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1. Introduction

Closely related to the foregoing first-order ordinary differential operators is the
following result of Bellman [4]: If the functions g(t) and u(t) are nonnegative for
t ≥ 0, and if c ≥ 0, then the inequality

u(t) ≤ c +
∫ t

0

g(s)u(s) ds, t ≥ 0,

implies that

u(t) ≤ c exp
(∫ t

0

g(s) ds

)
, for t ≥ 0.

This result may be established either directly or by means of the technique of
first-order linear differential equations (please, see Gronwall [8] and Guiliano [9]).
Various applications of this result to the study of stability of the solution of lin-
ear and nonlinear differential equations may be found in Bellman [3]. Numerous
applications to existence and uniqueness theory of differential equations may be
found in Nemyckii-Stepanov [13], Bihari [5], and Langenhop [10]. Several authors
generalized inequalities of Bellman type (sometimes, inequalities of this type were
called “Gronwall-Bellman inequalities” or “Inequalities of Gronwall type”) to the
case of functions of two or more variables. Of course, such results have application
in the theory of partial differential equations and Volterra integral equations. In
the book by Beckenbach and Bellman [2] the following unpublished Wendroff result
was given: If

(1.1) u(x, y) ≤ a(x) + b(y) +
∫ x

0

∫ y

0

v(r, s)u(r, s) drds,

where a(x), b(y) > 0, a′(x), b′(y) ≥ 0, u(x, y), v(x, y) ≥ 0, then

u(x, y) ≤ (a(0) + b(y))(a(x) + b(0))
a(0) + b(0)

exp
(∫ x

0

∫ y

0

v(r, s) drds

)
.

The Wendroff inequality (1.1) was generalized by Bainov and Simeonov [1]: Let
u(x, y), a(x, y), k(x, y) be nonnegative continuous functions for x ≥ x0, y ≥ y0, and
let a(x, y) be nondecreasing in each of the variables for x ≥ x0, y ≥ y0. Suppose that

(1.2) u(x, y) ≤ a(x, y) +
∫ x

x0

∫ y

y0

k(s, t)u(s, t) dtds, x ≥ x0, y ≥ y0.
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Then

u(x, y) ≤ a(x, y) exp
(∫ x

x0

∫ y

y0

k(s, t) dtds

)
, x ≥ x0, y ≥ y0.

In a recent paper [14] Pachpatte has given some useful integral inequalities in-
volving functions of two independent variables and presented some of its applica-
tions. Our main objective here is to obtain a bound on the nonlinear version of
(1.2) and also establish some new nonlinear integral inequalities involving functions
of two independent variables which can be used in the analysis of the behavior of
the solutions of some terminal value problem for the hyperbolic partial differential
equation.

2. Results

In this section we state and prove some new nonlinear integral inequalities in
two independent variables. Throughout the paper, all the functions which appear
in the inequalities are assumed to be realvalued and all the integrals are involved
in existence on the domains of their definitions. We shall introduce some notation:
R denotes the set of real numbers and R+ = [0,∞), J1 = [x0, X) and J2 = [y0, Y )
are the given subsets of R. The first order partial derivatives of a functions z(x, y)
defined for x, y ∈ R with respect to x and y are denoted by zx(x, y) and zy(x, y)
respectively.

Theorem 2.1. Let u(x, y), a(x, y), k(x, y) be nonnegative continuous functions for
x ≥ x0, y ≥ y0, and let a(x, y) be nondecreasing in each of the variables for x ≥
x0, y ≥ y0. Suppose that

(2.1) u(x, y) ≤ a(x, y) +
∫ x

x0

∫ y

y0

k(s, t)up(s, t) dtds, x ≥ x0, y ≥ y0,

where p ≥ 0, p 6= 1, is a constants. Then

(2.2) u(x, y) ≤
[
aq(x, y) + q

∫ x

x0

∫ y

y0

k(s, t) dtds

]1/q

for x ∈ [x0, X), y ∈ [y0, Y ), where q = 1 − p, X and Y are chosen so that the
expression between [...] is positive in the subintervals [x0, X) and [y0, Y ).

Proof. Let X > x0 and Y > y0 be fixed. Then for x0 ≤ x ≤ X, y0 ≤ y ≤ Y we have

(2.3) u(x, y) ≤ a(X, Y ) +
∫ x

x0

(∫ y

y0

k(s, t)up(s, t) dt

)
ds.
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Define a function v(x, y) by the right-hand side of (2.3). Then the function v(x, y)
is nondecreasing in each variable x, y, and v(x0, y) = a(X, Y ),

(2.4)
∂v

∂x
(x, y) =

∫ y

y0

k(x, t)up(x, t) dt ≤
∫ y

y0

k(x, t) dtvp(x, y),

since u(x, t) ≤ v(x, t) ≤ v(x, y). According to (2.4), the function z(x, y) = vq(x, y)/q
satisfies

(2.5)
∂z

∂x
(x, y) = vq−1(x, y)

∂v

∂x
(x, y) ≤

∫ y

y0

k(x, t) dt.

Integrating (2.5) over s from x0 to x, and the change of variable yields

z(x, y) ≤ 1
q
vq(x0, y) +

∫ x

x0

∫ y

y0

k(s, t) dtds,

or
vq(x, y) S aq(X, Y ) + q

∫ x

x0

∫ y

y0

k(s, t) dtds,

where ≤ (respectively, ≥ ) holds for q > 0 (respectively, q < 0). In both cases this
estimate implies

v(x, y) ≤
[
aq(X, Y ) + q

∫ x

x0

∫ y

y0

k(s, t) dtds

]1/q

for x0 ≤ x ≤ X, y0 ≤ y ≤ Y. Setting x = X and y = Y and changing notation we
arrive at (2.2). �

Corollary 2.1. Let u(x, y), k(x, y) be nonnegative continuous functions for x ≥
x0, y ≥ y0, and let a(x) be nondecreasing in x, x ≥ x0, and b(y) be nondecreasing in
y, y ≥ y0. Suppose that

u(x, y) ≤ a(x) + b(y) +
∫ x

0

∫ ∞

y

k(s, t)up(s, t) dtds, x ≥ x0, y ≥ y0,

where p ≥ 0, p 6= 1, is a constants. Then

u(x, y) ≤
[
(a(x) + b(y))q + q

∫ x

x0

∫ y

y0

k(s, t) dtds

]1/q

for x ∈ [x0, X), y ∈ [y0, Y ), where q = 1 − p, X and Y are chosen so that the
expression between [...] is positive in the subintervals [x0, X) and [y0, Y ).
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Theorem 2.2. Let u(x, y), a(x, y), k(x, y) be nonnegative continuous functions in
R2

+, and let a(x, y) be nonincreasing in each of the variables x, y. Suppose that

u(x, y) ≤ a(x, y) +
∫ ∞

x

∫ ∞

y

k(s, t)up(s, t) dtds, x ≥ 0, y ≥ 0,

where p ≥ 0, p 6= 1, is a constants and∫ ∞

x

∫ ∞

y

k(s, t) dtds < ∞, x ≥ 0, y ≥ 0.

Then

u(x, y) ≤
[
aq(x, y) + q

∫ ∞

x

∫ ∞

y

k(s, t) dtds

]1/q

for x ∈ [0, X), y ∈ [0, Y ), where q = 1−p, X and Y are chosen so that the expression
between [...] is positive in the subintervals [0, X) and [0, Y ).

Proof. The details of the proof of Theorem 2.2 follows by an argument similar to
that in the proofs of Theorem 2.1 with suitable changes. We omit the details. �

By a reasoning similar to the proof of Theorem 2.1 we also can prove the following
assertions.

Theorem 2.3. Let u(x, y), a(x, y), k(x, y) be nonnegative continuous functions in
R2

+, and let a(x, y) be nondecreasing in x and nonincreasing in y. Suppose that

u(x, y) ≤ a(x, y) +
∫ x

0

∫ ∞

y

k(s, t)up(s, t) dtds, x ≥ 0, y ≥ 0,

where p ≥ 0, p 6= 1, is a constants and∫ x

0

∫ ∞

y

k(s, t) dtds < ∞, x ≥ 0, y ≥ 0.

Then

u(x, y) ≤
[
aq(x, y) + q

∫ x

0

∫ ∞

y

k(s, t) dtds

]1/q

for x ∈ [0, X), y ∈ [0, Y ), where q = 1−p, X and Y are chosen so that the expression
between [...] is positive in the subintervals [0, X) and [0, Y ).

Our next theorems deal with some generalizations of Theorem 2.1, Theorem 2.2
and Theorem 2.3.



6 SEVER S. DRAGOMIR AND YOUNG-HO KIM

Theorem 2.4. Let u(x, y), a(x, y), b(x, y), k(x, y) be nonnegative continuous func-
tions for x ≥ x0, y ≥ y0, and let a(x, y) be nondecreasing in each of the variables
for x ≥ x0, y ≥ y0. Suppose that

(2.6) u(x, y) ≤ a(x, y) +
∫ x

x0

b(s, y)u(s, y) ds +
∫ x

x0

∫ y

y0

k(s, t)up(s, t) dtds

for x ≥ x0, y ≥ y0, where p ≥ 0, p 6= 1, is a constants. Then

u(x, y) ≤ exp
(∫ x

x0

b(τ, y) dτ

)
×

[
aq(x, y) + q

∫ x

x0

∫ y

y0

k(s, t) exp
(∫ s

x0

b(τ, y) dτ

)
dtds

]1/q

(2.7)

for x ∈ [x0, X), y ∈ [y0, Y ), where q = 1 − p, X and Y are chosen so that the
expression between [...] is positive in the subintervals [x0, X) and [y0, Y ).

Proof. Define a function z(x, y) by

z(x, y) = a(x, y) +
∫ x

x0

∫ y

y0

k(s, t)up(s, t) dtds.

Then z(x, y) is nondecreasing in each variables x, y, and (2.6) can be restated as

(2.8) u(x, y) ≤ z(x, y) +
∫ x

x0

b(s, y)u(s, y) ds.

Further define a function v(x, y) by v(x, y) =
∫ x

x0
b(s, y)u(s, y) ds. Then v(x0, y) = 0,

we have

(2.9)
∂v

∂x
(x, y) ≤ b(x, y)z(x, y) + b(x, y)v(x, y),

since u(x, y) ≤ z(x, y) + v(x, y). The inequality (2.9) imply that[
∂v

∂s
(s, y)− (s, y)v(s, y)

]
exp

(∫ x

s

b(τ, y) dτ

)
≤ b(s, y)z(s, y) exp

(∫ x

s

b(τ, y) dτ

)
for s ≥ x0, or

∂

∂s

[
v(s, y) exp

(∫ x

s

b(τ, y) dτ

)]
≤ b(s, y)z(s, y) exp

(∫ x

s

b(τ, y) dτ

)
.
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Integration over s from x0 to x gives

v(x, y) ≤
∫ x

x0

b(s, y)z(s, y) exp
(∫ x

s

b(τ, y) dτ

)
ds,

which implies

(2.10) v(x, y) ≤ z(x, y)
∫ x

x0

b(s, y) exp
(∫ x

s

b(τ, y) dτ

)
ds,

since v(x0, y) = 0. From (2.8) and (2.10), we get

(2.11) u(x, y) ≤ z(x, y) exp
(∫ x

x0

b(τ, y) dτ

)
.

Using the definition of z(x, y) and (2.11) we find the estimate

z(x, y) ≤ a(x, y) +
∫ x

x0

∫ y

y0

k(s, t) exp
(

p

∫ s

x0

b(τ, t) dτ

)
zp(s, t) dt ds.

Now Theorem 2.1 implies

(2.12) z(x, y) ≤
[
aq(x, y) + q

∫ x

x0

∫ y

y0

k(s, t) exp
(

p

∫ s

x0

b(τ, t) dτ

)
dt ds

]1/q

,

for x ∈ [x0, X), y ∈ [y0, Y ), where q = 1 − p, X and Y are chosen so that the
expression between [...] is positive in the subintervals [x0, X) and [y0, Y ). The
desired inequality in (2.7) follows by using (2.12) in (2.11). �

Theorem 2.5. Let u(x, y), a(x, y), b(x, y), k(x, y) be nonnegative continuous func-
tions in R2

+, and let a(x, y) be nonincreasing in each of the variables for x, y. Sup-
pose that

u(x, y) ≤ a(x, y) +
∫ ∞

x

b(s, y)u(s, y) ds +
∫ ∞

x

∫ ∞

y

k(s, t)up(s, t) dtds

for x ≥ 0, y ≥ 0, where p ≥ 0, p 6= 1, is a constants, and∫ ∞

x

b(s, y) ds < ∞,

∫ ∞

x

∫ ∞

y

k(s, t) dtds < ∞
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for x ≥ 0, y ≥ 0. Then

u(x, y) ≤ exp
(∫ ∞

x

b(τ, y) dτ

)
×

[
aq(x, y) + q

∫ ∞

x

∫ ∞

y

k(s, t) exp
(∫ ∞

s

b(τ, y) dτ

)
dtds

]1/q

for x ∈ [0, X), y ∈ [0, Y ), where q = 1−p, X and Y are chosen so that the expression
between [...] is positive in the subintervals [0, X) and [0, Y ).

Proof. The details of the proof of Theorem 2.5 follows by an argument similar to
that in the proofs of Theorem 2.4 with suitable changes. We omit the details. �

By a reasoning similar to the proof of Theorem 2.4 we also can prove the following
assertions.

Theorem 2.6. Let u(x, y), a(x, y), b(x, y), k(x, y) be nonnegative continuous func-
tions in R2

+, and let a(x, y) be nondecreasing in x and nonincreasing in y. Suppose
that

u(x, y) ≤ a(x, y) +
∫ x

0

b(s, y)u(s, y) ds +
∫ x

0

∫ ∞

y

k(s, t)up(s, t) dtds

for x ≥ 0, y ≥ 0, where p ≥ 0, p 6= 1, is a constants, and∫ x

0

∫ ∞

y

k(s, t) dtds < ∞

for x ≥ 0, y ≥ 0. Then

u(x, y) ≤ exp
(∫ x

0

b(τ, y) dτ

)
×

[
aq(x, y) + q

∫ x

0

∫ ∞

y

k(s, t) exp
(∫ s

0

b(τ, y) dτ

)
dtds

]1/q

for x ∈ [0, X), y ∈ [0, Y ), where q = 1−p, X and Y are chosen so that the expression
between [...] is positive in the subintervals [0, X) and [0, Y ).

3. Further Inequalities

In this section we consider further nonlinear integral inequalities for functions of
two independent variables.
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Theorem 3.1. Let u(x, y), a(x, y), b(x, y), k(x, y) be nonnegative continuous func-
tions for x ≥ x0, y ≥ y0, and let a(x, y) be nondecreasing in each of the variables
for x ≥ x0, y ≥ y0. Suppose that

(3.1) u(x, y) ≤ a(x, y) +
∫ x

x0

b(s, y)up(s, y) ds +
∫ x

x0

∫ y

y0

k(s, t)up(s, t) dtds

for x ≥ x0, y ≥ y0, where p > 1 is a constants and
∫ x

x0
b(s, y)up(s, y) ds be nonde-

creasing in y. Then

(3.2) u(x, y) ≤
[
a1−p(x, y) + (1− p)

(∫ x

x0

b(s, y) ds +
∫ x

x0

∫ y

y0

k(s, t) dtds

)](p−1)

for x ≥ x0, y ≥ y0, and (x, y) ∈ D, where D = sup{(x, y)|(1 − p)(
∫ x

x0
b(s, y) ds +∫ x

x0

∫ y

y0
k(s, t) dt ds) < a1−p(x, y)}.

Proof. Define a function v(x, y) by

v(x, y) =
∫ x

x0

b(s, y)up(s, y) ds +
∫ x

x0

∫ y

y0

k(s, t)up(s, t) dtds.

Then v(x0, y) = 0, we have

∂v

∂x
(x, y) ≤ b(x, y)up(x, y) +

∫ y

y0

k(x, t)up(x, t) dt

≤
(

b(x, y) +
∫ y

y0

k(x, t) dt

)
[a(x, y) + v(x, y)]p

≤
(

b(x, y) +
∫ y

y0

k(x, t) dt

)
[a(x, y) + v(x, y)](p−1)[a(x, y) + v(x, y)](3.3)

since u(x, y) ≤ a(x, y) + v(x, y). The inequality (3.3) imply that

(3.4)
∂v

∂x
(x, y) ≤ R(x, y)[a(x, y) + v(x, y)],

where R(x, y) = (b(x, y) +
∫ y

y0
k(x, t) dt)[a(x, y) + v(x, y)](p−1). Inequality (3.4) im-

plies[
∂v

∂s
(s, y)−R(s, y)v(s, y)

]
exp

(∫ x

s

R(τ, y) dτ

)
≤ R(s, y)a(s, y) exp

(∫ x

s

R(τ, y) dτ

)
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for s ≥ x0, or

∂

∂s

[
v(s, y) exp

(∫ x

s

R(τ, y) dτ

)]
≤ R(s, y)a(s, y) exp

(∫ x

s

R(τ, y) dτ

)
.

Integration over s from x0 to x gives

v(x, y) ≤
∫ x

x0

R(s, y)a(s, y) exp
(∫ x

s

R(τ, y) dτ

)
ds,

which implies

(3.5) v(x, y) ≤ a(x, y)
∫ x

x0

R(s, y) exp
(∫ x

s

R(τ, y) dτ

)
ds,

since v(x0, y) = 0. From (3.5), we get

(3.6) v(x, y) + a(x, y) ≤ a(x, y) exp
(∫ x

x0

R(τ, y) dτ

)
.

From (3.6) we successively obtain

[v(x, y) + a(x, y)](p−1) ≤ a(p−1)(x, y) exp
(

(p− 1)
∫ x

x0

R(τ, y) dτ

)
,

R(x, y) ≤
[
b(x, y) +

∫ y

y0

k(x, t) dt

]
a(p−1)(x, y) exp

(
(p− 1)

∫ x

x0

R(τ, y) dτ

)
,

Z(x, y) = (p− 1)R(x, y)

≤ (p− 1)
[
b(x, y) +

∫ y

y0

k(x, t) dt

]
a(p−1)(x, y) exp

(∫ x

x0

Z(τ, y) dτ

)
.

Consequently

Z(x, y) exp
(
−

∫ x

x0

Z(τ, y) dτ

)
≤ (p− 1)

[
b(x, y) +

∫ y

y0

k(x, t) dt

]
a(p−1)(x, y),

or

∂

∂s

[
− exp

(
−

∫ s

x0

Z(τ, y) dτ

)]
≤ (p− 1)

[
b(s, y) +

∫ y

y0

k(s, t) dt

]
a(p−1)(s, y).
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Integrating this from x0 to x yields

1− exp
(
−

∫ x

x0

Z(τ, y) dτ

)
≤

∫ x

x0

(p− 1)
[
b(s, y) +

∫ y

y0

k(s, t) dt

]
a(p−1)(s, y) ds,

from which we conclude that
(3.7)

exp
(∫ x

x0

R(τ, y) dτ

)
≤

[
1− (p−1)a(p−1)(x, y)

∫ x

x0

(
b(s, y)+

∫ y

y0

k(s, t) dt

)
ds

](p−1)

for x ≥ x0, y ≥ y0, and (x, y) ∈ D, where D = sup{(x, y)|(1 − p)(
∫ x

x0
b(s, y) ds +∫ x

x0

∫ y

y0
k(s, t) dt) < a1−p(x, y)}. The desired inequality in (3.2) follows by using

(3.6),(3.7) and the fact that u(x, y) ≤ a(x, y) + v(x, y). �

By a reasoning similar to the proof of Theorem 3.1 we also can prove the following
assertions.

Theorem 3.2. Let u(x, y), a(x, y), b(x, y), k(x, y) be nonnegative continuous func-
tions in R2

+, and let a(x, y) be nonincreasing in each of the variables in x ≥ 0, y ≥ 0.
Suppose that

u(x, y) ≤ a(x, y) +
∫ ∞

x

b(s, y)up(s, y) ds +
∫ ∞

x

∫ ∞

y

k(s, t)up(s, t) dtds

for x ≥ 0, y ≥ 0, where p > 1 is a constants,∫ ∞

x

b(s, y) ds < ∞,

∫ ∞

x

∫ ∞

y

k(s, t) dtds < ∞,

and
∫∞

x
b(s, y)up(s, y) ds be nonincreasing in y. Then

u(x, y) ≤
[
a1−p(x, y) + (1− p)

(∫ ∞

x

b(s, y) ds +
∫ ∞

x

∫ ∞

y

k(s, t) dtds

)](p−1)

for x ≥ 0, y ≥ 0, and (x, y) ∈ D where D = sup{(x, y)|(1 − p)(
∫∞

x
b(s, y) ds +∫∞

x

∫∞
y

k(s, t) dt ds) < a1−p(x, y)}.
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Theorem 3.3. Let u(x, y), a(x, y), b(x, y), k(x, y) be nonnegative continuous func-
tions in R2

+, and let a(x, y) be nondecreasing in x, x ≥ 0, and nonincreasing in
y, y ≥ 0. Suppose that

u(x, y) ≤ a(x, y) +
∫ x

0

b(s, y)up(s, y) ds +
∫ x

0

∫ ∞

y

k(s, t)up(s, t) dtds

for x ≥ 0, y ≥ 0, where p > 1 is a constants,∫ x

0

∫ ∞

y

k(s, t) dtds < ∞,

and
∫ x

0
b(s, y)up(s, y) ds be nonincreasing in y. Then

u(x, y) ≤
[
a1−p(x, y) + (1− p)

(∫ x

0

b(s, y) ds +
∫ x

0

∫ ∞

y

k(s, t) dtds

)](p−1)

for x ≥ 0, y ≥ 0, and (x, y) ∈ D where D = sup{(x, y)|(1 − p)(
∫ x

0
b(s, y) ds +∫ x

0

∫∞
y

k(s, t) dt ds) < a1−p(x, y)}.

4. Applications

In this section we present some immediate applications of Theorem 2.5 to study
certain properties of solutions of the following terminal value problem for the hy-
perbolic partial differential equation

uxy(x, y) = h(x, y, u(x, y)) + r(x, y),(4.1)

u(x,∞) = σ∞(x), u(∞, y) = τ∞(y), u(∞,∞) = k,(4.2)

where h : R2
+ ×R → R, r : R2

+ → R, σ∞, τ∞(y) : R+ → R are continuous functions
and k is a real constant.

The following example deals with the estimate on the solution of the partial
differential equation (4.1) with the conditions (4.2).

Example 1. Suppose that the function h in (4.1) satisfies the condition

(4.3) | h(x, y, u) |≤ k(x, y) | u |p,

and

(4.4)
∣∣∣∣σ∞(x) + τ∞(y)− k +

∫ ∞

x

∫ ∞

y

r(s, t) dtds

∣∣∣∣ ≤ a(x, y) +
∫ ∞

x

b(s, y)u(s, y) ds,
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where a(x, y), b(x, y), k(x, y) are as defined in Theorem 2.5. If u(x, y) be a solution
of (4.1) with the conditions (4.2), then it can be written as (see [1, p. 80])

(4.5) u(x, y) = σ∞(x) + τ∞(y)− k +
∫ ∞

x

∫ ∞

y

(
h(s, t, u(s, t)) + r(s, t)

)
dtds

for x, y ∈ R. From (4.3), (4.4), (4.5) we get

(4.6) |u(x, y)| ≤ a(x, y) +
∫ ∞

x

b(s, y)|u| ds +
∫ ∞

x

∫ ∞

y

k(s, t)|u|p dtds.

Now, a suitable application of Theorem 2.5 to (4.6) yields the required estimate
following

|u(x, y)| ≤ exp
(∫ ∞

x

b(τ, y) dτ

)
×

[
aq(x, y) + q

∫ ∞

x

∫ ∞

y

k(s, t) exp
(∫ ∞

s

b(τ, y) dτ

)
dtds

]1/q

(4.7)

for x ∈ [0, X), y ∈ [0, Y ), where q = 1−p, X and Y are chosen so that the expression
between [...] is positive in the subintervals [0, X) and [0, Y ). The right-hand side of
(4.7) gives us the bound on the solution u(x, y) of (4.1)-(4.2) in terms of the known
functions. Thus, if the right-hand side of (4.7) is bounded, then we assert that the
solution of (4.1)-(4.2) is bounded for x ∈ [0, X), y ∈ [0, Y ).
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