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ON QUASI CONVEX FUNCTIONS AND HADAMARD’S
INEQUALITY

K.-L. TSENG, G.-S. YANG, AND S.S. DRAGOMIR

ABSTRACT. In this paper we establish some inequalities of Hadamard’s type
involving Godunova-Levin functions, P-functions, quasi-convex functions, J-
quasi-convex functions, Wright-convex functions and Wright-quasi-convex func-
tions.

1. INTRODUCTION

If f:[a,b] — R is a convex function, then the inequality

(1) TCOE bia/abf(x)dmw,

is known in the literature as Hadamard’s inequality.

For some results which generalize, improve, and extend this famous integral
inequality see [1]-[10], [13]-[15], [18]-[21].

Let I be an interval in R, and a,b € I with a < b. We recall some definitions
and theorems from the standpoint of abstract convexity.

Definition 1. (see [8, 11, 12, 13]) We say that f : I — R is a Godunova-Levin
function, or that f belongs to the class Q(I), if f is nonnegative and for all x,y € I
and X € (0,1), we have

f(

z)  f)

A + 1-X

Definition 2. (see [8, 11, 12, 14]) We say that f : I — R is a P—function, or that
f belongs to the class P(I), if f is nonnegative and for all x,y € I and X € [0, 1],

we have

fAz+(1-Ay) <

fQz+ (1= Ny) < f(z) + fy)

Dragomir, Pecari¢ and Persson [8] proved the following two theorems concerning
Hadamard type inequalities.

Theorem 1. Let f € Q(I) N Li[a,b]. Then
a b
(1.2) f< ;b> (b—a) §4/ flz)de,

and

b —T)\r—a a
(1.3) / Wf(m)dm < W(b —a).
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The constant 4 in (1.2) is the best possible.
Theorem 2. Let f € P(I)N Ly[a,b]. Then

b
wy () e-a <2 [ f@a <200+ 0] 0o

Both inequalities are the best possible.

Recall some other cpncepts of convexity.

Definition 3. (see [16, pp. 228-233]) We say that f : I — R is a quasi-convex
function, or that f belongs to the class QC(I), if, for all x,y € I and X\ € [0, 1], we
have

fz 4+ (1= N)y) < max(f(z), f(y))-

Definition 4. (see [9]) We say that f : I — R is a J-quasi-convez function, or
that f belongs to the class JQC(I), if, for all z,y € I, we have

£(%5Y) < max(sa). £

Definition 5. (see [9, 17]) We say that f: I — R is a Wright-convez function, or
that f belongs to the class WC(I), if, for allx,y+6 € I with x <y and § > 0, we
have

fl@+06)+ fly) < fly+0)+ f(z).

Definition 6. (see [9]) We say that f: I — R is a Wright-quasi-convez function,
or that f belongs to the class WQC(I), if, for allx,y+ 3§ € I withx <y and § >0
we have

;ﬂx+@+f@ngmwuu»ﬂy+®»

Dragomir and Pearce [9] proved the following two theorems providing Hadamard
type inequalities for the functions involved:

Theorem 3. Let f € JQC(I)N Ly[a,b]. Then

b
(15) f(“jb)w—a>s/’ﬂ@mx+nmmw—ax
where
1 1
(1.6) I(a,b) = 5/0 F(ta+ (1= 0)b) — F((1 = t)a + th)] dt.

1 b
Further, I(a,b) satisfies the inequalities
(L.7)  0<I(a,d)

1 . b 1 b ) 3
< gt [tan g (00 [ peus - awn)
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where
(1.8) J(a,b) := (b—a)? /1 flta+ (1 —H)b)f((1 —t)a + tb)dt
bo
=(b- a)/ f@) fla+b—z)dz.
Theorem 4. Let f € WQC(I)N Liy]a,b]. Then

b
(1.9) / f(@)dz < max{f(a), F(B)}b - a).

In this paper, we shall establish some generalizations of Theorem 1-4 for weighted
integrals.

MAIN RESULTS

Throughout this section, let s : [a,b] — R be non-negative, integrable and sym-
metric to %*b and let p : [a,b] — R be non-negative integrable with

(1.10) p(z) :p(b;a+m> (a;e [a,a;bD.

The following result holds.

Theorem 5. Let f € Q(I)N Li[a,b]. Then

b b
(1.11) f(a;b>/ s(a:)d:vgél/ f(x)s(x)de
and
bb—x)(zr—a a b
(1.12) / Wf(m)s(w)dng();—f(b)-/ s(z)dx.

The constant 4 in (1.11) is the best possible.

Proof. Since f € Q(I) N Li[a,b] and g is nonnegative, symmetric to %2, we have

successively

f(“;b) /abs(x)dat:/abf<a;—b> s(x)dxz/abf(ngW)s(x)dx

b
< [ 2@+ 2f(a+ b - a))s(o)dz

b b
=2 (/ f(@)s(z)dx +/ fla+b— x)s(x)dw)

b b
2 (/ f(@)s(x)dx + / fla+b—2)s(a+b— z)d:c)

4/abf(x)5(x)dx.

This proves (1.11).
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Since

b
/ Wf(a+b—$)3(a+b_x)dx

b—a)?
B b(b—ac)(ac—a)
N A

and s(a+b—x) = s(z) for x € [a,b], then we have

(b—z)(x —a)

[l (e i) e (e )] o
< [ T iy 2+ L)+ 0] st
f@;ﬂ@lzmm

This proves (1.12).
Let us consider the function f : [a,b] — R given by

1, a<ax< 42,
_ __ a+tb
flz) = 4, =97,

1 “;‘b<x§b.

no

)

Then f € Q(I) N Ly[a,b] (see [8, p. 338]), and this proves that the constant 4 in
(1.11) is the best possible as the inequality obviously reduces to an equality in this
case. This completes the proof. [

Remark 1. If we choose s(x) = 1, then Theorem 5 reduces to Theorem 1.
The second result is as follows.

Theorem 6. Let f € P(I)N Ly[a,b]. Then

(1.13) f(”b)/ dx<2/ F@)s(@)dz < 2 [f(a) + FO)] /bs(x)dx.

a

Both inequalities in (1.13) are sharp.
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Proof. Since f € P(I)N Ly[a,b] and s is nonnegative, symmetric to a4

f(a;rb> /abs(:z:)dx:/abf(a;b>s(x)da:
/:“g#”g‘”) s(z)dz

</[ﬂ@+fw+b—@h@Mw

, we have

= /ab f(x)s(x)dz + /ab fla+b—2z)s(z)dx

b b

= / f(x)s(z)dx + / fla+b—1x)s(a+b—z)dx
b

:2/ f(z)s(z)dz
b

:2/(1 f(z:2a+§:sb) s(z)dx

b
gz/[ﬂ®+f@hwww

—2(f(a) + /)] | sl

This proves (1.13).
The functions

and

o={ £z

, a<zx<b,

can be employed to show that both inequalities in (1.13) are the best possible. This
completes the proof. O

Remark 2. If we choose s(x) = 1, then Theorem 6 reduces to Theorem 2.

The following result incorporating the function p satisfying (1.10) may be stated
as well.

Theorem 7. Let f € P(I)N Ly[a,b]. Then

a7 (“5) [ <2 [ s <206+ 101 [ o

Inequalities in (1.14) are the best possible.
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Proof. By using (1.10), we have the following identities

(1.15) /abp(z)dx _ /an(x)dz +/a p(x)dz

and

(1.16) / [f(x)+f<b2a+x)]p(x)dx
!

:/a 2 f(x)p(a:)dwr/a i (b;aw) p(x)dx
= /aa;b f(m)p(m)dxjt/aazb f (bza +x)p <ba
-/ @) + /b F@p(a)da
- [ s
Since
0< 2(bgc_—aa)7a42b_—a2x <1
and

=1

2(x—a)+a+b—2x
b—a b—a
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for x € [a, £, it follows from f € P(I) N L1[a,b] and the identities (1.15) and
(1.16), that

a+b

f(“jb) /abp<x>dx:2f(”;b)/a2p<x>dx

a+b

:2/(1 f [2(;__aa)x+ a:b__am <b;a +x>]P(x)dm
<2 f [f@) y (b; ¥ x)} pla)ds

_9 / ’ F(@)p()de

:2/abf(z:za+z:2b)p(x)dx

b
<2 / (F(a) + £(0)p(x)da

b

— 2(f(a) + £()) / p()dz.

a

This proves (1.14). The functions

1, % <<,
and
0, x=a,
f(x)_{l, a<z<b,
can be employed to show that both inequalities are the best possible. This completes
the proof. 0

Remark 3. If we choose p(x) =1, then Theorem 7 reduces to Theorem 2.
We may now state the following result for quasi-convex functions.

Theorem 8. Let f € QC(I)N Ly[a,b]. Then

(1.17) f<“+b>/ dx</ F(@)s(@)dz + I (a,b),

where

Ii(a,b) / |f(x (a+b—x)|s(x)dx.
Further, I1(a,b) satisfies the inequalities
(1.18) 0<Ii(a,b)

§min{/ab|f(:z:) s(x)dz
% (/abf2(x)da:—/[lbf(x)f(a—l-b—x)da:)% </ab52(sc)dx>;
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Proof. We shall use the fact that max{c,d} = 1(c+d+ |d —¢|) for ¢,d € R. Since

we have

b
f€QC(I)N Ly[a,b] and s is nonnegative, symmetric to ot )

f(a;b) /abs(x)da::/abf<a_2|—b> s(z)da
=/bf<;”+a+g_$> s(z)dz

/ max{f(z), fla+b—x)} s(z)dz

*/ SUf@) + flatb—2)+|f(z) - fla+b—2)|s(z)dz
l/f dx+/fa+b—:c)()dx]
f/ f(z) = fla+b— )| s(x)dx
/f v)dz + - /|f fla+b— )| s(z)da.

This proves the inequality (1.17).
Since s is symmetric, it follows that

b b
(1.19) 0<Ii(a,b) < % [/a |f(z)| s(x)dx —|—/a |fla+b—z)] s(x)dx]

b b
:;[/a |f(a:)|s(a:)dx—|—/a |f(a+b—x)|s(a+b—m)dx]
b
~ [ 1#(@) sta)do

On the other hand, by the Cauchy-Schwarz inequality, we have

(1.20) / If(z) — fla+b— )| s(z)dx

Vo
Si( / (f(z) - f<a+b—x)>2dx> ( / 82<x>dx>

b
=5 (/ (f(@)* + fPla+b—az) - 2f($)f(a+b—$))d$>

X </ab s%x)daz)

1
2
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_ % (2/:f(x)2dx—2/abf(x)f(a+b—x)dx>é (/b SZ(x)dxf
_ % </abf2(x)dx/abf(:v)f(a+bx)dx>§ (/ab52(x)d:c>é.

The inequality (1.18) then follows from (1.19) and (1.20). This completes the
proof. O

Similarly, we have the following theorem:

Theorem 9. Let f € JQC(I) N Li[a,b]. Then the inequalities (1.17) and (1.18)
also hold.

Remark 4. If we choose s(z) = 1, then Theorem 9 reduces to Theorem 3.

The corresponding result for the mapping p reads as:

Theorem 10. Let f € QC(I) N Li(a,b]. Then

(1.21) f<“+b)/ d:c</ F@)p(x)de + Ix(a,b),

where

1 b
12(0’1 b) = 5/

(55 (5 (5 oo

Proof. We have

2(x—a) a+b—2x

<
0= b—a = b—a

and

2(x—a)+a+b—2x
b—a b—a
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for z € [a, %E]. By f € QC(I) N Ly[a,b] and the identities (1.15) and (1.16), we
may state that

f <a;b) /abp(x)dx

a+b

—2 (50) [ st

B 2 2(x — a) a+b—2z (b—a
—2/a f{ . x+ . ( 5 —|—x)]p(x)d:v

a+b

g2/a ’ max{f(x),f<b;“+x)}p(x)dx

A O e R

:/a d:v—i—/

+

)
H
N——
’B

a+b

/f dnc—l—/a2

fla) f(b+w)\ p(a)de
/f der

NS ORICIHEY
P dx.
2
This proves (1.21).

A similar argument as in the proof of the inequality (1.18) implies the inequality
(1.22). This completes the proof. O

Corollary 1. Let f € QC(I) N Li[a,b]. Then

f(a;rb) /f )dx + = mln{/ |f(z) = fla+b—2)|dz,
Lf(xga)—f(””;bﬂdx}.

Proof. This follows from Theorem 8 and Theorem 10 by choosing s(z) = p(x)
1.

ol

Theorem 11. Let f € WC(I) N Ly[a,b]. Then

(1.23) / f(z f( );f( )/a s(z)dx.

The inequality is the best possible.
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b
Proof. Since f € WC(I) N Ly]a,b] and s is nonnegative symmetric to a;_ , we

have

b b b
/a f(x)s(x)dxz% [/a f(a:)s(a:)dx—i—/a fla+b—1x)s(a+b—z)dx

=

[f(x)+ fla+b— )] s(x)dx

N~ N~ N

m\g\wg\

[fla+(z—a))+ fla+b—x)]s(zx)d

IN

[f((a+b—2)+ (z = a)) + fla)] s(x)dz

This proves the inequality (1.23), which reduces to an equality for f(z) = 1
This completes the proof. (I

Finally, we may state

Theorem 12. Let f € WQC(I) N Li[a,b]. Then

b b
(1.24) / f(z)s(z)dx < max{f(a),f(b)}/ s(z)dz.
The inequality is the best possible.

b
Proof. Since f € WQC(I) N Ly[a,b] and s is nonnegative symmetric to @t

have

, we

b b b
/ f(x)s(x)dx:% [/ f(x)s(x)dx—i—/ f(a—i—b—:v)s(a—i—b—:r)dx]
b1

(f(2) + fla+b—x))s(z)dx

b

J
J

N~ N

[fla+ (z—a))+ fla+b—x)]s(x)de

a

b
< / max{ f(a), f((a +b— ) + (& — a))}s(z)da
b

— (max{f(a), f(B)}) / s(a)da.

This proves the inequality (1.24), which reduces to an equality for f(z) = 1
This completes the proof. (I

Remark 5. If we choose g(x) =1 , then Theorem 12 reduces to Theorem 4.
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