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HADAMARD INEQUALITIES FOR WRIGHT-CONVEX
FUNCTIONS

KUEI-LIN TSENG, GOU-SHENG YANG, AND SEVER S. DRAGOMIR

Abstract. In this paper, we establish serveral inequalities of Hadamard’s

type for Wright-Convex functions.

1. Introduction

If f : [a, b]→ R is a convex function, then

(1.1) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)
2

is known as the Hadamard inequality ([5]).
For some results which generalize, improve, and extend this famous integral

inequality see [1] – [8], [10] – [15].
In [2], Dragomir established the following theorem which is a refinement of the

first inequality of (1.1).
Theorem 1. If f : [a, b]→ R is a convex function, and H is defined on [0, 1] by

(1.2) H (t) =
1

b− a

∫ b

a

f

(
tx + (1− t)

a + b

2

)
dx,

then H is convex, increasing on [0, 1] , and for all t ∈ [0, 1], we have

(1.3) f

(
a + b

2

)
= H (0) ≤ H (t) ≤ H (1) =

1
b− a

∫ b

a

f (x) dx

In [10], Yang and Hong established the following theorem which is a refinement
of the second inequality of (1.1).
Theorem 2. If f : [a, b]→ R is a convex function, and F is defined on [0, 1] by

(1.4) F (t) =
1

2 (b− a)

∫ b

a

[
f

((
1 + t

2

)
a +

(
1− t

2

)
x

)
+ f

((
1 + t

2

)
b +

(
1− t

2

)
x

)]
dx,

then F is convex, increasing on [0, 1] , and for all t ∈ [0, 1], we have

(1.5)
1

b− a

∫ b

a

f (x) dx = F (0) ≤ F (t) ≤ F (1) =
f (a) + f (b)

2
.

We recall the definition of a Wright-convex function:

1991 Mathematics Subject Classification. Primary: 26D15; Secondary: 41A55.
Key words and phrases. Trapezoid inequality, Monotonic mappings, r−moment and the ex-

pectation of a continuous random variable, the Beta mapping.

1



2 KUEI-LIN TSENG, GOU-SHENG YANG, AND SEVER S. DRAGOMIR

Definition 1. (see [9, p. 223]). We say that f : [a, b] → R is a Wright-convex
function, if, for all x, y + δ ∈ [a, b] with x < y and δ ≥ 0, we have

(1.6) f (x + δ) + f (y) ≤ f (y + δ) + f (x) .

Let C ([a, b]) be the set of all convex functions on [a, b] and W ([a, b]) be the set of
all Wright-convex functions on [a, b]. Then C ([a, b]) $ W ([a, b]). That is, a convex
function must be a Wright-convex function but not conversely (see [9, p. 224]).

In this paper, we shall establish several inequalities of Hadamard’s type for
Wright-convex functions.

2. Main Results

In order to prove our main theorems, we need the following lemma:

Lemma 1. If f : [a, b]→ R, then the following statements are equivalent:

(1) f ∈W ([a, b]) ;
(2) for all s, t, u, v ∈ [a, b] with s ≤ t ≤ u ≤ v and t + u = s + v, we have

(2.1) f (t) + f (u) ≤ f (s) + f (v) .

Proof. Suppose f ∈ W ([a, b]). If s, t, u, v ∈ [a, b], and s ≤ t ≤ u ≤ v, where
t + u = s + v, then we can write x = s, x + δ = t, y = u, y + δ = v, it follows from
(1.6) that

f (t) + f (u) ≤ f (s) + f (v) .

Conversely, if x, y + δ ∈ [a, b], x < y and δ ≥ 0. We may have

x ≤ x + δ ≤ y ≤ y + δ

or

x ≤ y ≤ x + δ ≤ y + δ.

In either case we have, by (2.1), that

f (x + δ) + f (y) ≤ f (x) + f (y + δ) .

Thus f ∈W ([a, b]).

Theorem 3. Let f ∈W ([a, b]) ∩ L1 [a, b] . Then (1.1) holds.

Proof. For (2.1), we have

f

(
a + b

2

)
=

1
(b− a)

∫ a+b
2

a

[
f

(
a + b

2

)
+ f

(
a + b

2

)]
dx

≤ 1
b− a

∫ a+b
2

a

[f (x) + f (a + b− x)] dx

(
x ≤ a + b

2
≤ a + b

2
≤ a + b− x

)
=

1
b− a

[∫ a+b
2

a

f (x) dx +
∫ b

a+b
2

f (x) dx

]

=
1

b− a

∫ b

a

f (x) dx,
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and

f (a) + f (b)
2

=
1

b− a

∫ a+b
2

a

[f (a) + f (b)] dx

≥ 1
b− a

∫ a+b
2

a

[f (x) + f (a + b− x)] dx (a ≤ x ≤ a + b− x ≤ b)

=
1

b− a

[∫ a+b
2

a

f (x) dx +
∫ b

a+b
2

f (x) dx

]

=
1

b− a

∫ b

a

f (x) dx,

This completes the proof.

Theorem 4. Let f ∈ W ([a, b]) ∩ L1 [a, b] and let H be defined as in (1.2). Then
H ∈W ([0, 1]) is increasing on [0, 1], and (1.3) holds for all t ∈ [0, 1].

Proof. If s, t, u, v ∈ [0, 1] and s ≤ t ≤ u ≤ v, t + u = s + v, then for x ∈
[
a, a+b

2

]
we

have

b ≥ sx + (1− s)
a + b

2

≥ tx + (1− t)
a + b

2

≥ ux + (1− u)
a + b

2

≥ vx + (1− v)
a + b

2
≥ a,

and if x ∈
[

a+b
2 , b

]
, then

a ≤ sx + (1− s)
a + b

2

≤ tx + (1− t)
a + b

2

≤ ux + (1− u)
a + b

2

≤ vx + (1− v)
a + b

2
≤ b,

where[
tx + (1− t)

a + b

2

]
+

[
ux + (1− u)

a + b

2

]
=

[
sx + (1− s)

a + b

2

]
+

[
vx + (1− v)

a + b

2

]
.

By Lemma 1, we have

f

(
tx + (1− t)

a + b

2

)
+ f

(
ux + (1− u)

a + b

2

)
≤ f

(
sx + (1− s)

a + b

2

)
+ f

(
vx + (1− v)

a + b

2

)
.
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for all x ∈ [a, b]. Integrating this inequality over x on [a, b], and dividing both sides
by b− a, yields

H (t) + H (u) ≤ H (s) + H (v) .

Hence, H ∈W ([0, 1]).
Next, if 0 ≤ s ≤ t ≤ 1 and x ∈

[
a, a+b

2

]
, then

tx + (1− t)
a + b

2
≤ sx + (1− s)

a + b

2

≤ s (a + b− x) + (1− s)
a + b

2

≤ t (a + b− x) + (1− t)
a + b

2
,

where[
sx + (1− s)

a + b

2

]
+

[
s (a + b− x) + (1− s)

a + b

2

]
=

[
tx + (1− t)

a + b

2

]
+

[
t (a + b− x) + (1− t)

a + b

2

]
.

By Lemma 1, we have

H (s) =
1

b− a

∫ b

a

f

(
sx + (1− s)

a + b

2

)
dx

=
1

b− a

∫ a+b
2

a

[
f

(
sx + (1− s)

a + b

2

)
+ f

(
s (a + b− x) + (1− s)

a + b

2

)]
dx

≤ 1
b− a

∫ a+b
2

a

[
f

(
tx + (1− t)

a + b

2

)
+ f

(
t (a + b− x) + (1− t)

a + b

2

)]
dx

=
1

b− a

∫ b

a

f

(
tx + (1− t)

a + b

2

)
dx

= H (t) .

Thus, H is increasing on [0, 1], and (1.3) holds for all t ∈ [0, 1] .
This completes the proof.

Theorem 5. Let f ∈ W ([a, b]) ∩ L1 [a, b] and let F be defined as in (1.4). Then
F ∈W ([0, 1]) is increasing on [0, 1], and (1.5) holds for all t ∈ [0, 1].

Proof. If s, t, u, v ∈ [0, 1] and s ≤ t ≤ u ≤ v, t + u = s + v, then

a ≤
(

1 + v

2

)
a +

(
1− v

2

)
x

≤
(

1 + u

2

)
a +

(
1− u

2

)
x

≤
(

1 + t

2

)
a +

(
1− t

2

)
x

≤
(

1 + s

2

)
a +

(
1− s

2

)
x ≤ b for all x ∈ [a, b] ,
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and

a ≤
(

1 + s

2

)
b +

(
1− s

2

)
x

≤
(

1 + t

2

)
b +

(
1− t

2

)
x

≤
(

1 + u

2

)
b +

(
1− u

2

)
x

≤
(

1 + v

2

)
b +

(
1− v

2

)
x ≤ b for all x ∈ [a, b] ,

where[(
1 + u

2

)
a +

(
1− u

2

)
x

]
+

[(
1 + t

2

)
a +

(
1− t

2

)
x

]
=

[(
1 + v

2

)
a +

(
1− v

2

)
x

]
+

[(
1 + s

2

)
a +

(
1− s

2

)
x

]
and[(

1 + t

2

)
b +

(
1− t

2

)
x

]
+

[(
1 + u

2

)
b +

(
1− u

2

)
x

]
=

[(
1 + s

2

)
b +

(
1− s

2

)
x

]
+

[(
1 + v

2

)
b +

(
1− v

2

)
x

]
.

By Lemma 1, we have

f

((
1 + u

2

)
a +

(
1− u

2

)
x

)
+ f

((
1 + t

2

)
a +

(
1− t

2

)
x

)
+ f

((
1 + t

2

)
b +

(
1− t

2

)
x

)
+ f

((
1 + u

2

)
b +

(
1− u

2

)
x

)
≤ f

((
1 + v

2

)
a +

(
1− v

2

)
x

)
+ f

((
1 + s

2

)
a +

(
1− s

2

)
x

)
+ f

((
1 + s

2

)
b +

(
1− s

2

)
x

)
+ f

((
1 + v

2

)
b +

(
1− v

2

)
x

)
,

for all x ∈ [a, b]. Integrating this inequality over x on [a, b], and dividing both sides
by 2 (b− a), we have

F (t) + F (u) ≤ F (s) + F (v) ,

hence, F ∈W ([0, 1]).
Next, if 0 ≤ s ≤ t ≤ 1 and x ∈ [a, b], then(

1 + t

2

)
a +

(
1− t

2

)
x ≤

(
1 + s

2

)
a +

(
1− s

2

)
x

≤
(

1 + s

2

)
b +

(
1− s

2

)
(a + b− x)

≤
(

1 + t

2

)
b +

(
1− t

2

)
(a + b− x) ,
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and (
1 + t

2

)
a +

(
1− t

2

)
(a + b− x) ≤

(
1 + s

2

)
a +

(
1− s

2

)
(a + b− x)

≤
(

1 + s

2

)
b +

(
1− s

2

)
x

≤
(

1 + t

2

)
b +

(
1− t

2

)
x,

where[(
1 + s

2

)
a +

(
1− s

2

)
x

]
+

[(
1 + s

2

)
b +

(
1− s

2

)
(a + b− x)

]
=

[(
1 + t

2

)
a +

(
1− t

2

)
x

]
+

[(
1 + t

2

)
b +

(
1− t

2

)
(a + b− x)

]
,

and[(
1 + s

2

)
a +

(
1− s

2

)
(a + b− x)

]
+

[(
1 + s

2

)
b +

(
1− s

2

)
x

]
=

[(
1 + t

2

)
a +

(
1− t

2

)
(a + b− x)

]
+

[(
1 + t

2

)
b +

(
1− t

2

)
x

]
.

Thus

F (s) =
1

2 (b− a)

∫ b

a

[
f

((
1 + s

2

)
a +

(
1− s

2

)
x

)
+ f

((
1 + s

2

)
b +

(
1− s

2

)
x

)]
dx

=
1

4 (b− a)

∫ b

a

{[
f

((
1 + s

2

)
a +

(
1− s

2

)
x

)
+ f

((
1 + s

2

)
b +

(
1− s

2

)
(a + b− x)

)]
+

[
f

((
1 + s

2

)
a +

(
1− s

2

)
(a + b− x)

)
+ f

((
1 + s

2

)
b +

(
1− s

2

)
x

)]}
dx

≤ 1
4 (b− a)

∫ b

a

{[
f

((
1 + t

2

)
a +

(
1− t

2

)
x

)
+ f

((
1 + t

2

)
b +

(
1− t

2

)
(a + b− x)

)]
+

[
f

((
1 + t

2

)
a +

(
1− t

2

)
(a + b− x)

)
+f

((
1 + t

2

)
b +

(
1− t

2

)
x

)]}
dx.

Hence, F is increasing on [0, 1] and (1.5) holds for all t ∈ [0, 1].
This completes the proof.
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