

On Quasi Convex Functions and Hadamard's Inequality

This is the Published version of the following publication

Tseng, Kuei-Lin, Yang, Gou-Sheng and Dragomir, Sever S (2003) On Quasi Convex Functions and Hadamard's Inequality. RGMIA research report collection, 6 (3).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17841/

ON QUASI CONVEX FUNCTIONS AND HADAMARD'S INEQUALITY

K.-L. TSENG, G.-S. YANG, AND S.S. DRAGOMIR

ABSTRACT. In this paper we establish some inequalities of Hadamard's type involving Godunova-Levin functions, P-functions, quasi-convex functions, J-quasi-convex functions, Wright-convex functions and Wright-quasi-convex functions.

1. Introduction

If $f:[a,b]\to\mathbb{R}$ is a convex function, then the inequality

$$(1.1) f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x)dx \le \frac{f(a)+f(b)}{2},$$

is known in the literature as Hadamard's inequality.

For some results which generalize, improve, and extend this famous integral inequality see [1]–[10], [13]–[15], [18]–[21].

Let I be an interval in \mathbb{R} , and $a, b \in I$ with a < b. We recall some definitions and theorems from the standpoint of abstract convexity.

Definition 1. (see [8, 11, 12, 13]) We say that $f: I \to \mathbb{R}$ is a Godunova-Levin function, or that f belongs to the class Q(I), if f is nonnegative and for all $x, y \in I$ and $\lambda \in (0, 1)$, we have

$$f(\lambda x + (1 - \lambda)y) \le \frac{f(x)}{\lambda} + \frac{f(y)}{1 - \lambda}.$$

Definition 2. (see [8, 11, 12, 14]) We say that $f: I \to \mathbb{R}$ is a P-function, or that f belongs to the class P(I), if f is nonnegative and for all $x, y \in I$ and $\lambda \in [0, 1]$, we have

$$f(\lambda x + (1 - \lambda)y) \le f(x) + f(y)$$
.

Dragomir, Pečarić and Persson [8] proved the following two theorems concerning Hadamard type inequalities.

Theorem 1. Let $f \in Q(I) \cap L_1[a,b]$. Then

(1.2)
$$f\left(\frac{a+b}{2}\right)(b-a) \le 4\int_a^b f(x)dx,$$

and

(1.3)
$$\int_{a}^{b} \frac{(b-x)(x-a)}{(b-a)^2} f(x) dx \le \frac{f(a)+f(b)}{2} (b-a).$$

Date: May 30, 2003.

1991 Mathematics Subject Classification. Primary 26D15, 26D10; Secondary 52A41, 26B25. Key words and phrases. Hadamard's inequality, Quasi convex functions.

The constant 4 in (1.2) is the best possible.

Theorem 2. Let $f \in P(I) \cap L_1[a,b]$. Then

(1.4)
$$f\left(\frac{a+b}{2}\right)(b-a) \le 2\int_{a}^{b} f(x)dx \le 2[f(a)+f(b)](b-a).$$

Both inequalities are the best possible.

Recall some other concepts of convexity.

Definition 3. (see [16, pp. 228-233]) We say that $f: I \to \mathbb{R}$ is a quasi-convex function, or that f belongs to the class QC(I), if, for all $x, y \in I$ and $\lambda \in [0, 1]$, we have

$$f(\lambda x + (1 - \lambda)y) \le \max(f(x), f(y)).$$

Definition 4. (see [9]) We say that $f: I \to \mathbb{R}$ is a J-quasi-convex function, or that f belongs to the class JQC(I), if, for all $x, y \in I$, we have

$$f\left(\frac{x+y}{2}\right) \le \max(f(x), f(y)).$$

Definition 5. (see [9, 17]) We say that $f: I \to \mathbb{R}$ is a Wright-convex function, or that f belongs to the class WC(I), if, for all $x, y + \delta \in I$ with x < y and $\delta > 0$, we have

$$f(x+\delta) + f(y) \le f(y+\delta) + f(x).$$

Definition 6. (see [9]) We say that $f: I \to \mathbb{R}$ is a Wright-quasi-convex function, or that f belongs to the class WQC(I), if, for all $x, y + \delta \in I$ with x < y and $\delta > 0$ we have

$$\frac{1}{2}[f(x+\delta)+f(y)] \le \max(f(x),f(y+\delta)).$$

Dragomir and Pearce [9] proved the following two theorems providing Hadamard type inequalities for the functions involved:

Theorem 3. Let $f \in JQC(I) \cap L_1[a,b]$. Then

$$(1.5) f\left(\frac{a+b}{2}\right)(b-a) \le \int_a^b f(x)dx + I(a,b)(b-a),$$

where

(1.6)
$$I(a,b) := \frac{1}{2} \int_0^1 |f(ta + (1-t)b) - f((1-t)a + tb)| dt.$$
$$= \frac{1}{2(b-a)} \int_a^b |f(x) - f(a+b-x)| dx.$$

Further, I(a,b) satisfies the inequalities

$$(1.7)$$
 $0 < I(a, b)$

$$\leq \frac{1}{b-a} \min \left\{ \int_a^b |f(x)| \, dx, \frac{1}{\sqrt{2}} \left((b-a) \int_a^b f^2(x) dx - J(a,b) \right)^{\frac{1}{2}} \right\},$$

where

(1.8)
$$J(a,b) := (b-a)^2 \int_0^1 f(ta + (1-t)b) f((1-t)a + tb) dt$$
$$= (b-a) \int_a^b f(x) f(a+b-x) dx.$$

Theorem 4. Let $f \in WQC(I) \cap L_1[a,b]$. Then

(1.9)
$$\int_{a}^{b} f(x)dx \le \max\{f(a), f(b)\}(b-a).$$

In this paper, we shall establish some generalizations of Theorem 1-4 for weighted integrals.

Main Results

Throughout this section, let $s:[a,b]\to\mathbb{R}$ be non-negative, integrable and symmetric to $\frac{a+b}{2}$ and let $p:[a,b]\to\mathbb{R}$ be non-negative integrable with

$$(1.10) p(x) = p\left(\frac{b-a}{2} + x\right) \left(x \in \left[a, \frac{a+b}{2}\right]\right).$$

The following result holds.

Theorem 5. Let $f \in Q(I) \cap L_1[a,b]$. Then

$$(1.11) f\left(\frac{a+b}{2}\right) \int_a^b s(x)dx \le 4 \int_a^b f(x)s(x)dx$$

and

(1.12)
$$\int_{a}^{b} \frac{(b-x)(x-a)}{(b-a)^{2}} f(x)s(x)dx \le \frac{f(a)+f(b)}{2} \cdot \int_{a}^{b} s(x)dx.$$

The constant 4 in (1.11) is the best possible.

Proof. Since $f \in Q(I) \cap L_1[a,b]$ and g is nonnegative, symmetric to $\frac{a+b}{2}$, we have successively

$$\begin{split} f\left(\frac{a+b}{2}\right) \int_a^b s(x) dx &= \int_a^b f\left(\frac{a+b}{2}\right) s(x) dx = \int_a^b f\left(\frac{x}{2} + \frac{a+b-x}{2}\right) s(x) dx \\ &\leq \int_a^b [2f(x) + 2f(a+b-x)] s(x) dx \\ &= 2\left(\int_a^b f(x) s(x) dx + \int_a^b f(a+b-x) s(x) dx\right) \\ &= 2\left(\int_a^b f(x) s(x) dx + \int_a^b f(a+b-x) s(a+b-x) dx\right) \\ &= 4\int_a^b f(x) s(x) dx. \end{split}$$

This proves (1.11).

Since

$$\int_{a}^{b} \frac{(b-x)(x-a)}{(b-a)^{2}} f(a+b-x)s(a+b-x)dx$$

$$= \int_{a}^{b} \frac{(b-x)(x-a)}{(b-a)^{2}} f(x)s(x)dx$$

and s(a+b-x) = s(x) for $x \in [a,b]$, then we have

$$\begin{split} & \int_{a}^{b} \frac{(b-x)(x-a)}{(b-a)^{2}} f(x) s(x) dx \\ & = \int_{a}^{b} \frac{1}{2} \left[\frac{(b-x)(x-a)}{(b-a)^{2}} f(x) s(x) dx + \frac{(b-x)(x-a)}{(b-a)^{2}} f(a+b-x) s(a+b-x) \right] dx \\ & = \int_{a}^{b} \frac{(b-x)(x-a)}{(b-a)^{2}} \cdot \frac{f(x) + f(a+b-x)}{2} s(x) dx \\ & = \int_{a}^{b} \frac{(b-x)(x-a)}{(b-a)^{2}} \cdot \frac{1}{2} \left[f\left(\frac{b-x}{b-a}a + \frac{x-a}{b-a}b\right) + f\left(\frac{x-a}{b-a}a + \frac{b-x}{b-a}b\right) \right] s(x) dx \\ & \leq \int_{a}^{b} \frac{(b-x)(x-a)}{(b-a)^{2}} \cdot \frac{1}{2} \left[\frac{b-a}{b-x} f(a) + \frac{b-a}{x-a} f(b) + \frac{b-a}{b-x} f(b) \right] s(x) dx \\ & = \frac{f(a) + f(b)}{2} \int_{a}^{b} s(x) dx. \end{split}$$

This proves (1.12).

Let us consider the function $f:[a,b]\to\mathbb{R}$ given by

$$f(x) = \begin{cases} 1, & a \le x < \frac{a+b}{2}, \\ 4, & x = \frac{a+b}{2}, \\ 1, & \frac{a+b}{2} < x \le b. \end{cases}$$

Then $f \in Q(I) \cap L_1[a,b]$ (see [8, p. 338]), and this proves that the constant 4 in (1.11) is the best possible as the inequality obviously reduces to an equality in this case. This completes the proof.

Remark 1. If we choose $s(x) \equiv 1$, then Theorem 5 reduces to Theorem 1.

The second result is as follows.

Theorem 6. Let $f \in P(I) \cap L_1[a,b]$. Then

$$(1.13) \qquad f\left(\frac{a+b}{2}\right)\int_a^b s(x)dx \leq 2\int_a^b f(x)s(x)dx \leq 2\left[f(a)+f(b)\right]\int_a^b s(x)dx.$$

Both inequalities in (1.13) are sharp.

Proof. Since $f \in P(I) \cap L_1[a,b]$ and s is nonnegative, symmetric to $\frac{a+b}{2}$, we have

$$\begin{split} f\left(\frac{a+b}{2}\right) \int_a^b s(x) dx &= \int_a^b f\left(\frac{a+b}{2}\right) s(x) dx \\ &= \int_a^b f\left(\frac{x}{2} + \frac{a+b-x}{2}\right) s(x) dx \\ &\leq \int_a^b \left[f(x) + f(a+b-x)\right] s(x) dx \\ &= \int_a^b f(x) s(x) dx + \int_a^b f(a+b-x) s(x) dx \\ &= \int_a^b f(x) s(x) dx + \int_a^b f(a+b-x) s(a+b-x) dx \\ &= 2 \int_a^b f(x) s(x) dx \\ &= 2 \int_a^b f\left(\frac{b-x}{b-a}a + \frac{x-a}{b-a}b\right) s(x) dx \\ &\leq 2 \int_a^b \left[f(a) + f(b)\right] s(x) dx \\ &= 2 \left[f(a) + f(b)\right] \int_a^b s(x) dx. \end{split}$$

This proves (1.13).

The functions

$$f(x) = \begin{cases} 0, & a \le x < \frac{a+b}{2}, \\ 1, & \frac{a+b}{2} \le x \le b, \end{cases}$$

and

$$f(x) = \begin{cases} 0, & x = a, \\ 1, & a < x \le b, \end{cases}$$

can be employed to show that both inequalities in (1.13) are the best possible. This completes the proof. \Box

Remark 2. If we choose $s(x) \equiv 1$, then Theorem 6 reduces to Theorem 2.

The following result incorporating the function p satisfying (1.10) may be stated as well.

Theorem 7. Let $f \in P(I) \cap L_1[a,b]$. Then

$$(1.14) f\left(\frac{a+b}{2}\right) \int_{a}^{b} p(x)dx \le 2 \int_{a}^{b} f(x)p(x)dx \le 2 [f(a) + f(b)] \int_{a}^{b} p(x)dx.$$

Inequalities in (1.14) are the best possible.

Proof. By using (1.10), we have the following identities

(1.15)
$$\int_{a}^{b} p(x)dx = \int_{a}^{\frac{a+b}{2}} p(x)dx + \int_{\frac{a+b}{2}}^{b} p(x)dx$$

$$= \int_{a}^{\frac{a+b}{2}} p(x)dx + \int_{\frac{a+b}{2}}^{b} p\left(\frac{b-a}{2} + \left(x - \frac{b-a}{2}\right)\right) dx$$

$$= \int_{a}^{\frac{a+b}{2}} p(x)dx + \int_{\frac{a+b}{2}}^{b} p\left(x - \frac{b-a}{2}\right) dx$$

$$= 2\int_{a}^{\frac{a+b}{2}} p(x)dx$$

and

$$(1.16) \qquad \int_{a}^{\frac{a+b}{2}} \left[f(x) + f\left(\frac{b-a}{2} + x\right) \right] p(x) dx$$

$$= \int_{a}^{\frac{a+b}{2}} f(x) p(x) dx + \int_{a}^{\frac{a+b}{2}} f\left(\frac{b-a}{2} + x\right) p(x) dx$$

$$= \int_{a}^{\frac{a+b}{2}} f(x) p(x) dx + \int_{a}^{\frac{a+b}{2}} f\left(\frac{b-a}{2} + x\right) p\left(\frac{b-a}{2} + x\right) dx$$

$$= \int_{a}^{\frac{a+b}{2}} f(x) p(x) dx + \int_{\frac{a+b}{2}}^{b} f(x) p(x) dx$$

$$= \int_{a}^{b} f(x) p(x) dx.$$

Since

$$0 \le \frac{2(x-a)}{b-a}, \frac{a+b-2x}{b-a} \le 1$$

and

$$\frac{2(x-a)}{b-a} + \frac{a+b-2x}{b-a} = 1$$

for $x \in [a, \frac{a+b}{2}]$, it follows from $f \in P(I) \cap L_1[a,b]$ and the identities (1.15) and (1.16), that

$$\begin{split} f\left(\frac{a+b}{2}\right) \int_a^b p(x) dx &= 2f\left(\frac{a+b}{2}\right) \int_a^{\frac{a+b}{2}} p(x) dx \\ &= 2 \int_a^{\frac{a+b}{2}} f\left[\frac{2(x-a)}{b-a}x + \frac{a+b-2x}{b-a}\left(\frac{b-a}{2} + x\right)\right] p(x) dx \\ &\leq 2 \int_a^{\frac{a+b}{2}} \left[f(x) + f\left(\frac{b-a}{2} + x\right)\right] p(x) dx \\ &= 2 \int_a^b f(x) p(x) dx \\ &= 2 \int_a^b f\left(\frac{b-x}{b-a}a + \frac{x-a}{b-a}b\right) p(x) dx \\ &\leq 2 \int_a^b (f(a) + f(b)) p(x) dx \\ &\leq 2 \int_a^b (f(a) + f(b)) p(x) dx \end{split}$$

This proves (1.14). The functions

$$f(x) = \begin{cases} 0, & a \le x < \frac{a+b}{2}, \\ 1, & \frac{a+b}{2} \le x \le b, \end{cases}$$

and

$$f(x) = \begin{cases} 0, & x = a, \\ 1, & a < x \le b, \end{cases}$$

can be employed to show that both inequalities are the best possible. This completes the proof. $\hfill\Box$

Remark 3. If we choose $p(x) \equiv 1$, then Theorem 7 reduces to Theorem 2.

We may now state the following result for quasi-convex functions.

Theorem 8. Let $f \in QC(I) \cap L_1[a,b]$. Then

$$(1.17) f\left(\frac{a+b}{2}\right) \int_a^b s(x)dx \le \int_a^b f(x)s(x)dx + I_1(a,b),$$

where

$$I_1(a,b) = \frac{1}{2} \int_a^b |f(x) - f(a+b-x)| \, s(x) dx.$$

Further, $I_1(a,b)$ satisfies the inequalities

$$(1.18) \quad 0 \le I_1(a, b)$$

$$\leq \min \left\{ \int_{a}^{b} |f(x)| \, s(x) dx \,, \\
\frac{1}{\sqrt{2}} \left(\int_{a}^{b} f^{2}(x) dx - \int_{a}^{b} f(x) f(a+b-x) dx \right)^{\frac{1}{2}} \left(\int_{a}^{b} s^{2}(x) dx \right)^{\frac{1}{2}} \right\}.$$

Proof. We shall use the fact that $\max\{c,d\} = \frac{1}{2}(c+d+|d-c|)$ for $c,d \in \mathbb{R}$. Since $f \in QC(I) \cap L_1[a,b]$ and s is nonnegative, symmetric to $\frac{a+b}{2}$, we have

$$\begin{split} f\left(\frac{a+b}{2}\right) \int_{a}^{b} s(x) dx &= \int_{a}^{b} f\left(\frac{a+b}{2}\right) s(x) dx \\ &= \int_{a}^{b} f\left(\frac{x}{2} + \frac{a+b-x}{2}\right) s(x) dx \\ &\leq \int_{a}^{b} \max\{f(x), f(a+b-x)\} \cdot s(x) dx \\ &= \int_{a}^{b} \frac{1}{2} [f(x) + f(a+b-x) + |f(x) - f(a+b-x)|] s(x) dx \\ &= \frac{1}{2} \left[\int_{a}^{b} f(x) s(x) dx + \int_{a}^{b} f(a+b-x) s(x) dx \right] \\ &+ \frac{1}{2} \int_{a}^{b} |f(x) - f(a+b-x)| s(x) dx \\ &= \int_{a}^{b} f(x) s(x) dx + \frac{1}{2} \int_{a}^{b} |f(x) - f(a+b-x)| s(x) dx. \end{split}$$

This proves the inequality (1.17). Since s is symmetric, it follows that

$$(1.19) 0 \le I_{1}(a,b) \le \frac{1}{2} \left[\int_{a}^{b} |f(x)| \, s(x) dx + \int_{a}^{b} |f(a+b-x)| \, s(x) dx \right]$$

$$= \frac{1}{2} \left[\int_{a}^{b} |f(x)| \, s(x) dx + \int_{a}^{b} |f(a+b-x)| \, s(a+b-x) dx \right]$$

$$= \int_{a}^{b} |f(x)| \, s(x) dx.$$

On the other hand, by the Cauchy-Schwarz inequality, we have

$$(1.20) I_{1}(a,b) = \frac{1}{2} \int_{a}^{b} |f(x) - f(a+b-x)| s(x) dx$$

$$\leq \frac{1}{2} \left(\int_{a}^{b} (f(x) - f(a+b-x))^{2} dx \right)^{\frac{1}{2}} \left(\int_{a}^{b} s^{2}(x) dx \right)^{\frac{1}{2}}$$

$$= \frac{1}{2} \left(\int_{a}^{b} (f(x)^{2} + f^{2}(a+b-x) - 2f(x)f(a+b-x)) dx \right)^{\frac{1}{2}}$$

$$\times \left(\int_{a}^{b} s^{2}(x) dx \right)^{\frac{1}{2}}$$

$$= \frac{1}{2} \left(2 \int_{a}^{b} f(x)^{2} dx - 2 \int_{a}^{b} f(x) f(a+b-x) dx \right)^{\frac{1}{2}} \left(\int_{a}^{b} s^{2}(x) dx \right)^{\frac{1}{2}}$$

$$= \frac{1}{\sqrt{2}} \left(\int_{a}^{b} f^{2}(x) dx - \int_{a}^{b} f(x) f(a+b-x) dx \right)^{\frac{1}{2}} \left(\int_{a}^{b} s^{2}(x) dx \right)^{\frac{1}{2}}.$$

The inequality (1.18) then follows from (1.19) and (1.20). This completes the proof. $\hfill\Box$

Similarly, we have the following theorem:

Theorem 9. Let $f \in JQC(I) \cap L_1[a,b]$. Then the inequalities (1.17) and (1.18) also hold.

Remark 4. If we choose $s(x) \equiv 1$, then Theorem 9 reduces to Theorem 3.

The corresponding result for the mapping p reads as:

Theorem 10. Let $f \in QC(I) \cap L_1(a,b]$. Then

$$(1.21) f\left(\frac{a+b}{2}\right) \int_a^b p(x)dx \le \int_a^b f(x)p(x)dx + I_2(a,b),$$

where

$$I_2(a,b) = \frac{1}{2} \int_a^b \left| f\left(\frac{x+a}{2}\right) - f\left(\frac{x+b}{2}\right) \right| p\left(\frac{x+a}{2}\right) dx.$$

Further,

$$(1.22) 0 \leq I_2(a,b)$$

$$\leq \min \left\{ \int_a^b |f(x)| \, p(x) dx \,, \frac{1}{\sqrt{2}} \left(\int_a^b f^2(x) dx \right) - \int_a^b f\left(\frac{x+a}{2}\right) f\left(\frac{x+b}{2}\right) dx \right)^{\frac{1}{2}} \left(\int_a^b p^2(x) dx \right)^{\frac{1}{2}} \right\}.$$

Proof. We have

$$0 \le \frac{2(x-a)}{b-a}, \frac{a+b-2x}{b-a} \le 1$$

and

$$\frac{2(x-a)}{b-a} + \frac{a+b-2x}{b-a} = 1$$

for $x \in \left[a, \frac{a+b}{2}\right]$. By $f \in QC(I) \cap L_1[a, b]$ and the identities (1.15) and (1.16), we may state that

$$\begin{split} &f\left(\frac{a+b}{2}\right)\int_{a}^{b}p(x)dx\\ &=2f\left(\frac{a+b}{2}\right)\int_{a}^{\frac{a+b}{2}}p(x)dx\\ &=2\int_{a}^{\frac{a+b}{2}}f\left[\frac{2(x-a)}{b-a}x+\frac{a+b-2x}{b-a}\left(\frac{b-a}{2}+x\right)\right]p(x)dx\\ &\leq2\int_{a}^{\frac{a+b}{2}}\max\left\{f(x),f\left(\frac{b-a}{2}+x\right)\right\}p(x)dx\\ &=\int_{a}^{\frac{a+b}{2}}\left[f(x)+f\left(\frac{b-a}{2}+x\right)+\left|f(x)-f\left(\frac{b-a}{2}+x\right)\right|\right]p(x)dx\\ &=\int_{a}^{\frac{a+b}{2}}f(x)p(x)dx+\int_{a}^{\frac{a+b}{2}}f\left(\frac{b-a}{2}+x\right)p\left(\frac{b-a}{2}+x\right)dx\\ &+\int_{a}^{\frac{a+b}{2}}\left|f(x)-f\left(\frac{b-a}{2}+x\right)\right|p(x)dx\\ &=\int_{a}^{b}f(x)p(x)dx+\int_{a}^{\frac{a+b}{2}}\left|f(x)-f\left(\frac{b-a}{2}+x\right)\right|p(x)dx\\ &=\int_{a}^{b}f(x)p(x)dx+\int_{a}^{\frac{a+b}{2}}\left|f(x)-f\left(\frac{b-a}{2}+x\right)\right|p(x)dx\\ &=\int_{a}^{b}f(x)p(x)dx+\int_{a}^{b}\left|f\left(\frac{x+a}{2}\right)-f\left(\frac{x+b}{2}\right)\right|p\left(\frac{x+a}{2}\right)dx. \end{split}$$

This proves (1.21).

A similar argument as in the proof of the inequality (1.18) implies the inequality (1.22). This completes the proof.

Corollary 1. Let $f \in QC(I) \cap L_1[a,b]$. Then

$$f\left(\frac{a+b}{2}\right)(b-a) \le \int_a^b f(x)dx + \frac{1}{2}\min\left\{\int_a^b |f(x) - f(a+b-x)| dx, \int_a^b \left|f\left(\frac{x+a}{2}\right) - f\left(\frac{x+b}{2}\right)\right| dx\right\}.$$

Proof. This follows from Theorem 8 and Theorem 10 by choosing s(x) = p(x) = 1.

Theorem 11. Let $f \in WC(I) \cap L_1[a,b]$. Then

The inequality is the best possible.

Proof. Since $f \in WC(I) \cap L_1[a,b]$ and s is nonnegative symmetric to $\frac{a+b}{2}$, we have

$$\int_{a}^{b} f(x)s(x)dx = \frac{1}{2} \left[\int_{a}^{b} f(x)s(x)dx + \int_{a}^{b} f(a+b-x)s(a+b-x)dx \right]$$

$$= \frac{1}{2} \int_{a}^{b} \left[f(x) + f(a+b-x) \right] s(x)dx$$

$$= \frac{1}{2} \int_{a}^{b} \left[f(a+(x-a)) + f(a+b-x) \right] s(x)dx$$

$$\leq \frac{1}{2} \int_{a}^{b} \left[f((a+b-x) + (x-a)) + f(a) \right] s(x)dx$$

$$= \frac{f(a) + f(b)}{2} \int_{a}^{b} s(x)dx.$$

This proves the inequality (1.23), which reduces to an equality for $f(x) \equiv 1$. This completes the proof.

Finally, we may state

Theorem 12. Let $f \in WQC(I) \cap L_1[a,b]$. Then

The inequality is the best possible.

Proof. Since $f \in WQC(I) \cap L_1[a,b]$ and s is nonnegative symmetric to $\frac{a+b}{2}$, we have

$$\int_{a}^{b} f(x)s(x)dx = \frac{1}{2} \left[\int_{a}^{b} f(x)s(x)dx + \int_{a}^{b} f(a+b-x)s(a+b-x)dx \right]$$

$$= \int_{a}^{b} \frac{1}{2} (f(x) + f(a+b-x))s(x)dx$$

$$= \int_{a}^{b} \frac{1}{2} [f(a+(x-a)) + f(a+b-x)]s(x)dx$$

$$\leq \int_{a}^{b} \max\{f(a), f((a+b-x) + (x-a))\}s(x)dx$$

$$= (\max\{f(a), f(b)\}) \int_{a}^{b} s(x)dx.$$

This proves the inequality (1.24), which reduces to an equality for $f(x) \equiv 1$. This completes the proof.

Remark 5. If we choose $g(x) \equiv 1$, then Theorem 12 reduces to Theorem 4.

References

- H. Alzer, A note on Hadamard's inequalities, C.R. Math. Rep. Acad. Sci Canada, 1989, 255-258
- [2] J.L. Brenner and H. Alzer, Integral inequalities for concave functions with applications to special functions, *Proc. Roy. Soc. Edinburgh A* **118** (1991), 173-192.

- [3] S.S. Dragomir, Two refinements of Hadamard's inequality, Coll. of Pap. Dep. of the Fac. of Sci. Kragujevac, (Yugoslavia) 1990, 23-26.
- [4] S.S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167 (1992),49-56.
- [5] S.S. Dragomir, On Hadamard's inequalities for convex functions, Mat. Balkanica, 6 (1992), 215-222.
- [6] S.S. Dragomir and C. Buşe, Refinements of Hadamard's inequality for multiple integrals, Utilitas Mathematica, 47 (1995), 193-198.
- [7] S.S. Dragomir, J.E. Pečarić and J. Sándor, A note on the Jensen-Hadamard inequality, Anal. Num. Théor. Approx., 19 (1990), 29-34.
- [8] S.S. Dragomir, J.E. Pečarić and L.E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335-341.
- [9] S.S. Dragomir, C.E.M. Pearce, Quasi-convex functions and Hadamard's inequality, Bull. Austral. Math. Soc., 57 (1998), 377-385.
- [10] S.S. Dragomir, C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. (ONLINE: http://rgmia.vu.edu.au/monographs/)
- [11] E. K. Godunova and V.I. Levin, Nersavenstra dlja funccii širokogo klassa soderžaščego vpuklye, monotonnye i nekotorye drugie vidy funkaii, VyčislitelMat. i Mt. Fiz., Mežvuzov Sb. Nauč. Trudov. MGPI, Moscow, 1985, 138-142.
- [12] D.S. Mitrinović and J.E. Pečarić, Note on a class of functions of Godunova and Levin, C.R. Math Rep. Acad. Sci. Canada, 12 (1990), 33-36.
- [13] D.S. Mitrinović and J.E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Acad. Publ., 1993.
- [14] C.E.M. Pearce and A.M. Rubinov, P-functions, Quasi-convex Functions, and Hadamard-type Inequalities, J. Math. Anal. Appl., 240 (1990), 92-104.
- [15] J.E. Pečarić, F. Proschan and Y. L. Tong, Convex functions, Partial Orderings and Statistical Applications, Academic Press, 1991.
- [16] A.W. Roberts and D.E. Varberg, Convex functions, Academic Press, New York, 1973.
- [17] E.M. Wright, An inequality for convex functions, Amer. Math. Monthly, 61 (1954), 620-622.
- [18] Gou-Sheng Yang and Kuei-Lin Tseng, On Certain Integral Inequalities Related to Hermite-Hadamard Inequalities, J. Math. Anal. Appl., 239 (1999), 180-187.
- [19] Gou-Sheng Yang and Kuei-Lin Tseng, Inequalities of Hadamard's Type for Lipschitzian Mapping, J. Math. Anal. Appl., 260 (2001), 230-238.
- [20] Gou-Sheng Yang and Min-Chung Hong, A note on Hadamard's inequality, Tamkang J. Math., 28(1) (1997), 33-37.
- [21] G.S. Yang and C.S. Wang, Some refinements of Hadamard's inequalities, Tamkang J. Math., 28(2) (1997), 87-92.

Department of Mathematics, Aletheia University, Tamsui, Taiwan 25103.

E-mail address: kltseng@email.au.edu.tw

Department of Mathematics, Tamkang University, Tamsui, Taiwan 25137.

School of Computer Science and Mathematics, Victoria University of Technology, PO Box 14428, Melbourne City MC, Victoria 8001, Australia.

E-mail address: sever@matilda.vu.edu.au

 URL : http://rgmia.vu.edu.au/SSDragomirWeb.html