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THREE INEQUALITIES INVOLVING HYPERBOLICALLY
TRIGONOMETRIC FUNCTIONS

CHAO-PING CHEN, JIAN-WEI ZHAO, AND FENG QI

Abstract. In the short note, by using mathematical induction and infinite

product representations of the cosine function, hyperbolic sine function and
hyperbolic cosine function, three inequalities for the cosine function, hyperbolic

sine function and hyperbolic cosine function are established.

1. Introduction

It is well-known that the following

2
π
≤ sinx

x
≤ 1, |x| ∈

(
0,

π

2

]
; (1)

is called Jordan’s inequality [8, p. 42].
Kober’s inequality is given in [5] and [6, p. 317] as follows:

cos x ≥ 1− 2
π

x, x ∈
[
0,

π

2

]
. (2)

For
π

2
< x < π, inequality (2) reverses.

These two inequalities are basic inequalities in calculus and in trigonometry.
In [12], R. Redheffer established that

sinx

x
≥ π2 − x2

π2 + x2
, x ∈ (−∞,+∞). (3)

The inequality (3) and Jordan’s inequality (1) do not imply each other.
The study of Jordan’s and Kober’s inequality and inequalities of trigonometric

functions has a rich literature, for example, [1, 2, 4, 6, 7, 8, 9, 10, 11] and references
therein. There are many refinements, extensions, and variants of them, each based
on a different principle, or at least using a different device. A much complete list
of references in recent years can be found in [2].

In this note, by using mathematical induction and infinite product representa-
tions of cos x, sinhx and coshx, three inequalities for the cosine function, hyper-
bolic sine function and hyperbolic cosine function, which are similar to Redheffer’s
inequality (3), are established.
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Theorem 1. If |x| ≤ 1
2 , then

cos(πx) ≥ 1− 4x2

1 + 4x2
, (4)

cosh(πx) ≤ 1 + 4x2

1− 4x2
. (5)

If 0 < |x| < 1, then
sinh(πx)

πx
≤ 1 + x2

1− x2
. (6)

2. Proof of Theorem 1

Proof of inequality (4). It is sufficient to prove inequality (4) for 0 < x < 1
2 .

In [3, p. 193], the following product representation is given

cos(πx) =
∞∏

n=1

(
1− 4x2

(2n− 1)2

)
. (7)

Set

Fn =
n∏

k=2

(
1− 4x2

(2k − 1)2

)
, n = 2, 3, . . . . (8)

Then we have

cos(πx) =
1− 4x2

1 + 4x2

[
(1 + 4x2) lim

n→∞
Fn

]
(9)

and

Fn+1 = Fn

(
1− 4x2

(2n + 1)2

)
, n = 2, 3, . . . . (10)

Using mathematical indunction, we can prove the following

(1 + 4x2)Fn > 1 +
4x2

2n− 1
, n = 2, 3, . . . . (11)

In fact, for n = 2, we have

(1 + 4x2)F2 −
(

1 +
4
3
x2

)
= (1 + 4x2)

(
1− 4

9
x2

)
−

(
1 +

4
3
x2

)
=

20
9

x2 − 16
9

x4

> 0,

(12)

that is

(1 + 4x2)F2 > 1 +
4
3
x2. (13)

Therefore, inequality (11) holds for n = 2.
Suppose inequality (11) holds for some m ≥ 2, that is

(1 + 4x2)Fm > 1 +
4x2

2m− 1
. (14)
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Then we have

(1 + 4x2)Fm+1 −
(

1 +
4x2

2m + 1

)
= (1 + 4x2)Fm

(
1− 4x2

(2m + 1)2

)
−

(
1 +

4x2

2m + 1

)
>

(
1 +

4x2

2m− 1

) (
1− 4x2

(2m + 1)2

)
−

(
1 +

4x2

2m + 1

)
=

4(2m + 3− 4x2)x2

(2m− 1)(2m + 1)2

> 0,

(15)

that is

(1 + 4x2)Fm+1 > 1 +
4x2

2m + 1
. (16)

By induction, inequality (11) follows.
Further, since

lim
n→∞

(1 + 4x2)Fn ≥ 1, (17)

combining (9) with (17) yields (4). The proof is complete. �

Proof of inequality (5). It suffices to prove inequality (5) holds for 0 < x < 1
2 .

It is well-known [3, p. 193] that

cosh(πx) =
∞∏

n=1

(
1 +

4x2

(2n− 1)2

)
. (18)

Let

Qn =
n∏

k=2

(
1 +

4x2

(2k − 1)2

)
, n = 2, 3, . . . . (19)

Then we have

cosh(πx) =
1 + 4x2

1− 4x2

[
(1− 4x2) lim

n→∞
Qn

]
, (20)

and

Qn+1 = Qn

(
1 +

4x2

(2n + 1)2

)
, n = 2, 3, . . . . (21)

Using mathematical induction, we can prove the following

(1− 4x2)Qn < 1− 4x2

2n− 1
, n = 2, 3, . . . . (22)

In fact, for n = 2, we have

(1− 4x2)Q2 −
(

1− 4
3
x2

)
= (1− 4x2)

(
1 +

4
9
x2

)
−

(
1− 4

3
x2

)
= −20

9
x2 − 16

9
x4

< 0,

(23)
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that is,

(1− 4x2)Q2 < 1− 4
3
x2. (24)

Therefore, inequality (22) holds for n = 2.
Suppose inequality (22) holds for some m ≥ 2, that is

(1− 4x2)Qm < 1− 4x2

2m− 1
. (25)

Then we have

(1− 4x2)Qm+1 −
(

1− 4x2

2m + 1

)
= (1− 4x2)Qm

(
1 +

4x2

(2m + 1)2

)
−

(
1− 4x2

2m + 1

)
<

(
1− 4x2

2m− 1

) (
1 +

4x2

(2m + 1)2

)
−

(
1− 4x2

2m + 1

)
= − 4

(
2

(2m− 1)(2m + 1)
− 1

(2m + 1)2

)
x2 − 16x2

(2m− 1)(2m + 1)2

< 0,

(26)

that is

(1− 4x2)Qm+1 < 1− 4x2

2m + 1
. (27)

By induction, inequality (22) follows.
It is easy to see that

lim
n→∞

(1− 4x2)Qn ≤ 1. (28)

Combining (20) with (28) yields inequality (5). The proof is complete. �

Proof of inequality (6). It is sufficient to prove that inequality (6) holds for 0 <
x < 1.

It is well-known [3, p. 193] that

sinh(πx)
πx

=
∞∏

n=1

(
1 +

x2

n2

)
. (29)

Setting

Pn =
n∏

k=2

(
1 +

x2

k2

)
, n = 2, 3, . . . , (30)

then we have
sinh(πx)

πx
=

1 + x2

1− x2

[
(1− x2) lim

n→∞
Pn

]
, (31)

and

Pn+1 = Pn

[
1 +

x2

(n + 1)2

]
, n = 2, 3, . . . . (32)

Using mathematical induction, it is easy to prove that

(1− x2)Pn < 1− x2

n
, n = 2, 3, . . . . (33)
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In fact, for n = 2, we have

(1− x2)P2 −
(

1− x2

2

)
= (1− x2)

(
1 +

x2

4

)
−

(
1− x2

2

)
= −x2

4
− x4

4
< 0,

(34)

that is,

(1− x2)P2 < 1− x2

2
. (35)

Therefore, inequality (33) holds for n = 2.
Suppose inequality (33) holds for some m ≥ 2, that is

(1− x2)Pm < 1− x2

m
. (36)

Then we have

(1− x2)Pm+1 −
(

1− x2

m + 1

)
= (1− x2)Pm

(
1 +

x2

(m + 1)2

)
−

(
1− x2

m + 1

)
<

(
1− x2

m

) (
1 +

x2

(m + 1)2

)
−

(
1− x2

m + 1

)
= −

(
1

m(m + 1)
− 1

(m + 1)2

)
x2 − x4

m(m + 1)2

< 0,

(37)

that is,

(1− x2)Pm+1 < 1− x2

m + 1
. (38)

By induction, inequality (33) holds.
Further, since

lim
n→∞

(1− x2)Pn ≤ 1, (39)

from (31), inequality (6) follows. �
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