

On Carleman-Type Inequalities

This is the Published version of the following publication

Gao, Peng (2003) On Carleman-Type Inequalities. RGMIA research report collection, 6 (3).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17838/

ON CARLEMAN-TYPE INEQUALITIES

PENG GAO

ABSTRACT. We give a weighted version of an inequality of Redheffer, which he used to treat Carleman's inequality. We then apply the result to get some new Carleman-type Inequalities.

1. INTRODUCTION

Throughout let $\mathbf{a} = (a_n)_{n \ge 1}$ be a nonnegative sequence with $\sum_{n=1}^{\infty} a_n < \infty$. Let $\Lambda_n = \sum_{i=1}^n \lambda_i$, $\lambda_i > 0$ and $G_n = (\prod_{i=1}^n a_i^{\lambda_i})^{1/\Lambda_n}$. The Carleman inequality asserts that

$$\sum_{n=1}^{\infty} (\prod_{k=1}^{n} a_k)^{\frac{1}{n}} \le e \sum_{n=1}^{\infty} a_n.$$

We refer the reader to the survey article [6] and the references therein for an account of Carleman's inequality. Among the various generalizations of Carleman's inequality, we mention the result of E. Love, who proved for $\alpha > 0, \beta \ge 1, \lambda_i = i^{\alpha} - (i-1)^{\alpha}$,

(1.1)
$$\sum_{n=1}^{\infty} n^{\beta} (\prod_{i=1}^{n} a_{i}^{i^{\alpha} - (i-1)^{\alpha}})^{1/n^{\alpha}} \le e^{\frac{\beta+1}{\alpha}} \sum_{n=1}^{\infty} n^{\beta} a_{n}$$

and the constant $e^{\frac{\beta+1}{\alpha}}$ is best possible.

A remarkable proof of Carleman's inequality was given by R.Redheffer in [7] by developing the method of "recurrent inequalities". Another proof was given by him in [8] and his result has been generalized by H.Alzer[1] and most recently by J. Pečarić and K. Stolarsky[6], who proved for $b_n > 0, N \ge 1$,

$$\sum_{n=1}^{N} \Lambda_n (b_n - 1) G_n + \Lambda_N G_N \le \sum_{n=1}^{N} \lambda_n G_n b_n^{\Lambda_n / \lambda_n}.$$

It's our goal in this paper to give another weighted version of Redheffer's treatment of Carleman's inequality and use it to get some new Carleman-type Inequalities.

2. Lemmas

Lemma 2.1. Let $\Lambda_k = \sum_{i=1}^k \lambda_i$, $\lambda_i > 0$ and $G_k = (\prod_{i=1}^k a_i^{\lambda_i})^{1/\Lambda_k}$, then for $\mu_i > 0, n \ge 2$,

(2.1)
$$G_1 + \sum_{i=2}^{n-1} \left(\frac{\Lambda_i \mu_i}{\lambda_i} - \frac{\Lambda_i}{\lambda_{i+1}}\right) G_i + \frac{\Lambda_n \mu_n}{\lambda_n} G_n \le \left(1 + \frac{\Lambda_1}{\lambda_2}\right) a_1 + \sum_{i=2}^n \mu_i^{\frac{\Lambda_i}{\lambda_i}} a_i.$$

Proof. This is essentially due to R.Redheffer[7]. We note for $k \ge 2, \mu > 0, \eta > 0$,

$$\mu G_k - \eta a_k = G_{k-1}(\mu t - \eta t^{\frac{\Lambda_k}{\lambda_k}}) \le G_{k-1}(\frac{\Lambda_{k-1}}{\lambda_k})\eta^{\frac{-\lambda_k}{\Lambda_{k-1}}}(\frac{\mu\lambda_k}{\Lambda_k})^{\frac{\Lambda_k}{\Lambda_{k-1}}},$$

Date: July 22, 2003.

¹⁹⁹¹ Mathematics Subject Classification. Primary 26D15.

Key words and phrases. Carleman's inequality, recurrent inequality.

PENG GAO

where $t^{\frac{\Lambda_k}{\lambda_k}} = a_k/G_{k-1}$ (compare this with the one on page 686 of [7]). By setting $\mu_k \Lambda_k/\lambda_k = \mu, \eta_k = \eta = \mu_k^{\Lambda_k/\lambda_k}$, we get

(2.2)
$$\frac{\Lambda_k \mu_k}{\lambda_k} G_k - a_k \mu_k^{\frac{\Lambda_k}{\lambda_k}} \le \frac{\Lambda_{k-1}}{\lambda_k} G_k.$$

The lemma then follows by adding (2.2) for $2 \le k \le n$ and $G_1 = a_1$ together. Lemma 2.2. Let $f(x) \in C^3[a, b]$ and $f'''(x) \ge 0$ for $x \in [a, b]$. Then

(2.3)
$$f(b) - f(a) \ge f'(\frac{a+b}{2})(b-a).$$

Proof. By Taylor's expansion,

$$f(b) = f(\frac{a+b}{2}) + f'(\frac{a+b}{2})(b - \frac{a+b}{2}) + f''(\eta_1)(a-b)^2/4,$$

$$f(a) = f(\frac{a+b}{2}) + f'(\frac{a+b}{2})(a - \frac{a+b}{2}) + f''(\eta_2)(a-b)^2/4,$$

where $a < \eta_2 < (a+b)/2 < \eta_1 < b$. The lemma then follows by noticing $f'''(x) \ge 0$ for $x \in [a, b]$. \Box

3. The Main Results

Theorem 3.1. Assume the same conditions in Lemma 2.1 and let f(x) be a real valued function defined for $x \ge 2$ such that $f(n) = \Lambda_n / \lambda_n$ for $n \ge 2$ and $0 \le f(x+1) - f(x) \le 1/\alpha$ for some $\alpha > 0$. If $(1 + \frac{\Lambda_1}{\lambda_2}) \le e^{1/\alpha}$ for the same α then

(3.1)
$$\sum_{n=1}^{\infty} (\prod_{i=1}^{n} a_i^{\lambda_i})^{1/\Lambda_n} \le e^{1/\alpha} \sum_{n=1}^{\infty} a_n$$

Proof. It suffices to prove the theorem for any integer $n \ge 2$. Set $\mu_i = f(i+1)/f(i)$ in Lemma 2.1 we get

$$\sum_{i=1}^{n} G_i \le \sum_{i=1}^{n-1} G_i + f(n+1)G_N \le (1 + \frac{\Lambda_1}{\lambda_2})a_1 + \sum_{i=2}^{n} a_i(1 + \frac{f(i+1) - f(i)}{f(i)})^{f(i)} \le e^{1/\alpha} \sum_{n=1}^{\infty} a_n,$$

by the conditions of the theorem and this completes the proof.

Apply Theorem 3.1 to $\lambda_1 = 1, \lambda_i = \alpha^{i-1} - \alpha^{i-2}, i \ge 2$ for some $\alpha > 1$, then $f(x) = \alpha/(\alpha - 1)$ and we get

Theorem 3.2. For $\alpha > 1$,

(3.2)
$$\sum_{n=1}^{\infty} (a_1 \prod_{k=2}^{n} a_k^{\alpha^{k-1} - \alpha^{k-2}})^{1/\alpha^{n-1}} \le (1 + \frac{1}{\alpha - 1})a_1 + \sum_{n=2}^{\infty} a_n$$

Apply Theorem 3.1 to $\lambda_i = \alpha^i, i \ge 1$ for some $\alpha > 0$, then $f(i+1) - f(i) = \alpha^{-i}$ and we get

Theorem 3.3. For $\alpha > 0, \sum_{n=1}^{\infty} e^{1/\alpha^n} a_n < \infty$,

(3.3)
$$\sum_{n=1}^{\infty} (\prod_{k=1}^{n} a_k^{\alpha^{k-1}})^{(\alpha^n-1)/(\alpha-1)} \le (1+\frac{1}{\alpha})a_1 + \sum_{n=2}^{\infty} e^{1/\alpha^n} a_n \le \sum_{n=1}^{\infty} e^{1/\alpha^n} a_n$$

The λ_i 's in Theorems 3.2-3.3 are of the "exponential" type and now we consider the cases where the λ_i 's are of the "polynomial" type.

Theorem 3.4. For $\alpha \geq 2$,

(3.4)
$$\sum_{n=1}^{\infty} (\prod_{k=1}^{n} a_k^{k^{\alpha} - (k-1)^{\alpha}})^{1/n^{\alpha}} \le e^{1/\alpha} \sum_{n=1}^{\infty} a_n$$

Proof. Apply Theorem 3.1 with $\lambda_i = i^{\alpha} - (i-1)^{\alpha}$, $f(x) = x^{\alpha}/(x^{\alpha} - (x-1)^{\alpha})$, $x \ge 2$. Note for $\alpha \ge 1$,

$$1 + \frac{1}{2^{\alpha} - 1} \le 1 + \frac{1}{\alpha} \le e^{1/\alpha}.$$

And $f(i+1) - f(i) = f'(\xi), 2 \le i < \xi < i+1$, with

$$0 < f'(\xi) = \frac{\alpha \xi^{\alpha - 1} (\xi - 1)^{\alpha - 1}}{(\xi^{\alpha} - (\xi - 1)^{\alpha})^2} \le \frac{1}{\alpha},$$

where the last inequality follows from Lemma 2.2 and the arithmetic-geometric inequality, since for $\alpha \geq 2$,

$$\xi^{\alpha} - (\xi - 1)^{\alpha} \ge \alpha (\frac{\xi + (\xi - 1)}{2})^{\alpha - 1} \ge \alpha (\xi (\xi - 1))^{(\alpha - 1)/2}.$$

roof.

This completes the proof.

We note the theorem implies (1.1) for $\alpha \geq 2$ (see page 40 in [2]), and one should also be able to improve the range of α in the theorem.

Let [x] denote the largest integer not exceeding the real number x. For $x > 1, \alpha \ge 0$, we define $[x]^{\alpha-1}f(x) = \int_{1^-}^x t^{\alpha-1}d[t] = \lim_{\epsilon \to 0} \int_{1-\epsilon}^x t^{\alpha-1}d[t]$. Note for any integer $n \ge 2$, $f(n) = \sum_{i=1}^n i^{\alpha-1}n^{\alpha-1}$. Apply Theorem 3.1 with this f(x), $\lambda_i = i^{\alpha-1}$ and note $1 + \frac{1}{2^{\alpha-1}} \le 1 + 1/\alpha \le e^{1/\alpha}$ for $\alpha \ge 2$ and for $\alpha = 2$, f(n) = (n+1)/2 for $\alpha = 3$, f(n) = (n+1)(2n+1)/6n; for $\alpha = 4$, $f(n) = (n+1)^2/4n$. In either case, one verifies directly $f(i+1) - f(i) \le 1/\alpha$ which gives for $\alpha = 2, 3, 4$,

(3.5)
$$\sum_{n=1}^{\infty} (\prod_{i=1}^{n} a^{i^{\alpha-1}})^{1/\sum_{i=1}^{n} i^{\alpha-1}} \le e^{\frac{1}{\alpha}} \sum_{n=1}^{\infty} a_n.$$

We don't know in this case whether $f(i+1) - f(i) \leq 1/\alpha$ holds in general. The case i = 1 implies it is necessary to have $\alpha \geq 2$. We note here by a result of G.Bennett and G. Jameson, we know $f(i+1)/(i+2) \leq f(i)/(i+1)$ (Proposition 2, 4]). Hence $f(i+1) - f(i) \leq f(i)/(i+1) \leq (1+2^{\alpha-1})/(3 \cdot 2^{\alpha-1})$ for $i \geq 2$.

Now we let $p \neq 0$, $\frac{1}{p} + \frac{1}{q} = 1$ and let l^p be the Banach space of all complex sequences $\mathbf{a} = (a_n)_{n \geq 1}$ with norm

$$||\mathbf{a}|| := (\sum_{n=1}^{\infty} |a_n|^p)^{1/p} < \infty.$$

Corresponding to inequalities (3.4) and (3.5), we have the following

(3.6)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n^{\alpha}} \sum_{i=1}^{n} (i^{\alpha} - (i-1)^{\alpha}) |a_i|\right)^p \leq \left(\frac{\alpha p}{\alpha p - 1}\right)^p \sum_{n=1}^{\infty} |a_n|^p$$

(3.7)
$$\sum_{n=1}^{\infty} \left(\frac{1}{\sum_{i=1}^{n} i^{\alpha-1}} \sum_{i=1}^{n} i^{\alpha-1} |a_i|\right)^p \leq \left(\frac{\alpha p}{\alpha p - 1}\right)^p \sum_{n=1}^{\infty} |a_n|^p$$

These two inequalities were announced to hold(see [2], page 40-41 and [3], page 407)whenever $\alpha > 0, p > 0, \alpha p > 1$. Replacing $|a_i|$ with $|a_i|^{1/p}$ and making $p \to \infty$ in (3.6), (3.7) gives back (3.4) and (3.5) respectively. It is thus interesting to ask whether one can apply Redheffer's method to give a proof of (3.6) and (3.7).

PENG GAO

References

- [1] H. Alzer, On Carleman's inequality, Portugal. Math., 50 (1993), 331–334.
- [2] G. Bennett, Factorizing the classical inequalities, Mem. Amer. Math. Soc., **120** (1996), 1–130.
- [3] G. Bennett, Inequalities complimentary to Hardy, Quart. J. Math. Oxford Ser. (2), 49 (1998), 395–432.
- [4] G.Bennett and G. Jameson, Monotonic averages of convex functions, J. Math. Anal. Appl., 252 (2000), 410-430.
- [5] E. Love, Inequalities related to Carleman's inequality, Inequalities (Birmingham, 1987), 135–141, Lecture Notes in Pure and Applied Mathematics vol. 129, Dekker, New York, 1991.
- [6] J. Pečarić and K. Stolarsky, Carleman's inequality: history and new generalizations, Aequationes Math., 61 (2001), 49–62.
- [7] R.M. Redheffer, Recurrent inequalities, Proc. London Math. Soc. (3), 17 (1967), 683-699.
- [8] R.M. Redheffer, Easy proofs of hard inequalities, General inequalities 3 (ed. E.F.Beckenbach and W.Walter), 123-140, Birkhaäuser Verlag, Basel, 1983.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109 *E-mail address*: penggao@umich.edu