be a (n — 1) —time differentiable mapping (n > 2)
on [a,b] with =Y : [a,b] — R is absolutely continuous on [a,b]. Then for all
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to € [a,b] we have the identity:

(2.1) f(t )_1/bf(t )dt +§{a b'f(i_l)}
. o) =3, ’ 1) dty > b;

b b
(b_lay/ "'/p(t07t1)p(t17t2)"'p(z Lt) dty . dt
b b
+<b—1a>"/ "'/p(t‘)’“)”' (tn1stn) F7 (tn) dt: ... dty,

where [a,b;f(i_l)] is the divided difference of fU~Y) in the points {a,b}, i.c.,

and p is as above.

Proof. Let us prove by mathematical induction.
For n = 2, we have to prove the identity

b
(2.2) f(to) = f (t1) dty + [a, b; f] / p (to,t1) dt:
+72/ / p(to,t1) p (t1,t2) fP (o) dtydts.
(b — a) a Ja
Applying (1.3) for the mapping f’ (-) we can write
O () = /f ta dt2+7/ (t1,t2) 2 (t2) dta.

Again using (|1.3)), we have

b
f(to) = a /ftl dt1+7/pto,t1 [ /f (t2) dta

b

+ m P (tl, tz) f(z) (tg) dt2‘| dtl

b b
— [ f(t1)dts + [a,b; f] ﬁ/ p (to, t1) dty

1 b b
+(b)2/ / p(to,t1) p (t1, t2) FP (t2) dtydts
—a a a

and the inequality (2.2)) is proved.
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Assume that (2.1]) holds for a natural number “n” and let us prove it for “n+1",
i.e., we have to prove the identity:

(2.3)  f(to) = /ftl dtl—l—Z{ab]”l}

(b—a)i/ -~-/p(t0,t1)p(t1,t2)-~- (ti—1,t;) dty ... dt;

1 b b
+(b—a)"+1/ / p(to,t1) -+ p(tn—1,tn) P (tns tnt1)

X f(n+1) (tn+1) dtl . dtn+1.

Using Lemma m we can state that

1 () = 7— / FO () dtng + 7 / (s tnst) D (fs) dt s

- {0,7 b; f(n_l)] T m/ p(tnatn-H) f(n+1) (tN+1) dtn-i-l-

By mathematical induction hypothesis, we get

b n—1
fl) =5 [ T dn+ Y [abirt)]
a i=1
p(to, t1) p(t1,t2) - p(tica, b)) dtr ... dt;

(b_a’)l a a
b b
+(b—1a)n/ / p(to,t1) - p(tn_1,tn)

1 b
" ha’b;f(n_l)} + m/ P (tns tug1) fOD () dtngr | dty .. dty,

a

= ﬁ /abf@l)dtl + Zj; |a,b: /0]

b b
X(lyl)z/ "'/p(t07t1)p(t1,t2)“'p(z 1,t)dty ... dt

—a
1 b b
+(b—a)”“/ / p(tostr) - p(tn-1,tn) P (tn, tns1)

X fOFD (4 ) dty L dbg

and the identity (2.3]) is thus proved. |
Denote
R, (f.10) / / (t0, 1)+ (tnr. ) F® (1) iy .t

We are interested in pomtlng out some upper bounds for the absolute value of

R, (f,t0), to € [a,b].
The following general result holds.
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Theorem 4. Assume that f is as in Theorem[3 Then one has the estimate:

(24)  [Bn (. t0)]

ol |9 + (1= =)’ 1 oy & ) € Lol B];

%[(b—to)qﬂ‘*‘(fo “1} 1FON sy o £ € Lylasb],

1 1 _ .
5+5_1’p>1’

IN

(0—a)" 7 [B5% + [t — R [IF™], oy
for any to € [a,b].
Proof. Observe, by Hélder’s inequality, that

(2.5)  |Ry (f,to)]
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17O i S+ S 1 Cos )l (s )] p (bt ) - i
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Now, denote
b b
(26) In (to) = / / |p(t0,t1)||p(t1,t2)|""p(tn_htn”dtl...dtn

b b
// Ip (to, )] Ip (11, £2)] - -
b
X / |p (tn—h tn)| dtn dtl [P dtn_l
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b b 2 2
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Obviously, since

2 2 2 2 2
(b—tn-1)"+ (tn—1 —a) :(b—a) n tn_17a+b S(b—a)
2 4 2 2

for any t,—1 € [a,b], we deduce by ([2.6) that

b— a)?
(2.7) Lto) < 8= 1 ) for n>2
and

(b—a)? a+b\’
2. I (tg) = to — .
(2.8) 1 (o) T Tl
Using an inductive argument we get that

b—a 2(n—1)
I (t) < %h (to) for n>2,
giving the following bound
b—a) ™Y [ (b—a)? a+b\>

(2.9) %%5(211 (4)+@2>

Using the first part of (2.5) and (2.9), we deduce the first inequality in (2.4)).

Consider now

b b
(2.10)  Jy 4 (to) 52/ / Ip (to, t)|? |p (t1,t2)|* - |p (b1, )| dty ... diy,

b b
:/ / 1p (0, £1)|7 [p (t1, £2)]°
b
N (/ |p (tn—17tn)|q dtn> dt1...dt,—1

b b
=/ / 1P (to, £2)|7 |p (1, £2)[7 - -

« (b— tn—l)q+1 + (tn—1 — a)q+1
q+1

] iyt

Obviously, since

(0= tu)™ + (tas —a)™ _ (b—a)™

g+1 - ogq+1
for each t,_1 € [a,b], we deduce by (2.10]), that
(b _ a)qul
(211) Jn7q (to) S q—‘—ilJnil’q (to) , n Z 2
and
b—to)" + (tg — a)™t!
(2.12) Tty = =t +to—a)

q+1
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Using an induction argument, we conclude that

(b—t0)"™ + (to — )| (0 —a)l?TVD

2.13 In.g (tg) < , forn > 2.
(213) g (t0) — e
Employing the second inequality in (2.5)) and (2.13]) we deduce
(¢+D)(n-1)
1 n-1 (b—a a
T T R
(b—a) (g+1)
1
1 174
> (b — to)qu + (to — a)‘l+ f(n)
q+ 1 p,la,b]
(b— a)n72 [ +1 +1]7
:7nb—tq+t—aq} fo ,
g (om0 - o
and the second inequality in (2.4) is proved.
For the last part, observe that
(2.14) K, (to) = sup {Ip (tost)l Ip (t1st2) -+ [p (Bn—1, t0) |}
(t1,-.ytn ) Ela,b]™
< osup o Alplto,t)l}--- sup o A{lp(tn-1,ta)l}
(t1,stn)Ela,b]™ (t1,0estn ) E[a,b]™
<(b—a)""" sup |p(to,t1)|
tle[a,b]
= (b—a)" "max (to — a,b— to)
16— b
— (b—a)" 1{ L tof“; H

Finally, using the third inequality in (2.5)) and (2.14)), we deduce the last inequal-
ity in (2.4). O

Remark 1. In [§], the present authors have pointed out the following inequality
when the second derivative is bounded

(2.15) ‘ (to) —7/ () dty —W(to—a;bﬂ
U [o-52° 1] 1 2| ) .
= 3 l i et R Ll Ll
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provided f?) € Lo [a,b], and ty € [a,b]. If one uses the general result incorporated
in Theorem [f] for n = 2, then one gets the inequalities

b — a a
(2.16) f(to)—ﬁ/ f(t1)dt1—f(bl))_£()<to— ;b>

3[4 4 10— )" 1 gy i € Lol

IN

1 [(b—to)q+1+(to q“] 15O ey o FP € Lyla,b];
(q+1)¢

b—a a+b

(552 + [to = 2] [1F ], oy

for each ty € [a,b]. We note that the bound provided by (2.15)) is better than the
first inequality in (2.16]) .

Problem 1. Find sharp upper bounds for

f (to) ——/ f(t) dtl_JM(tO_a—QHJ)

in terms of the Lebesgue norms ||f(2) Hp (b P € [1,00].

Problem 2. Consider the same problem for the general case of n—time differen-
tiable functions.
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