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A NOTE ON HARDY-TYPE INEQUALITIES

PENG GAO

Abstract. We use a theorem of Cartlidge and the technique of Redheffer’s ”recurrent inequalities”
to give some results on inequalities related to Hardy’s inequality.

1. Introduction

Suppose throughout that p 6= 0, 1
p + 1

q = 1. Let lp be the Banach space of all complex sequences
a = (an)n≥1 with norm

||a|| := (
∞∑

n=1

|an|p)1/p < ∞.

The celebrated Hardy’s inequality([10], Theorem 326) asserts that for p > 1,

(1.1)
∞∑

n=1

(
1
n

n∑
k=1

ak)p ≤ (
p

p− 1
)p

∞∑
k=1

|ak|p.

Among the many papers appeared providing new proofs, generalizations and sharpenings of
(1.1), we refer the reader to the work of G.Bennett [2]-[6] for his study of factorable matrices.

Hardy’s inequality can be regarded as a special case of the following inequality:
∞∑

j=1

∣∣ ∞∑
k=1

cj,kak

∣∣p ≤ U

∞∑
k=1

|ak|p,

in which C = (cj,k) and the parameter p are assumed fixed(p > 1), and the estimate is to hold for
all real sequences a. The lp operator norm of C is then defined as the p-th root of the smallest
value of the constant U :

||C||p,p = U
1
p .

Hardy’s inequality thus asserts that the Cesáro matrix operator C, given by cj,k = 1/j, k ≤ j and
0 otherwise, is bounded on lp and has norm ≤ p/(p− 1). (The norm is in fact p/(p− 1).)

We say a matrix A is a summability matrix if its entries satisfy: aj,k ≥ 0, aj,k = 0 for k > j and∑j
k=1 aj,k = 1. We say a summability matrix A is a weighted mean matrix if its entries satisfy:

(1.2) aj,k = λk/Λj , 1 ≤ k ≤ j; Λj =
j∑

i=1

λi.

We refer to the n-tuple (an1, an2, · · · , ann) as the n-th row of a summability matrix A and then
have the following result of Bennett([6], Theorem 1.14) for the lp operator norm of A.

Theorem 1.1. Let p > 1 be fixed and suppose A is a summability matrix. If the rows of A are
decreasing, then ||A||p,p ≥ p/(p− 1). If the rows of A are increasing, then ||A||p,p ≤ p/(p− 1).

The above theorem, when applied to weighted mean matrixes, gives the following inequality([6],
Corollary 4.10).
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Theorem 1.2. If 0 < λ1 ≤ λ2 ≤ · · · and 0 < p < 1, then

(1.3)
∞∑

n=1

(
∑n

i=1 λia
p
i∑n

i=1 λi
)1/p ≤ (

1
1− p

)1/p
∞∑

n=1

an,

whenever a is a sequence of non-negative terms.

Even though the constant in the above theorem is best possible, some improvement may be
possible with specific choices of the λi’s. For examples, the following two inequalities were claimed
to hold by Bennett([5], page 40-41; see also [6], page 407):

∞∑
n=1

(
1
nα

n∑
i=1

(iα − (i− 1)α)ai)p ≤ (
αp

αp− 1
)p

∞∑
n=1

|an|p,(1.4)

∞∑
n=1

(
1∑n

i=1 iα−1

n∑
i=1

iα−1ai)p ≤ (
αp

αp− 1
)p

∞∑
n=1

|an|p,(1.5)

whenever α > 0, p > 1, αp > 1.
We haven’t seen the proofs of Bennett but find the following unpublished result of J. Cartlidge[7]

is very helpful to treat the above two inequalities. We don’t have access to his thesis either, so here
we quote the one in [2](p. 416):

Theorem 1.3. Let 1 < p < ∞ be fixed. Let A be a weighted mean matrix given by (1.2). If

(1.6) L = sup
n

(
Λn+1

λn+1
− Λn

λn
) < p ,

then ||A||p,p ≤ p/(p− L).

We will apply the above theorem to prove (1.4)-(1.5) for α ≥ 2, p > 1, αp > 1 in section 3.
Suppose an ≥ 0, by a change of variables an → a

1/p
n and let p → ∞, (1.1) gives the well-known

Carleman’s inequality:
∞∑

n=1

(
n∏

k=1

ak)
1
n ≤ e

∞∑
n=1

an.

We refer the reader to the survey article [13] and the references therein for an account of Carle-
man’s inequality. Among the various generalizations of Carleman’s inequality, we mention a result
of E. Love, who proved for α > 0, λi = iα − (i− 1)α,

(1.7)
∞∑

n=1

(
n∏

i=1

a
iα−(i−1)α

i )1/nα ≤ e
1
α

∞∑
n=1

an,

and the constant e
1
α is best possible. We note here after a change of variables an → a

1/p
n , (1.7)

corresponds to the limiting case p →∞ of (1.4).
R.Redheffer gave a remarkable proof of Hardy’s inequality in [14] by developing the method

of ”recurrent inequalities”. His method also works for Carleman’s inequality. Another proof of
Carleman’s inequality was given by him in [15] and his result has been generalized by H.Alzer[1] and
most recently by J. Pečarić and K. Stolarsky[13], who proved for bn > 0, N ≥ 1, Gn = (

∏n
i=1 ai)1/n,

N∑
n=1

Λn(bn − 1)Gn + ΛNGN ≤
N∑

n=1

λnGnbΛn/λn
n .

In this paper, we will use Redheffer’s method to give a weighted version of his treatment of
Hardy’s and Carleman’s inequalities. As we shall see, our result for 1 < p < ∞ is less satisfactory
than that of Cartlidge’s while for the limiting case the result is almost the same as his.

From now on we will assume an ≥ 0 for n ≥ 1 and any infinite sum converges.
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2. Lemmas

Lemma 2.1. Let Λk =
∑k

i=1 λi, λi > 0 and Sn =
∑n

i=1 λiai. Let 0 6= p < 1 be fixed and let
(µn)n≥1, (ηn)n≥1 be two sequences of real numbers such that µi ≤ ηi for 0 < p < 1 and µi ≥ ηi for
p < 0, then for n ≥ 2,

(2.1)
n−1∑
i=2

[µi − (µq
i+1 − ηq

i+1)
1/q]S1/p

i + µnS1/p
n ≤ (µq

2 − ηq
2)

1/qλ
1/p
1 a

1/p
1 +

n∑
i=2

ηiλ
1/p
i a

1/p
i .

Proof. This is essentially due to R.Redheffer[14]. We note for k ≥ 2,

(2.2) µkS
1/p
k − ηkλ

1/p
k a

1/p
k = S

1/p
k−1(µk(1 + t)1/p − ηit

1/p) ≤ (µq
k − ηq

k)
1/qS

1/p
k−1,

with t = λkak/Sk−1(compare this with the one on page 688 of [14]). The lemma then follows by
adding (2.2) for 2 ≤ k ≤ n together. �

Lemma 2.2. Let Λk =
∑k

i=1 λi, λi > 0 and Gk = (
∏k

i=1 aλi
i )1/Λk , then for µi > 0, n ≥ 2,

(2.3) G1 +
n−1∑
i=2

(
Λiµi

λi
− Λi

λi+1
)Gi +

Λnµn

λn
Gn ≤ (1 +

Λ1

λ2
)a1 +

n∑
i=2

µ
Λi
λi
i ai.

Proof. This is essentially due to R.Redheffer[14]. We note for k ≥ 2, µ > 0, η > 0,

µGk − ηak = Gk−1(µt− ηt
Λk
λk ) ≤ Gk−1(

Λk−1

λk
)η

−λk
Λk−1 (

µλk

Λk
)

Λk
Λk−1 ,

where t
Λk
λk = ak/Gk−1(compare this with the one on page 686 of [14]). By setting µkΛk/λk =

µ, ηk = η = µ
Λk/λk

k , we get

(2.4)
Λkµk

λk
Gk − akµ

Λk
λk
k ≤ Λk−1

λk
Gk.

The lemma then follows by adding (2.4) for 2 ≤ k ≤ n and G1 = a1 together. �

Lemma 2.3. Let f(x) ∈ C3[a, b] and f ′′′(x) ≥ 0 for x ∈ [a, b]. Then

(2.5) f(b)− f(a) ≥ f ′(
a + b

2
)(b− a).

Proof. By Taylor’s expansion,

f(b) = f(
a + b

2
) + f ′(

a + b

2
)(b− a + b

2
) + f ′′(η1)(a− b)2/4,

f(a) = f(
a + b

2
) + f ′(

a + b

2
)(a− a + b

2
) + f ′′(η2)(a− b)2/4,

where a < η2 < (a+b)/2 < η1 < b. The lemma then follows by noticing f ′′′(x) ≥ 0 for x ∈ [a, b]. �

Lemma 2.4. If s ≥ 1, then

(2.6)
n∑

i=1

is ≥ s

s + 1
ns(n + 1)s

(n + 1)s − ns
.

Proof. This is a result of V. Levin and S. Stečkin, see Lemma 2 on page 18 in [11]. �
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3. Applications of Cartlidge’s Theorem

We say a weighted mean matrix A given by (1.2) is generated by a logarithmico-exponential
function if for all sufficiently large n, λn := l(n), where l(x) is a positive logarithmico-exponential
function and a logarithmico-exponential function on [x0,∞] is defined by Hardy[9] as a real valued
function defined by a finite combination of ordinary algebraic symbols(viz, +,−,×,÷, n

√) and the
functional symbols log(·) and e(·), operating on real variable x and on real constants.

We note first the following theorem of F. Cass and W. Kratz[8]:

Theorem 3.1. Let 1 < p < ∞ be fixed. Let A be a weighted mean matrix given by (1.2). Suppose
limn→∞ Λn/nλn = L < p, then p/(p− L) ≤ ||A||p,p.

It is easy to see limn→∞ nα−1/(nα− (n− 1)α) = 1/α and the simplest Euler-Maclaurin formulae
gives:

n∑
i=1

f(i) =
∫ n

1
f(x)dx + f(1) +

∫ n

1
(x− [x])f ′(x)dx,

for f having continuous derivative f ′, where [x] denote the largest integer not exceeding the real
number x. It then follows

n∑
i=1

iα−1 = nα/α + o(nα).

Thus thanks to Theorem 3.1, we know if (1.4)-(1.5) hold for some α > 0, p > 1, αp > 1 then the
constants (αp/(αp− 1))p are best possible.

Now we apply Cartlidge’s Theorem to get

Corollary 3.1. Inequality (1.4) holds for p > 1, α ≥ 2, αp > 1 and the constant there is best
possible.

Proof. Apply Theorem 1.3 with λi = iα − (i− 1)α. We define f(x) = xα/(xα − (x− 1)α), x ≥ 1 so
that Λi+1/λi+1 − Λi/λi = f(i + 1)− f(i) = f ′(ξ), 1 ≤ i < ξ < i + 1, with

0 < f ′(ξ) =
αξα−1(ξ − 1)α−1

(ξα − (ξ − 1)α)2
≤ 1

α
,

where the last inequality follows from Lemma 2.3 and the arithmetic-geometric inequality, since for
α ≥ 2,

ξα − (ξ − 1)α ≥ α(
ξ + (ξ − 1)

2
)α−1 ≥ α(ξ(ξ − 1))(α−1)/2.

This completes the proof. �

We note the corollary implies (1.7) for α ≥ 2. Now if we apply Theorem 1.3 to (1.5), we need to
show

n+1∑
i=1

iα−1/(n + 1)α−1 −
n∑

i=1

iα−1/nα−1 = 1 + (
1

(n + 1)α−1
− 1

nα−1
)

n∑
i=1

iα−1 ≤ 1/α.

The second inequality above follows from Lemma 2.4 and we get

Corollary 3.2. Inequality (1.5) holds for p > 1, α ≥ 2, αp > 1 and the constant there is best
possible.
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4. Generalizations of Redheffer’s Results

Theorem 4.1. Assume the same conditions in Lemma 2.1 and let 0 < p < 1 be fixed. Suppose
there exists a positive constant c such that c−1 + 1 ≤ c−1/p and

(4.1) c ≤ 1− p + (1− p)(λ−q
i − λ−q

i−1)Λi−1λ
q/p
i , i ≥ 2.

Then for 0 < p < 1,

(4.2)
∞∑
i=1

(Si/Λi)1/p ≤ c−1/p
∞∑
i=1

a
1/p
i .

Proof. It suffices to prove the theorem for any integer n ≥ 1. We note first the condition (4.1) is
equivalent to

(4.3) q−1(1− c−1 + c−1Λi−1λ
q/p
i (λ−q

i−1 − λ−q
i )) ≥ 1, i ≥ 2.

By setting ηi = λ
−1/p
i , µq

i = λ
−q/p
i + Λi−1/cλq

i−1 in (2.1), we can rewrite the left-hand side of
(2.1) as

(1− c−1/q)a1/p
1 +

n−1∑
i=2

[(λ−q/p
i + Λi−1/cλq

i−1)
1/q − (Λi/cλq

i )
1/q]S1/p

i + µnS1/p
n .

By the mean value theorem,

(λ−q/p
i + Λi−1/cλq

i−1)
1/q − (Λi/cλq

i )
1/q ≥ q−1(λ−q/p

i + Λi−1/cλq
i−1 − Λi/cλq

i )(Λi/cλq
i )
−1/p

= q−1(1− c−1 + c−1Λi−1λ
q/p
i (λ−q

i−1 − λ−q
i ))(Λi/c)−1/p

≥ (Λi/c)−1/p.

Here the last inequality follows from (4.3). Thus (2.1) becomes
n∑

i=1

(Si/λi)1/p ≤ (c−1 + 1)a1 + c−1/p
n∑

i=2

ai ≤ c−1/p
n∑

i=1

ai.

This completes the proof. �

We note here if 0 < λ1 ≤ λ2 ≤ · · · , we can take c = 1 − p in (4.1) and one checks easily for
0 < p < 1, (1− p)−1 + 1 < (1− p)−1/p. Theorem 4.1 then implies Theorem 1.2.

We also note the constant given by the above theorem may be less satisfactory. For example the
case α = 2, p = 2 in (1.4) corresponds to the case λi = 2i − 1, p = 1/2, c = 3/4 in (4.2). However,
direct calculation shows (4.1) is not satisfied in this case. Of course one may try to prove directly

(λ−q/p
i + Λi−1/cλq

i−1)
1/q − (Λi/cλq

i )
1/q ≥ (Λi/c)−1/p.

But one checks this fails for i = 2.
Similarly, the case α = 2, p = 2 in (1.5) corresponds to the case λi = i, p = 1/2, c = 3/4 in (4.2).

One checks in this case (4) holds for i ≥ 2. However, c−1 +1 = 7/3 > 16/9 = c−2, so the coefficient
of a1 is slightly larger.

Now we focus our attention to Carleman-type inequalities.

Theorem 4.2. Assume the same conditions in Lemma 2.2 and let f(x) be a real valued function
defined for x ≥ 2 such that f(n) = Λn/λn for n ≥ 2 and 0 ≤ f(x+1)−f(x) ≤ 1/α for some α > 0.
If (1 + Λ1

λ2
) ≤ e1/α for the same α then

(4.4)
∞∑

n=1

(
n∏

i=1

aλi
i )1/Λn ≤ (1 +

Λ1

λ2
)a1 +

n∑
i=2

ai(1 +
f(i + 1)− f(i)

f(i)
)f(i) ≤ e1/α

∞∑
n=1

an.
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Proof. It suffices to prove the theorem for any integer n ≥ 2. Set µi = f(i + 1)/f(i) in Lemma 2.2
we get

n∑
i=1

Gi ≤
n−1∑
i=1

Gi + f(n + 1)GN ≤ (1 +
Λ1

λ2
)a1 +

n∑
i=2

ai(1 +
f(i + 1)− f(i)

f(i)
)f(i) ≤ e1/α

∞∑
n=1

an,

by the conditions of the theorem and this completes the proof. �

Apply Theorem 4.2 to λ1 = 1, λi = αi−1 − αi−2, i ≥ 2 for some α > 1, then f(x) = α/(α − 1)
and we get

Corollary 4.1. For α > 1,

(4.5)
∞∑

n=1

(a1

n∏
k=2

aαk−1−αk−2

k )1/αn−1 ≤ (1 +
1

α− 1
)a1 +

∞∑
n=2

an.

Apply Theorem 4.2 to λi = αi, i ≥ 1 for some α > 0, then f(i + 1)− f(i) = α−i and we get

Corollary 4.2. For α > 0,

(4.6)
∞∑

n=1

(
n∏

k=1

aαk−1

k )(α
n−1)/(α−1) ≤ (1 +

1
α

)a1 +
∞∑

n=2

e1/αn
an ≤

∞∑
n=1

e1/αn
an.

We end the paper by noting that if we take λi = (i(i + 1))−1 in Theorem 4.2, then f(x) = x2

and we get back a result of Redheffer(see [14]page 693):

Corollary 4.3.

(4.7)
∞∑

n=1

(
n∏

k=1

a1/k(k+1))(n+1)/n ≤
∞∑

n=1

e2nan.
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