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A NOTE ON HARDY-TYPE INEQUALITIES

PENG GAO

ABSTRACT. We use a theorem of Cartlidge and the technique of Redheffer’s ”recurrent inequalities”
to give some results on inequalities related to Hardy’s inequality.

1. INTRODUCTION

Suppose throughout that p # 0, % + % = 1. Let [P be the Banach space of all complex sequences
a = (ap)p>1 with norm

lall == (O lan[")/? < oo.
n=1

The celebrated Hardy’s inequality([10], Theorem 326) asserts that for p > 1,

(1.1) SCSmp < LS
n=1 k=1 p k=1

Among the many papers appeared providing new proofs, generalizations and sharpenings of
(1.1f), we refer the reader to the work of G.Bennett —@ for his study of factorable matrices.
Hardy’s inequality can be regarded as a special case of the following inequality:

oo (0.@) o0
Z | ch,kak‘p < UZ |lak|?,
j=1 k=1 k=1
in which C' = (¢; 1) and the parameter p are assumed fixed(p > 1), and the estimate is to hold for
all real sequences a. The [P operator norm of C is then defined as the p-th root of the smallest
value of the constant U: X
ICllpp = U?.

Hardy’s inequality thus asserts that the Cesdro matriz operator C, given by ¢; = 1/j,k < j and
0 otherwise, is bounded on P and has norm < p/(p — 1). (The norm is in fact p/(p — 1).)

We say a matrix A is a summability matrix if its entries satisfy: a;, > 0, aj = 0 for k¥ > j and

Zi:l a;r = 1. We say a summability matrix A is a weighted mean matrix if its entries satisfy:

J
(1.2) ajr=Me/Aj, 1<k <50 =) A
i=1
We refer to the n-tuple (an1, an2, -, any) as the n-th row of a summability matrix A and then

have the following result of Bennett([@], Theorem 1.14) for the IP operator norm of A.

Theorem 1.1. Let p > 1 be fized and suppose A is a summability matriz. If the rows of A are
decreasing, then ||Al||pp > p/(p —1). If the rows of A are increasing, then ||A||pp, < p/(p—1).

The above theorem, when applied to weighted mean matrixes, gives the following inequality(@],
Corollary 4.10).
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Theorem 1.2. If0 <A <A<+ and 0 < p <1, then

S Zz— )\(1 1/p l/p a
(13) P Z .

whenever a is a sequence of non-negative terms.

n=1

Even though the constant in the above theorem is best possible, some improvement may be
possible with specific choices of the A;’s. For examples, the following two inequalities were claimed
to hold by Bemnett(7 page 40-41; see also ﬂ@], page 407):

(1.4) DG 2 = =)y < (T ol
= n=1

1 P A AP \p S an 1P
(1.5) D (g g 2T < (T el

n=1

IN

whenever a > 0,p > 1, ap > 1.

We haven’t seen the proofs of Bennett but find the following unpublished result of J. Cartlidge[7]
is very helpful to treat the above two inequalities. We don’t have access to his thesis either, so here
we quote the one in [2](p. 416):

Theorem 1.3. Let 1 < p < oo be fizred. Let A be a weighted mean matriz given by (1.2). If
A,

An+1
1.6 L= _on
(1.6) Sng(An+1 An> <p,

then || Allpp < p/(p — L).

We will apply the above theorem to prove for a > 2,p > 1,ap > 1 in section
Suppose a, > 0, by a change of variables a,, — ar and let p — oo, (1.1) gives the well-known

Carleman’s inequality:
oo n L o
Z(H ag)n <e Z .
n=1 k=1 n=1
We refer the reader to the survey article and the references therein for an account of Carle-
man’s inequality. Among the various generalizations of Carleman’s inequality, we mention a result

of E. Love, who proved for a > 0, \; = i* — (i — 1),

(L.7) i(ﬁ af “EIHUNT < ea i s
n=1 i=1 n=1

and the constant e is best possible. We note here after a change of variables a,, — an ,
corresponds to the limiting case p — oo of .

R.Redheffer gave a remarkable proof of Hardy’s inequality in by developing the method
of ”recurrent inequalities”. His method also works for Carleman’s inequality. Another proof of
Carleman’s inequality was given by him in [15] and his result has been generalized by H.Alzer|1] and
most recently by J. Pecari¢ and K. Stolarsk , who proved for b, >0, N > 1,G,, = ([[\-, a:)"/™,

ZA +ANGN<Z)\GbA n/An

n=1

In this paper, we will use Redheffer’s method to give a weighted version of his treatment of
Hardy’s and Carleman’s inequalities. As we shall see, our result for 1 < p < oo is less satisfactory
than that of Cartlidge’s while for the limiting case the result is almost the same as his.

From now on we will assume a,, > 0 for n > 1 and any infinite sum converges.
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2. LEMMAS

Lemma 2.1. Let A, = Z?Zl Ni, Ai > 0 and S, = Y Na;. Let 0 # p < 1 be fized and let
(tn)n>1, (Mn)n>1 be two sequences of real numbers such that p; < n; for 0 <p <1 and p; > n; for
p <0, then forn > 2,

n—1

@1 Yl — (g — 0 )Y+ i SYP < (u — YN Pal S Al Pall?.
=2 =2

Proof. This is essentially due to R.Redheffer. We note for k > 2,
(2:2) Sy — NP ” = S8 (i (1 + P — t/P) < (il — ) VaS

with t = Agag/Sk—1(compare this with the one on page 688 of ) The lemma then follows by
adding (2.2 for 2 < k < n together. O

Lemma 2.2. Let A, = Zle Ai, Ai >0 and Gy, = (Hf 1 a; )1/Ak then for pu; > 0,n > 2,

A, 229
An

(2.3) G1+Z m’— A )G + G, < 1+ alJrz:MT
z+1

Proof. This is essentially due to R.Redheffer. We note for k> 2,4 > 0,7 >0,

Ag A — Ak Ao Ak
pGr — nag = Gr—1(ut —nt?r ) < Gr_1( :kl)n“‘l (HT:)A’“‘I ;

Ap
where t* = ay/Gj_1(compare this with the one on page 686 of ) By setting urAx/ A\ =

A
W =1 = uk’“/ ¥, we get

A

A pu o Ar
2.4 — k< .
(2.4) " Gk — app” < " Gk
The lemma then follows by adding (2.4) for 2 < k < n and G; = a; together. O

Lemma 2.3. Let f(z) € C3[a,b] and f"(z) > 0 for x € [a,b]. Then

(25) 1)~ 1@ > £E00 - a).

Proof. By Taylor’s expansion,
10 = ek @b,
f@) = 1O O a0k )b,

where a < 12 < (a+b)/2 < m < b. The lemma then follows by noticing f”/(x) > 0 for z € [a,b]. O

Lemma 2.4. Ifs > 1, then

(2.6) o> n(n+1)°
’ < T s+1l(n+1)f—n

(2

Proof. This is a result of V. Levin and S. Steckin, see Lemma 2 on page 18 in [11]. U
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3. APPLICATIONS OF CARTLIDGE’S THEOREM

We say a weighted mean matrix A given by is generated by a logarithmico-exponential
function if for all sufficiently large n, A, := l(n), where {(z) is a positive logarithmico-exponential
function and a logarithmico-exponential function on [zg, oo] is defined by Hardyﬂgﬂ as a real valued
function defined by a finite combination of ordinary algebraic symbols(viz, +, —, X, =+, V) and the

functional symbols log(-) and e(), operating on real variable z and on real constants.
We note first the following theorem of F. Cass and W. Kratz[§]:

Theorem 3.1. Let 1 < p < oo be fizred. Let A be a weighted mean matriz given by (1.2). Suppose
limy, o0 Ay /A = L < p, thenp/(p — L) < ||Al|pp-

It is easy to see lim, .o n®~1/(n® — (n —1)%) = 1/a and the simplest Euler-Maclaurin formulae
gives:
S 1) = [ f@de+ f0)+ [ @ = @Df @
i=1

for f having continuous derivative f’, where [z] denote the largest integer not exceeding the real

number z. It then follows
n

Zia_l =n%/a+ o(n%).

i=1

Thus thanks to Theorem m, we know if (|1.4))-(1.5)) hold for some a > 0,p > 1, ap > 1 then the
constants (ap/(ap — 1))P are best possible.
Now we apply Cartlidge’s Theorem to get

Corollary 3.1. Inequality (1.4) holds for p > 1,a > 2,ap > 1 and the constant there is best
possible.

Proof. Apply Theorem [1.3| with A; = i* — (i — 1)*. We define f(z) = 2%/(z* — (z — 1)*),z > 1 so
that Aji1/Niv1 — N/ =fli+1)— fi) = f1(€),1 <i<&<i+1, with
N i
0 - -
SO ey S

where the last inequality follows from Lemma [2.3|and the arithmetic-geometric inequality, since for
a > 2,

e (-1 2ot EY

This completes the proof. ]

) = (g€ 1)V

We note the corollary implies ((1.7) for a > 2. Now if we apply Theorem to ([L1.5)), we need to
show

n+1 n 1

. _ ol ) e 1 ™ o
2T A D= 3 T T =L (e — ) L < e
i=1 =1

=1

The second inequality above follows from Lemma [2.4] and we get

Corollary 3.2. Inequality (1.5) holds for p > 1, > 2,ap > 1 and the constant there is best
possible.
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4. GENERALIZATIONS OF REDHEFFER’S RESULTS

Theorem 4.1. Assume the same conditions in Lemma and let 0 < p < 1 be fized. Suppose
there exists a positive constant ¢ such that cl+1<ce VP and

(4.1) c<1l—p+(1—p)A T =X\ D)A_ AP i > 2.
7 i—1 7
Then for 0 <p <1,
(4.2) S (Si/A)VP <Py 0l
=1 i=1

Proof. 1t suffices to prove the theorem for any integer n > 1. We note first the condition (4.1)) is
equivalent to

(4.3) g 1= e A AP OTL — ATT) > 1,6 > 2,

By setting n; = A;l/p,uf = )\;q/p + Ai—1/eA! | in (2.1)), we can rewrite the left-hand side of
&) as

n—1
(1= YN0y + 3 IO 4 A fed! )Y = (Ai/ AV ISP+ i ST
=2
By the mean value theorem,
A7 At feX_ YT = (AifeADYT = T T A JeXEy — Ai/e])(AifeND) TP
= g (= AN = AT (/o)
(Aife)~ VP,
Here the last inequality follows from (4.3)). Thus (2.1)) becomes

v

n n n
Z(Si/)\i)l/p < (¢4 1)a; + cfl/pZai < cil/pZai.
i=1 i=2 i=1
This completes the proof. ]

We note here if 0 < Ay < Xy < ---, we can take c = 1 —p in and one checks easily for
0O<p<l, (1—p)t+1<(1—p)r Theorem then implies Theorem

We also note the constant given by the above theorem may be less satisfactory. For example the
case = 2,p =2 in corresponds to the case \; =2i — 1,p=1/2,¢=3/4 in . However,
direct calculation shows is not satisfied in this case. Of course one may try to prove directly

O P+ Aioa feX )M — (AifeX]) 7 > (A /)M,

But one checks this fails for ¢ = 2.

Similarly, the case « =2,p =2 in corresponds to the case \; =i,p=1/2,¢=3/4 in .
One checks in this case ([4]) holds for i > 2. However, ¢! +1 =7/3 > 16/9 = ¢ 2, so the coefficient
of aj is slightly larger.

Now we focus our attention to Carleman-type inequalities.

Theorem 4.2. Assume the same conditions in Lemma and let f(x) be a real valued function
defined for x > 2 such that f(n) = Ap/\p forn>2 and 0 < f(z+1)— f(x) < 1/a for some a > 0.
If (1+ %) < el for the same o then

o0 n

(4.4) S (L) <1+ t)al + f:az-(l + W)m <elle i .
=2 n=1

n=1 i=1
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Proof. 1t suffices to prove the theorem for any integer n > 2. Set u; = f(i +1)/f(i) in Lemma
we get,

n n—1 n . . o)
A 1) — )
Y G Gi+fln+1)Gy < (1+ A—l)al +3 a1+ W)f(z) <Yy,
i=1 i=1 2 =2
by the conditions of the theorem and this completes the proof. ]

Apply Theoremto M =1, =a""1—a2i> 2 for some a > 1, then f(z) = a/(a — 1)
and we get

n=1

Corollary 4.1. For a > 1,
(4.5) Z (a1 Ha ok yH/ens ' < (1+ ! Jai + ian.
n=1 ‘ a a—1 n=2

Apply Theorem to \i = a',i > 1 for some a > 0, then f(i +1) — f(i) = a~* and we get

Corollary 4.2. For a > 0,
(46) Z Ha (a™—1)/(a—1) < (1+ a1+z 1/am an <Z l/a
n=1 k=1

We end the paper by noting that if we take \; = (i(i + 1))~! in Theorem [4.2] then f(z) = 22
and we get back a result of Redheffer(see page 693):

Corollary 4.3.

(4.7) Z(H /R (n+1)/n < Z g
n=1 k=1 n=1
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