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ON CARLEMAN-TYPE INEQUALITIES

PENG GAO

Abstract. We give a weighted version of an inequality of Redheffer, which he used to treat Car-
leman’s inequality. We then apply the result to get some new Carleman-type Inequalities.

1. Introduction

Throughout let a = (an)n≥1 be a nonnegative sequence with
∑∞

n=1 an < ∞. Let Λn =
∑n

i=1 λi,
λi > 0 and Gn = (

∏n
i=1 aλi

i )1/Λn . The Carleman inequality asserts that
∞∑

n=1

(
n∏

k=1

ak)
1
n ≤ e

∞∑
n=1

an.

We refer the reader to the survey article [6] and the references therein for an account of Carleman’s
inequality. Among the various generalizations of Carleman’s inequality, we mention the result of
E. Love, who proved for α > 0, β ≥ 1, λi = iα − (i− 1)α,

(1.1)
∞∑

n=1

nβ(
n∏

i=1

a
iα−(i−1)α

i )1/nα ≤ e
β+1

α

∞∑
n=1

nβan,

and the constant e
β+1

α is best possible.
A remarkable proof of Carleman’s inequality was given by R.Redheffer in [7] by developing the

method of ”recurrent inequalities”. Another proof was given by him in [8] and his result has been
generalized by H.Alzer[1] and most recently by J. Pečarić and K. Stolarsky[6], who proved for
bn > 0, N ≥ 1,

N∑
n=1

Λn(bn − 1)Gn + ΛNGN ≤
N∑

n=1

λnGnbΛn/λn
n .

It’s our goal in this paper to give another weighted version of Redheffer’s treatment of Carleman’s
inequality and use it to get some new Carleman-type Inequalities.

2. Lemmas

Lemma 2.1. Let Λk =
∑k

i=1 λi, λi > 0 and Gk = (
∏k

i=1 aλi
i )1/Λk , then for µi > 0, n ≥ 2,

(2.1) G1 +
n−1∑
i=2

(
Λiµi

λi
− Λi

λi+1
)Gi +

Λnµn

λn
Gn ≤ (1 +

Λ1

λ2
)a1 +

n∑
i=2

µ
Λi
λi
i ai.

Proof. This is essentially due to R.Redheffer[7]. We note for k ≥ 2, µ > 0, η > 0,

µGk − ηak = Gk−1(µt− ηt
Λk
λk ) ≤ Gk−1(

Λk−1

λk
)η

−λk
Λk−1 (

µλk

Λk
)

Λk
Λk−1 ,
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where t
Λk
λk = ak/Gk−1(compare this with the one on page 686 of [7]). By setting µkΛk/λk = µ, ηk =

η = µ
Λk/λk

k , we get

(2.2)
Λkµk

λk
Gk − akµ

Λk
λk
k ≤ Λk−1

λk
Gk.

The lemma then follows by adding (2.2) for 2 ≤ k ≤ n and G1 = a1 together. �

Lemma 2.2. Let f(x) ∈ C3[a, b] and f ′′′(x) ≥ 0 for x ∈ [a, b]. Then

(2.3) f(b)− f(a) ≥ f ′(
a + b

2
)(b− a).

Proof. By Taylor’s expansion,

f(b) = f(
a + b

2
) + f ′(

a + b

2
)(b− a + b

2
) + f ′′(η1)(a− b)2/4,

f(a) = f(
a + b

2
) + f ′(

a + b

2
)(a− a + b

2
) + f ′′(η2)(a− b)2/4,

where a < η2 < (a+b)/2 < η1 < b. The lemma then follows by noticing f ′′′(x) ≥ 0 for x ∈ [a, b]. �

3. The Main Results

Theorem 3.1. Assume the same conditions in Lemma 2.1 and let f(x) be a real valued function
defined for x ≥ 2 such that f(n) = Λn/λn for n ≥ 2 and 0 ≤ f(x+1)−f(x) ≤ 1/α for some α > 0.
If (1 + Λ1

λ2
) ≤ e1/α for the same α then

(3.1)
∞∑

n=1

(
n∏

i=1

aλi
i )1/Λn ≤ e1/α

∞∑
n=1

an.

Proof. It suffices to prove the theorem for any integer n ≥ 2. Set µi = f(i + 1)/f(i) in Lemma 2.1
we get

n∑
i=1

Gi ≤
n−1∑
i=1

Gi + f(n + 1)GN ≤ (1 +
Λ1

λ2
)a1 +

n∑
i=2

ai(1 +
f(i + 1)− f(i)

f(i)
)f(i) ≤ e1/α

∞∑
n=1

an,

by the conditions of the theorem and this completes the proof. �

Apply Theorem 3.1 to λ1 = 1, λi = αi−1 − αi−2, i ≥ 2 for some α > 1, then f(x) = α/(α − 1)
and we get

Theorem 3.2. For α > 1,

(3.2)
∞∑

n=1

(a1

n∏
k=2

aαk−1−αk−2

k )1/αn−1 ≤ (1 +
1

α− 1
)a1 +

∞∑
n=2

an.

Apply Theorem 3.1 to λi = αi, i ≥ 1 for some α > 0, then f(i + 1)− f(i) = α−i and we get

Theorem 3.3. For α > 0,
∑∞

n=1 e1/αn
an < ∞,

(3.3)
∞∑

n=1

(
n∏

k=1

aαk−1

k )(α
n−1)/(α−1) ≤ (1 +

1
α

)a1 +
∞∑

n=2

e1/αn
an ≤

∞∑
n=1

e1/αn
an.

The λi’s in Theorems 3.2-3.3 are of the ”exponential” type and now we consider the cases where
the λi’s are of the ”polynomial” type.
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Theorem 3.4. For α ≥ 2,

(3.4)
∞∑

n=1

(
n∏

k=1

a
kα−(k−1)α

k )1/nα ≤ e1/α
∞∑

n=1

an.

Proof. Apply Theorem 3.1 with λi = iα − (i − 1)α, f(x) = xα/(xα − (x − 1)α), x ≥ 2. Note for
α ≥ 1,

1 +
1

2α − 1
≤ 1 +

1
α
≤ e1/α.

And f(i + 1)− f(i) = f ′(ξ), 2 ≤ i < ξ < i + 1, with

0 < f ′(ξ) =
αξα−1(ξ − 1)α−1

(ξα − (ξ − 1)α)2
≤ 1

α
,

where the last inequality follows from Lemma 2.2 and the arithmetic-geometric inequality, since for
α ≥ 2,

ξα − (ξ − 1)α ≥ α(
ξ + (ξ − 1)

2
)α−1 ≥ α(ξ(ξ − 1))(α−1)/2.

This completes the proof. �

We note the theorem implies (1.1) for α ≥ 2(see page 40 in [2]), and one should also be able to
improve the range of α in the theorem.

Let [x] denote the largest integer not exceeding the real number x. For x > 1, α ≥ 0, we
define [x]α−1f(x) =

∫ x
1− tα−1d[t] = limε→0

∫ x
1−ε tα−1d[t]. Note for any integer n ≥ 2, f(n) =∑n

i=1 iα−1nα−1. Apply Theorem 3.1 with this f(x), λi = iα−1 and note 1 + 1
2α−1 ≤ 1 + 1/α ≤ e1/α

for α ≥ 2 and for α = 2, f(n) = (n + 1)/2 for α = 3, f(n) = (n + 1)(2n + 1)/6n; for α = 4,
f(n) = (n + 1)2/4n. In either case, one verifies directly f(i + 1) − f(i) ≤ 1/α which gives for
α = 2, 3, 4,

(3.5)
∞∑

n=1

(
n∏

i=1

aiα−1
)1/

∑n
i=1 iα−1 ≤ e

1
α

∞∑
n=1

an.

We don’t know in this case whether f(i + 1) − f(i) ≤ 1/α holds in general. The case i = 1
implies it is necessary to have α ≥ 2. We note here by a result of G.Bennett and G. Jameson, we
know f(i + 1)/(i + 2) ≤ f(i)/(i + 1)(Proposition 2, 4]). Hence f(i + 1) − f(i) ≤ f(i)/(i + 1) ≤
(1 + 2α−1)/(3 · 2α−1) for i ≥ 2.

Now we let p 6= 0, 1
p + 1

q = 1 and let lp be the Banach space of all complex sequences a = (an)n≥1

with norm

||a|| := (
∞∑

n=1

|an|p)1/p < ∞.

Corresponding to inequalities (3.4) and (3.5), we have the following
∞∑

n=1

(
1
nα

n∑
i=1

(iα − (i− 1)α)|ai|)p ≤ (
αp

αp− 1
)p

∞∑
n=1

|an|p,(3.6)

∞∑
n=1

(
1∑n

i=1 iα−1

n∑
i=1

iα−1|ai|)p ≤ (
αp

αp− 1
)p

∞∑
n=1

|an|p.(3.7)

These two inequalities were announced to hold(see [2], page 40-41 and [3], page 407)whenever
α > 0, p > 0, αp > 1. Replacing |ai| with |ai|1/p and making p →∞ in (3.6), (3.7) gives back (3.4)
and (3.5) respectively. It is thus interesting to ask whether one can apply Redheffer’s method to
give a proof of (3.6) and (3.7).
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