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REPRESENTATION OF MULTIVARIATE FUNCTIONS VIA THE
POTENTIAL THEORY

FLORICA-CORINA CIRSTEA AND SEVER SILVESTRU DRAGOMIR

ABSTRACT. In this paper, by the use of Potential Theory, some representation
results for multivariate functions from the Sobolev spaces WP (Q), in terms of
the double layer potential and the fundamental solution of Laplace’s equation
are pointed out. Applications for multivariate inequalities of Ostrowski type
are also provided.

1. INTRODUCTION

The following representation for an absolutely continuous function f : [a,b] — R
in terms of the integral mean is known in the literature as Montgomery identity

b
/f Yt + ot [ p(a) (0 dt, v € o]

where p : [a, b] — R, is given by

t—a fa<t<z
(1.1) p(m)—{ t—b ifx<t<b

In the last decade, many authors (see for example [2] and the references therein)
have extended the above result for different classes of functions defined on a compact
interval, including: functions of bounded variation, monotonic functions, convex
functions, n-time differentiable functions whose derivatives are absolutely continu-
ous or satisfy different convexity properties etc...and pointed out sharp inequalities
for the absolute value of the difference

D(f;x):= [ (x /f t)dt, = € la,b].

The obtained results have been applied in Approximation Theory, Numerical Inte-
gration, Information Theory and other related domains.
We have, see for instance [2, p. 2], the following Ostrowski type inequalities

|D(f; )|
e atb\2
[h( =) e-a 17 it € Lo f0,1]:
p+1] /P if f € Ly [a,b]
—x / ’ 1 ) .
S0 b () ()] om0, LAY,

1 z—oft /
A=
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2 F.-C. CIRSTEA AND S. S. DRAGOMIR

provided f is absolutely continuous and L, [a,b] (1 < r < c0) are the usual Lebesgue
spaces. The constants 7, W and % are best possible in the sense that they
cannot be replaced by smaller constants.

If the functions f : [a,b] X [¢,d] — R has the partial derivatives af(t 3)7 of(t:s)

Os
and 2 dft(dtgs) continuous on [a ,b] [¢,d], then one has the representatlon 2, p. 307]

few) = =3 _C//ftsdtds
*<b—a><d—c>/a/cp<t OI102) gy,
*_al_c/b/dq(s7 (

62
+ b= a) —c// (t,x)q(s,y) gtf‘ﬂ )dtd

for each (z,y) € [a,b] x [c, d], where p is defined by (1.1]) and g is the corresponding
kernel for the interval [c,d] .
Another representation for f : [a,b] x [¢,d] — R is [2, p. 294]

flzyy) = —/ftydt—i—i/fxs

—ﬁ//f(t,s)dtds

bfa — // (t,x)q sy)aZaf(a )dtd

for each (z,y) € [a,b] X [¢,d], provided aé;;gt;s) is continuous in [a,b] X [c,d] .

Different Ostrowski type inequalities for multivariate functions may be stated,
see Chapters 5 & 6 of [2].

In this paper, by the use of Potential Theory, some representation results for mul-
tivariate functions from the Sobolev spaces W1P(Q), where € is an open bounded
set with smooth boundary in RV, N > 2,p € (N, cc], in terms of the double layer
potential and the fundamental solution of Laplace’s equation are pointed out. Ap-

plications for multivariate inequalities of Ostrowski type are also provided.

*) dtds

2. PRELIMINARIES

For Q C RY, we denote by € its closure and by 9 the boundary of €.

By a wvector field we understand an R™-valued function on a subset of R, If
Z = (21,%2,...,2n) is a differentiable vector field on an open set Q C RY, the
divergence of Z on () is defined by

divZ = Z g;f

Proposition 1 (The Divergence Theorem). Let @ C RY be an open bounded set
with CY boundary and let Z be a vector field of class C*(2) N C(Q). Then,

/Qdin(y)dy:/ (Z(x),v(x)) do(x).

oQ
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Here, v(z) is the unit outward normal to 992 at  and do denotes the Euclidian
measure on 9. We denote by (-,-) the canonical inner product on RY x R,

If u is a differentiable function defined near 0S), we can define the normal deriv-
ative of u on 02 by

ou ou Ou ou
W (Vu,v), where Vu = gradu = (6‘1:1’ 5’:172"“’(%1\7) )

If Q is a domain for which the divergence theorem applies, then we have

Proposition 2 (Green’s first identity). Assume that u,v € C?(Q) N CY(Q). The
following holds

/Qv(x)Au(iv) dm+/Q<Vu(x),Vv(fE)>dx:/8

Let || - [[Lm (o) denote the usual norm on L™(Q), i.e.,

()22 ) do ().

v
Q

1/m
lullLm () = (/ lu(z)]™ dm) , fueLl™Q) withl <m< oo
Q

respectively
u| Loe (@) = inf{C' > 0: |u(z)| < C a.e. on Q}, ifuec L>(Q).
By Wh™(Q), 1 < m < oo, we understand the Sobolev space defined by
91, 92,-..gn € L™ () such that

1m _ m
MmO W2~ [ e, veeox@), w=TN
Q

w28 — _
o Oz
For u € WH™(Q) we define g; = 8% and we write

Vu:graduz(au Ou au).

Oz’ 9z’ day
The Sobolev space W™ (Q) is endowed with the norm

ou
8.%1'

Lm (Q)

N
[ullwrm) = lullpme@) +
=1

For x € RN and r > 0, set B.(z) = {y € RN : |z —y| < r}, where |z| = (x, z)/2.
Let E(x) define the fundamental solution of Laplace’s equation AE(z) = 0 in
RY (N >2),ie,

o Inla], v #0 (if N =2)
E(x) = o

(2 = N)wnlaz|N=2"

x#0 (if N >3)

where wy stands for the area of the unit sphere in R™. By [4, Proposition 0.7], we

know that the value of wy is
2,”.N/2
NTTNR)

where I'(s) represents the Gamma function defined for Res > 0 by

(o)
I'(s) :/ e tts T dt.
0
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Let © C RY be an open, bounded subset with C? boundary. For a continuous
function h on 0F), the double layer potential with moment h is defined as
- oF
(2.1) un(y) = [ h(z) 5~ (@ —y)do(z).
a0 v

For details about the next results, we refer to [4].

Proposition 3. If h is a continuous function on 0f), then

(a) un(y) is well defined for all y € RN,
(b) Aup(y) =0 for all y & 09.

Lemma 1 (Gauss’ Lemma). Let 0 be the double layer potential with moment h =1,

i.e.,
i) = [ Goa=ndota)
Then, we have
1 ify € Q,
By ={ 12 ifyeon,
0 ify e RN\ Q

The next result states the limits of the @y (y) (defined by (2.1)) as we approach
0% from the interior or exterior of ).

Proposition 4. Let h be continuous on 00 and yo € ). Then,

. - 1 _ . _ 1 -
(2.2) lim up(y) = sh(yo) +un(yo) and  lim  ux(y) = —5h(yo) + un(yo)-
Q3y—yo 2 RN\Q3y—yo 2

Remark 1. If h € C(09Q) then u, € C(02) N L™(Q), for each 1 < m < co.

Indeed, by Propositionsand the function ¢ : Q — R defined by ¢(y) = up(y),
Vy € Q and ¢(yo) = 3h(yo) + Un(yo), Yyo € 9N is continuous on . It follows that
ap € C(0) and ¢ € L>=(R2). But ¢ = up on § so that a, € L>(Q). Thus, for
each 1 < m < oo, we have

/ |y |™ de < ||1:Lh||Tw(Q) meas () < oo,
Q
which shows that @, € L™(Q).

3. MAIN RESULTS

Let © € RY be an open bounded set with smooth boundary and A = (a;);c; be
a finite family of points in ). -
We assume throughout that f € C(Q) N C1(Q\ A) and, for some « € (0,1),

(H) limsupM<oo7 Vie I

We adopt the following notations

1 1
fé}fdm = meas(Q)/Qf(x) dx and aﬂfdo(x) = meas (09) oo f(x)do(x).



Theorem 1. Suppose f € WLP(Q) for some p € (N, 00]. Then

(3.1) F(y) =g ly) - / (VE( —y),Vf(@)de, WyeQ
resp.,

xXr— 14 o\x 7i X)), r— i N
62 [ fa)de =5 [ @)y o5 [ (V@)ay)do, vy eRY.

Proof. Let y € Q be fixed. We first recall that, for each v € (0, N), the mapping
x|z —y|77 € LY(Q). Indeed, for r > 0 fixed so that B,.(y) CC €, we have

/ dv / dx +/ dx
ol =yl O\B,(y) [T — Y7 B,y [T —y|7

< Imeas Q) +lim / do(x) dp
7 =0 2B, (y) 17—yl

meas (§2) meas ( aB ))
- eHO/
_ meii(Q) n wjj:f[r_ - < 0.
We now define F : Q\ {y} — RY as follows
F(x) = (f(@) ~ F)VE@ —y) = LD T0 )

wylz —y|N

Note that F(x) is not smooth for all x € 2. We overcome this problem by choosing
€ > 0 small enough such that B (y) resp., Bc(a;) (a; € A\ {y}) is contained within
Q and each two such balls are disjoint. Therefore, F € C'(D.) N C(D.) where
De =Q\ (UierBe(a;) UBc(y)). Using the Divergence Theorem, we arrive at

[ aivP@de= [ ()~ 1) G- ) do)

; fla) = 1)
(3.3) - wyeN-1-a /E)Be(y) Wdo(x)
: f@) — fy)
en TN &= Y = ag) do(z).
wN iej,za:;gy /c’?B (as) elz —y|N { Y, a;) do(x)
We see that
LR B CR ) P
(3.4) lim ~—— /03 P do(z) = 0.

Indeed, in view of (H), for some constant L > 0 and € > 0 small enough, we have

9B.(y)

|z — y|*

S ENflfa

L
Sﬁ/ do(z) = Lwne® — 0 as e — 0.
e Jobu)

Notice that, for each i € I with a; # y, there exists a constant C; > 0 such that
[f (@) = f(y)| < Cile =y, Vo € Be(as)
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(since y & B.(a;)). Hence

/ M@_y,x—aﬁda(x)
OB(

elr —yNv

@)~ @),
S/a&(ai) |z —y|N-1 do ()

< CiwneN P50 ase—0,

provided ¢ € I such that a; # y. By (3.3)—(3.5)), it follows that

i [ divFa)de = [ (7(2) = 1), (@~ ) do(a)

e—0 D. 90

(3.5)

(3.6)
OFE
— [ @5 v doo) - )
oQ v
by using Gauss’ Lemma. On the other hand, for each = € D,
div F(z) = (Vf(2), VE(z — y)) + (f(x) = f(¥)) A E(z — y)
= (Vf(x), VE(z —y))

since z +— E(z — y) is harmonic on RY \ {y}. By Holder’s inequality, we obtain

V P dzx i
/| (V). V@ — )| de < L) (/Q |x_y|<N_1)p/) <o

wN

which is due to |Vf| € LP(Q) and (N — 1)p’ < N. Hence, the mapping = —
(Vf(z), VE(z — y)) is integrable on €. Thus, using (3.6) we deduce that
[ (95 VE@ — y)) do =l [ (9f(2). VE(e - ) da
Q e

F@) 9 ) do(@) — (9)
o0 v

which concludes our first assertion.

Let y € RY be arbitrary. We define G : @ — RY by G(z) = f(z)(x — y). Let
€ > 0 be small such that B.(a;) C 2, Vi € I and B(a;)NBe(a;) = 0, Vi, j € I with
i #j. Set U = Q\ (UijesBe(a;)). We have G € C'(U)NC(U,). By roposmon
we find that

/U div G(x) dx = f(:c)(:c —y,v)do(x)
Z/a x—y,x—ai>da(x).

icl Y 9Be(ai)

(3.7)

For each 7 € I, we have

/ M(x—y,ac—ai)da(av)
9B, (a;)

€

@, it
g/@B() =y, — a;)| do(a)

€

< /8 o, F@ e =l dota)
< Cill fllo (@ymeas (0B (a;))

= Ci”f”LOQ(Q)WNGN_l —0ase—0

for some constant C; > 0 that satisfies |x — y| < C;, Vo € 0Bg(a;), Yk € (0, €.



It follows that

(3.8) lim /() (x —y,x —a;)do(x) =0, Viel.

n—=% JoB.(a;) €

We see that
divG(z) =(Vf(z),z —y) + Nf(z), VrelU..
By f € C(Q) N WHP(Q) and Hélder’s inequality, we deduce f € L*(Q2) and

<Vf(w),x—y>|dxS/lef(w)l\x—yldw

<([wrra) (o= a)

1
Y

= ||Vf||Lp(Q) (/Q |;L' — y|1”/ dl‘) < Q.
Therefore,

(3.9) lim [ divG(x)dx = /Q(Vf(a:),:l: —y) —|—N/Qf(:c) dz.

e—0 U

|
Q

Passing to the limit € — 0 in (3.7)) and using (3.8]) resp., (3.9), we conclude that
[ @@+ N [ fade= [ ) pdo
Q Q o0
which proves (3.2). [

To our next aim, we recall the following results.

Lemma 2. Let Q CRY be an open set. Let (hy,) be a sequence in LP(Q), 1 < p <
oo, and let h € LP(Q) be such that ||h, — h||1» ) — 0.

Then, there exists a subsequence (hy,) and a function ¢ € LP(Q) such that

(a) hp, () — h(z) a.e. inQ,

(b) |hn, (z)] < é(x) Yk, a.e. in Q.

The interested reader may find the proof of Lemma |2/ in [I, Theorem IV.9].

Lemma 3. Suppose that Q is of class C* and let u € WHP(Q) with 1 < p < co.

Then, there exists a sequence (uy,) in C°(RYN) such that u,|q — u in WHP(Q).
In other words, the restrictions to Q0 of functions belonging to C°(RY) form a
subspace which is dense in W1P(Q).

For the proof of Lemma [3| we refer to [I, Corollary IX.8].
We are now ready to give a representation theorem of functions in any Sobolev
space W1P(Q), p € (N, o0). More precisely, we prove

Theorem 2. Let Q be an open bounded Ct set in RN, N > 2. Then, for any
g € WYP(Q) with p € (N, 00), there exists a sequence (g,) C C(RY) so that

o) = 1 [ 0.0 22— y)do(a)

(3.10)
_ /Q<VE(1; —y),Vg(x))dz a.e. ye.
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Proof. By Lemma we know that there exists a sequence g, € C2°(RY) such that
gnlo — g in WHP(Q). Hence,

gn Oy
ox; axi

=0, Vi=1,N.
Lr(Q)

nan;o\|gn|Q—g||Lp(Q) =0 and nhm ‘

Applying Lemma [2| we have that, up to a subsequence (relabelled (g,,)),
(3.11) gnlo — g a.e in Q.

Using Theorem [I] we obtain

312) 0,00 = | gale) (@ =) do(o) [ (VB0 =), Vgu(al)do, Wy,

‘We now show that

(3.13) lim [ (VE(x —y),Vg,(x))de = / (VE(x —y),Vg(x))dx, YyeQ.

Indeed, by Hélder’s inequality, we deduce

0</| (@ — y), Vgn(z) — Vg(2))| da

8E gn — 9
- ( —y) 83: “ ox; ) dx
! /P 1/
? dgn —9) [ ) !
dx . / D de
Z:I (/Q 5z " " Y) ) ( ol 0
, 1/p N
< ([ wEe-l a)
( Q 2; 8”% Lr(Q)
1 1/p N .
g(/dw) 3229 L pasn— oo
wn \Jq |z —y|N-Dp P Oz; Lr(Q)
By (3.11)—(3.13) we conclude the proof. O

4. SPECIAL CASES

A function u € C%(Q) is called harmonic in Q if it satisfies Au = 0 in Q.

The mean value theorem for harmonic functions says that the function value at
the center of the ball Br(a) C € is equal to the integral mean values over both the
surface 0Br(a) and Br(a) itself. More precisely,

Proposition 5 (Theorem 2.1 in [5]). Let u € C%(Q) N C(Q) satisfy Au = 0 in .
Then for any ball Br(a) C Q, we have

(4.1) u(a) = ﬁB ( )u(x) do(z),

(4.2) u(a) :]2 ( )u(m) dz.
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The Poisson integral formula, together with an approximation argument, gives
the representation form for harmonic functions u € C%(Bg(a)) N C(Bg(a)), that is

(see [5], pp. 20)
R? —ly—af u(z)
(4.3) u(y) = 7/ ————do(z), Yy € Bg(a).
Rwn oBr(a) 1T =yl
Moreover, we have

Proposition 6 (Theorem 2.6 in [3]). Let ¢ be a continuous function on OB. Then
the function u defined by

2 |y |2
M/ &)Nda(x), Vy € Br(a),
(4.4) u(y) = Rwn 9Br(a) [T =Yl

@(y), Vy € aBR(a)
belongs to C?(Bgr(a)) N C(Bgr(a)) and satisfies Au = 0 in Br(a).

It is now natural to ask what are the corresponding representation formulas for
functions satisfying weaker regularity assumptions and not necessarily harmonic.

To this aim, we state some consequences of Theorem [l| whose preliminary as-
sumptions are self-understood. As a common hypothesis for Corollaries we
have f € WP(Q) for some p € (N, ).

Corollary 1. For any ball Bg(a) C Q, we have
T —Yy,x —a Vilx),z—
ws  sw=[ L0 JUR N/ CECUPR
6BR(G,) BR(a)

Rwy |z —y[N wylz —yV

where y € Br(a) is arbitrary.
Using Proposition [6] and Corollary [I} we arrive at
Corollary 2. For any a € Q and R > 0 such that Br(a) C Q, we find
y—ay—x
f) =x)+ [ YEIT ) o)

9Br(a) Ron|z —y[V

_/ wdag, Vy € Br(a)
Br(a)

wylz —y|N

(4.6)

where x is the unique classical solution of the Dirichlet problem
Au =0, in Bgr(a)
u=f, on OBg(a).

Corollary 3. The following representation formula holds

1) = fyao+ [ ( C—pv) {z—zy) )f(x)do(x)

wylz—y|N  Nmeas (Q)

(R S0 9) 4 yyen wery
Q

wylz —y|N Nmeas (Q)

(4.7)

In particular, for z =y we obtain

10 = 1o+ [ (o S ) F0 — v doto)

1 1
_/Q (WN|5C?J|N ~ Nmeas (Q)> (Vf(@),x —y)dz, Vye

(4.8)
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Corollary 4. For each a € Q and R > 0 such that Bg(a) C 2, we obtain

= z)dx — x)do(x f@)(z—y,z —a) o(x
f<y>—fBR(a)f<>d 7£BR<a)f”d”+/aBR(a> RoTs v do(x)

1 /BR@ (<Vf<x>,x—y> . <Vf(x),x—a>> i,y Bafa)

wWN |z —y|N RN

The particular case y = a leads to

49 1= @ —/ . (1 - RlN> (V@) - a) d.

wN |z — a|V

resp.,

(410)  f(a)= ﬁ RCLOR 1 (Vi(@)z—a)

WN JBg(a) [z —alV

Corollary 5. An arbitrary value of f is below compared with the double layer
potential with moment f

e N\
@) ) i< SO ([ R )T we

WN

where p’ denotes the conjugate coefficient of p (i.e., 1/p+1/p" = 1). Moreover,
for y € Q fized, the equality in is established for the nmontrivial function
fl@) = £z —y| if p = oo resp., f(a) = £|lz —y|” with 3 = (p— N)/(p - 1) if
p € (N,00).

Proof. By (3.1) and Hoélder’s inequality, we have

10 i)l = | [ (7B o) Vtepa] = | [ 2T,

1 - 1
LN NTCEA 10V P Wy 7 {CO T
WN Jo |z —yl wn Jo lz =yl

1 1/p dx 1/17/
I p -
o (mrere) (=)

_ ||foLP(Q) / dz 1/p’
wN o |z —y|V=1P '

Let y € Q be fixed. We define f;‘fy :Q— R by

+ :t|$—y‘7 lfp:OO
p,y( ): p=—N .
tlx—y|r1, ifpe (N, 0).

IN

Clearly, we have f¥, € C(Q). Moreover, ff, € C*(Q\ {y}) and

:I:%, Ve e Q\{y}, ifp=cc
-y
(4.12)  VfE,(x) = N _
Y + P Y VaeQ\{y}, ifpe (N, oo).
P gy
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Since C(Q) C LP(R), we infer that f, € WP(Q) and
1, ifp=o0

va;a:y(m)HLP(Q) =yYp—N / dz
p—1 Qv —y| V-1’

It follows that the right hand side (RHS) of (£.11)) for f, is

1 ( dx ) i
— — ], ifp=00
wn \Jq |z —y[N-1

p—N dx .
, ifpe (N, o00).
wn(p—1) /sz o — gV B P (N, 00)

By (3.1) and (4.12)), we have that the left hand side (LHS) of (4.11) for pjfy is

1/p
) , ifp e (N,o00).

(4.13) RHS =

(x =y, VI, ()
LHS:/VEx— JVIE (2 dx:/ PY L dx
B v e o] = | [ e
1 dz
(4.14) </ > if p = 0o
B PTAVATETL ) A
p—N dx .
oD T € (e

Using (4.13) and (4.14) we obtain equality in (4.11) for f(z) = Zf[y(x) O

Corollary 6. For a € Q and R > 0 such that B = Br(a) C Br(a) C Q, we have

1

(4.15) 'f(a) —§ @) dota)

oB

e (RN N
Swy No(N—1p IV fllzem) -

Moreover, the constant is sharp and the function f(x) = +|z — a| if p = oo resp.,
f(x) = £|z — a|®P=N/®=D 4f p € (N, 00) achieves the equality.

Proof. Note that f € C(B) N CYB\ A;) resp., f € WHP(B) with p € (N, ).
Therefore, we can apply Corollary [5] with y = a and 2 = B. More precisely,

10 |10~ [ 0% aote| < oo ([ e 3T

where the equality holds for f(x) = +|z—y| if p = co and f(z) = +|z—y|P~N)/(P=1)

if p € (N, 00).
Notice that, for each x € 0B, we have
ok T—a T —a
Zr—a)= (VE(x — =
(@ =) = (VE(z = o). v(o)) = ("o =0

_ 1 _ 1
~ wylr—alN-1 wyRN-L

= meas (0B).

It follows that

(4.17) (:v)iE (z —a)do(z) = m

0B ov

f(z)do(z) = f(z)do(x).
OB

0B
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On the other hand,

/ da _/R / do(x) p
sl —a ™07 = o \ o, Iz — a0 |

(4.18) /R 1 / (@) BunpN 1
: - S do(z) | dp = / NP g
o \pV-bp 8B, (a) o pWN-bp

wNRN—(N—l)p/

S N-(N-1)p
Replacing (4.17) and (4.18]) in (4.16]) we obtain (4.15]). O

Corollary 7. The following identities hold

[arway= [ ae-s)do) - 5 [ (Vi)

(4.19) N Joa ¢

+/Q (/Q(VE(:E - y),Vf(x))dm) dy, VzeRN
resp.,
@) [ G =g [ e+ [ da)

where we define

((z) = Qlaltrgz Q<VE(£U —t),Vf(x)ydx, for each z € 9.

Remark 2. Note that ¢ is well defined because of (2.2) and (3.1)).

Proof. By virtue of Remark uy € LY(2). Obviously, f € L'(Q) since f € C(Q)
and 2 is bounded. Therefore, we can integrate (3.1)) over € to obtain

|iwar= [ awan- [ ( | B~ y>,Vf<x>>dx) dy.

Using now (3.2)), we arrive at (4.19).

Let z € 012 be arbitrary. By the continuity of f on Q and Proposition 3, we find

Jm 1) - asw) = 1 iy ),
Combining this with , we derive that
(4.21) f(z) =2uy(2z) — 2((z), Vze .

By Remark 1, u¢(z) € C(052). Hence integrating (4.21)) over 00 we find (4.20). O

Corollary 8 (Gauss’ Lemma extension). Assume f € WYP(Q), for some p €
[1,00]. Then the following representation holds

f(y)-i—/g(VE(a:—y),Vf(x))dm, Yy €, if p € (N,o0,
(4.22)  ay(y) =< Cw) + f(y)/2, VYye I, ifpe (N,o0,

/Q(VE(xfy),Vf(x»dx, Yy e RV\Q, Vpe[l, .
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Proof. In view of (3.1)) and (4.21]), we need only to show that
@2)  G) = [ (VE@=y). Vi) dn Yy eRN\D Vpe Lol

Q

For y € RV \ Q fixed, we define the vector field Z :  — R¥ by

f(z) a
m(m—y), Va € (L.

Z(z) = f(x)VE(x —y) =

Clearly, Z € C'(Q\ A) N C(Q). Let € > 0 be fixed such that Bc(a;) C Q, Vi € I
and B.(a;) N Be(a;) =0, Vi,j € I with i # j. We denote Q¢ := Q\ (UjerBe(a;)).
By applying Proposition |1l for Z : Q. — RY, we obtain

| avz@yds = [ )5 - v doto)

2/83 (ai) €|33 — y|N<x —y, v — a;) do(z).

Since y ¢ Q, for each i € I, there exists a constant M; > 0 such that
|z —y| > M;, Ve dBj(a;), Vje(0,¢.

(4.24)

Hence, for each i € I, we have

Lx)(x—yw—ai}do(x) < / Mda(x)
(4.25) (a;) ez —yV 9B (a;) lz —y|N -1
< M= 9B. W[ fllzee(@) n-1 ‘
< UM as (0Bc(a;)) = T € — 0 ase—0.
By (4.24) and (4.25)), it follows that
E
(4.26) llj{g} A div Z(z) dx = f( )(?)y( —y)do(x).

Since x — E(x — y) is harmonic on RN \ {y}, we find that
divZ(z) = (Vf(z), VE(z —y)) + f(2) Az E(z —y)
= (Vf(z),VE(x —y)), VzeQ.

We define ¥(z) = |z — y|'~, for each z € Q. Since y € Q, we have ¥ € C(Q) so
that ¥ € L™(Q), Ym € [1,00]. By Holder’s inequality, we infer that

(4.27)

1
(4.28) /Q|<Vf(f17)7VE(I*y)>|dw < Ellvfl\mm)ll\l’lhv'm) < oo, Vpe€[l,00]

From (4.26)—(4.28)), we conclude (4.23]). O

Proposition 7. If Q is an open bounded set with C* boundary and f € C*(Q) N
CH(Q) such that Af € C(Q), then

/Q (VE(@ - ), Vi@)de = [ @B - y)dox)

850 ov

(4.29)
- / Af(x)E(x —y)dz, Yy RN\ 0N,
Q
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Proof. If y € RV \ Q, then follows by Proposition [2] (since x — E(z — y)
belongs to C?(Q) N CY(Q)).

For y € ) fixed, we choose € > 0 such that B.(y) C Q. By Proposition (applied
on 2\ Bc(y)), we find

| s@ee-yar= [ @ -y dot)
(4.30) \Be(y) o

of
e G o [ (V5@ VB )

Since © — Af(z)E(z — y) is integrable on 2, we have
(4.31) / Af(x —y)dr = lim Af(z)E(x —y) dz.
~0Ja\B.w)

On the other hand, using f € C1(2), we deduce (as in the proof of Theorem
that x — (V f(z), VE(x — y)) is integrable on . It follows that

(4.32) / (Vf(z),VE(z —y))dz = lim (Vf(z),VE(z —y)) dx.
Q =0 Ja\B.(y)

Our next step is to prove that

(4.33) lim o1
=0 JaB. () v

Indeed, if N = 2, then we have

[ Lwra-ydw)
OBc(y)

- (2)E(x —y) do(z) = 0.

1
)| g e = ] do(z)

of
= /BBe(y) 81/( )

< —Celoge -0 ase—0
af 1

<
- /835(31 EoA wy(N = 2)|z —y|N—2

meas (0B, (y))
N2

resp., if N > 2 then

/ U (VB — y) do(z)
o

B.(y) 31/

do(x)

<C

=Cwnye—0 ase—0

where, in both cases, C' denotes a positive constant.

Passing to the limit ¢ — 0 in (4.30)) and using (4.31))—(4.33]), we obtain (4.29). O

Remark 3. Under the assumptions of Proposition[7] Corollary [§]leads to the Green—
Riemann representation formula (see [4, §2.4])

f) = [ 1) @-pdot@) - [ @pe -yt

oQ o Ov
+/ Af(zx)E(x —y) dx, Yy € Q
Q

and
OF > af
E1e) 61/

+ | Af(z)E(x —y) dz, Yy € RV \ Q.

(z)E(z —y) do(x)
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Moreover, if OQ is smooth enough (at least C?), then

fly)=2 (x)a—E(x —y)do(z) —2 lim (VE(z —t),Vf(z))dx, Vye .
o0 ov Q3t—y Jo
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