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PRE-GRUSS TYPE INEQUALITIES IN INNER PRODUCT
SPACES

S.S. DRAGOMIR, J. E. PECARIC, AND B. TEPES

ABSTRACT. Some pre-Griiss type inequalities in real or complex inner product
spaces and applications for integrals are given.

1. INTRODUCTION
Let f, g be two functions defined and integrable on [a, b]. Assume that
p<f(r)<® and y<g(2x) <T

for each = € [a, b], where @, ®, , [ are given real constants. Then the following
inequality is well known in the literature as the Griiss inequality ([4, pp. 296])

2o [ s@oma i [wae 52 [owa:

1
<P —o|- D —n].
_4| @l - T =]

In this inequality, G. Griiss has proven that, the constant % is the best possible in
the sense that it cannot be replaced by a smaller one, and is achieved for

f(x)g(x)sgn(x“jb)

Recently, S. S. Dragomir has proved the following Griiss’ type inequality in real
or complex inner product spaces [1].

Theorem 1. Let (H,(-,-)) be an inner product space over K, (K=R,C) and e €
H, |le|| = 1. If ¢,7,®,T are real or complex numbers and x,y are vectors in H
such that the conditions

Re(Pe —z,2 — pe) >0 and Re(Te—z,2—ve) >0,

hold, then we have the inequality
1
(1.1) o, y) — (@) e, y)| < 712 = o[ -[T =]

The constant % s best possible in sense that it cannot be replaced by a smaller
constant.

In [2], by using the following lemmas
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Lemma 1. Let x,e € H with |le|]| =1 and §, A € K with 6 # A. Then
Re (Ae —z,z —de) >0

if and only if
I+ A 1
——e|| <z |A-4
ot BN
and
Lemma 2. Let z,e € H with ||e|| = 1. Then one has the following representation
2 2. 2
0 < lz]” = [{z, e} = inf |z —Ae|”,
€K
the author gave an alternative proof for (1.1) and also obtained the following

refinement of it, namely

Theorem 2. Let (H,{.,.)) be an inner product space over K(K=R,C) and e €
H, el = 1. If o,7,®,T are real or complex numbers and x,y are vectors in H such
that either the conditions

Re (Pe — z, 2 — ge) > 0, Re(Te —y,y — ve) > 0,
or equivalently,

_et®
2

hold, then we have the inequality
|<x,y) - <$C,6> <e7y>|
1
< 712 = ¢l T =] = [Re(Pe — 2,2 — pe)]

1
<[=]|P—¢| ' — .
< (jlo-vl-r-a)

The constant % is best possible.

X

1 v+T
EET N R

1
<=0 -
5 H_2| 1,

N=
N

[Re (Te — y,y — ve)]

Further, as a generalization for orthonormal families of vectors in inner product
spaces, S.S. Dragomir proved, in [3], the following reverse of Bessel’s inequality:

Theorem 3. Let {e;}, i € I be a family of orthonormal vectors in H, F a finite
part of I, p;, ®; € K, i € F and and x is vector in H such that either the condition

Re <Z de; —x, x — ngiei> >0,

i€F ieF

or equivalently,

1 2\
§2<Z|@i%‘|> ;

i€l

p e,

icF

holds, then we have the following reverse of Bessel’s inequality

(12) el = Sl el < 21— = 3 [P

2 <x’ ei>
i€l i€EF i€l

2

The constant % is best possible.
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The corresponding Griiss’ type inequality is embodied in the following theorem:

Theorem 4. Let {e;};.; be a family of orthornormal vectors in H, F a finite part
of I, ¢;,7;,P;, I e R (i € F), and x,y € H. If either

Re <i e, —x,x — i¢iei> >0,
i=1 i=1

Re <Zn: Liei —y,y — i7i€i> >0,
i=1 =1

or, equivalently,

1

®; + ¢, 1 2\

x—ZTEi §2<Z|‘bi—¢i> )
i€F i€EF

1

i+, 1 )’

by < (Tnr)
i€F ieF

hold true, then

n

0< [{z,y) — Z (w,e;) (e, y)
(o) ()

®; + ¢,

- Z —(z,e;)

el

< (En-or) (e

The constant i 18 best possible in the sense that it cannot be replaced by a smaller
constant.

2

i+
\ (e

The main aim of this paper is to provide some similar inequalities which, pro-
viding refinements of the usual Griiss’ inequality, are known in the literature as
pre-Griiss type inequalities. Applications for Lebesgue integrals in general measure
spaces are also given.

2. PRE-GRUSS INEQUALITIES IN INNER PRODUCT SPACES
We start with the following result:

Theorem 5. Let (H,(-,-)) be an inner product space over K, (K=R,C) and e €
H, |e|l| = 1. If ¢,® are real or complex numbers and x,y are vectors in H such
that either the condition

Re (®e — z,2 — pe) > 0,

or equivalently,

12—,

-5t
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holds true, then we have the inequalities

@D e - e el < el (WP - 1. o)
and
03) e - el < S1o—¢l- Iyl

Nl

— (Re (Pe —z, 2 — @e))? - [(y, €)].

Proof. Tt is obvious that:
<I7y> - <£L',6> <67y> = <£L' - <.CC,6> €Yy — <ya€> 6) .

Using Schwarz’s inequality in inner product spaces |(u, v)| < ||u||-||v| for the vectors
x — (x,e)e and y — (y, e) e, we deduce:

24)  |oy) — (@) e < (Jol’ = K P ) - (Il = I, o)

Now, the inequality (2.2) is a simple consequence of (1.1) for z = y, or of Lemma

2 and (2.1).
Since (see for instance [1]),
(2.5) lz]* = (z, ¢)?

= Re((®—(z,¢) ((e; x) — @) —Re(Pe -z, 2 — pe),

then making use of the elementary inequality 4 Re (aE) < |a—|—b|2 with a,b €
K (K=R,C), we can state that

(26) Re ((® — (r, ) - (e, )~ §)) < { |® — ol
Using (2.5) and (2.6) we have

1 2 1\ 2
@ ol -l o < (10— el) - ((Re@e—z - pe?)”

Taking into account the inequalities (2.4) and (2.7), we get that

[z — (2, e)e, y = (y, e) e)

< ((; | — 4p|>2 — ((Re (Pe —x, 1 — cpe})é)2> : (||yH2 - |<y,e>|2) .

Finally, using the elementary inequality for positive real numbers:

(2.8) (m* = n?) - (1* = ¢%) < (mp —ng)”

we have:
1 ? 12 2 2
<<2<I><PI) — ((Re (e — 2, 2 — pe))?) >'(y|| ~ 1 e)l?)
1 1 2
< (310 = ¢l Il - (Re(@e — .o = we)? [t 0 )
giving the desired inequality (2.3). d

A similar version for Bessel’s inequality is incorporated in the following theorem:
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Theorem 6. Let {e;};.;, be a family of orthonormal vectors in H, I a finite part

of I, v;, ®; € K, i € F and and x,y are vectors in H such that either the condition

Re <Z Pie; —x, v — ngiei> >0,

i€l i€EF

or equivalently,

] 3
2
§2<§ |‘I)i—<Pi|>

icF

|5 oe,

icF

holds. Then we have inequalities

(29) (o) = 3 () fenr)
ieF
;(23@ ) <|y|| =S i, e )
ieF el
and
(210) ) = Y e feir )
i€l
2(2@-—%2) lyll
Qi+ o;

(ghse-wnl) )’

Proof. It is obvious (see for example [3]) that :
<£L'7 y> - Z <$7 ei> <ei7 y> = <$ - Z <$7 ei) €i, Y — Z <ya ei> ei> .
i€F i€l i€F

Using Schwarz’s inequality in inner product spaces, we have:

(2.11) ‘<x—z<z, ;) e, y—Z(y, e;) ei>

2

i€F i€F
2 2
= x_Z@,@i)@i x—z<y;€i>€z
i€F i€l

(le =l e ) : (@/II2 > Iy, 6¢>I2> :
ieF i€F

In a similar manner to the one in the proof of Theorem 5 we may conclude that
(2.9) holds true.
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Now, using (1.2) and (2.11) we also have:

2
<:I: - Z <$7 ei> €i, Y — Z <y7 e’i> ei>
i€F ieF
1\ 2 9 1 2
<[s((zweer) ) - ((z]5% - wa))
i€l icF
2 2
x <|y|| —> 1y, el >
i€k
Finally, utilizing the elementary inequality (2.8), we have
(2.12)
1\ 2 1
H(Twear) ) - (B2
i€k icF
2 2
X (llyl > Ny, el )
icF
1 1 2
1 2\’ 2 ;i + @i 7\ ° 2
<13 Z|@i*<ﬂi| yll” - Z lT*@, e;) -Z\(y, el
i€F ic€F ieF

which gives the desired result (2.10). O

Another pre-Griiss type inequality associated to orthonormal families in inner
product spaces is incorporated in the next theorem.

Theorem 7. Let {e;}, i € I be a family of orthonormal vectors in H, F a finite
part of I, ¢;, ®; € K, i € F and x,y vectors in H such that either the condition

Re <Z Pie; —x, x — ngiei> >0,

ieF ieF

or equivalently,

1 5\~
§2<Z|‘I)i%'|> )

i€l

s e,

ieF

holds. Then we have inequalities

(@) =Y (z,ei) (eiy)

icF

D; + o,
2

<

— (@, e)| [(y, ed)l-

N |

(z o m)é S

i€EF el
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Proof. Using Schwarz’s inequality (2.11) with the reverse of Bessel’s inequality (1.2)
we have:

|<I - Z (x, €;) e, y — Z (y, e) €i>

i€l i€EF

2

< Qmﬁ—ijmmmﬁ-omﬁ—zywxmﬁ
i€l i€l
< (ig]@—wf—ijiym—@xa> (w §]yx1>.
i€F i€F i€l

Further, on utilizing Aczél’s inequality [4, p. 117] for two sequences of real numbers
a=(a,..., a,) and b= (by,..., b,) such that a? —a3 —---—a2 > 0 or b3 — b3 —
- —b2 > 0, that is

(a%fa§—~~~fai) (bffb§—~~—bi) < (alblfagbgf"'*anbn)Z,
we have
1 2 o; + D; 2 2 2
<4Z | — il " = e |- lvl” - >y, e
i€F i€F i€F
1 2
2
©; + @i
(Z [®; — ;] ) lyll — Z Tl — (@, e:)| Ky, el
1€EF 1€EF
This completes the proof. O

3. APPLICATIONS FOR INTEGRALS

Let (92, 3, 1) be a measure space consisting of a set 2, ¥ a oc—algebra of parts
and p a countably additive and positive measure on ¥ with values in R U {co}.
Denote by L2 (Q,K) the Hilbert space of all real or complex valued functions f
defined on 2 and 2-integrable on 2, i. e.

Auwﬁmmg<w

The following proposition holds.

Proposition 1. If f, g, h € L? (0, K) and o, ® € K, are such that [, |h (s )P dp (s) =
and, either

(3.1) /Re ((@h(s) = £ (5)) (f (s)=Zh(s))) dp(s) 0,

Q

or, equivalently,

-

2 2
£~ T En ) mwﬁ <gle—gl,

1
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holds, then we have the inequalities

5)3(s) du (s /f i (5) du )/h()()du(S)

h(s) g (s)dp(s)

)

and

X

Proof. The proof follows by Theorem 5 on choosing H = L? (£, K) with the inner

product
9= [ 169 dus).
Q

Remark 1. We observe that, a sufficient condition for the condition (3.1) to hold,
1s that

(3.2) Re (®h(s) — f (5)) (f(s)—ph(s)) >0,
for u—a.e. s € Q.

If the functions are real-valued, then, for ® and ¢ real numbers, a sufficient
condition for (3.2) to hold is

Dh(s) = f(s) = ph(s)

O

for u—a.e. s € Q.
In this way we can see the close connection that exists between the classical Griiss
inequality and the results we obtained above.

)

Now, consider the family {f;},.; of functions in L?(Q,K) with the properties
that

/fzfi(S)Tj(S)du(S)=5ij7 ijel,

where 0;; is 0 if ¢ # j and 0;; = 1 if i = j. {fi},c; is an orthornormal family in
L? (Q,K).
The following proposition holds.

Proposition 2. Let {fi};,.; be an orthornormal family of functions in L? (Q,K),
F a finite subset of I, ¢;,®; € K (i € F) and f € L? (Q,K), so that either

o) | (Seves0) (T Xaze)| a0
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or, equivalently,

2
D; + ¢, 1 2
AR S ACI R ACESD S
1€EF i€F
holds. Then we have the inequalities

/Q F8) @) - Y / £ ()T () dia () / £ ()9 (du (s)

1/2

i€l
1/2 2\ 1/2
1 2 2
<g(Zw-ar) | [u@rae-X|[o@F6me
and
[ @366 =3 [ T [ 56 7Ein)
) 1/2 1/2
< 3(Zmor) ([oorae)
2\ 1/2 2
-(XP5% - [romeae)| ) (S]] 16FE@dme

The proof is obvious by Theorem 7 and we omit the details.

Remark 2. In the real case, we observe that a sufficient condition for (3.3) to
hold, is that

D Vifi(s) = [ ()= ¢ifi(s)
ik icF
for p—a.e. s €. ) )
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