

Self Sharpening Inequality

This is the Published version of the following publication

Hassani, Mehdi (2003) Self Sharpening Inequality. RGMIA research report collection, 6 (3).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17852/

SELF SHARPENING INEQUALITY

MEHDI HASSANI

ABSTRACT. In this note we analyze the following inequality that is observed in the study of the density of n^{th} -power free integers

$$\left|\frac{x}{\zeta(n)} - f_n(x)\right| < \frac{\sqrt[n]{x}}{n-1} + \left(\frac{\sqrt[n]{x}}{\zeta(2)} - 1\right) + \left(1 + \frac{1}{\zeta(2)}\right) \sum_{i=1}^M x^{\frac{1}{n2^i}} + 2x^{\frac{1}{n2^{M+1}}} \qquad (M \in \mathbb{N}),$$

in which $f_n(x)$ is the number of n^{th} -power free positive integers $\leq x$. We show that the above inequality is *self sharpening* and then we compute the order of its sharpening.

1. INTRODUCTION AND MOTIVATION

Let \mathbb{P} be the set of all primes and suppose N is a positive integer, with the following prime factoring:

$$\mathbf{N} = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k} \quad (p_1, p_2, \cdots, p_k \in \mathbb{P}).$$

We say that N, is n^{th} -power free if all α_i 's are less than n. Let $f_n(x)$ be the number of n^{th} -power frees $\leq x$. It is well-known that the density of n^{th} -power free integers is $\frac{1}{\zeta(n)}$, or equivalently

$$f_n(x) \sim \frac{x}{\zeta(n)} \quad (x \to \infty),$$

such that $\zeta(s) = \sum_{m=1}^{\infty} \frac{1}{m^s}$. In fact, we have

$$f_n(x) = \frac{x}{\zeta(n)} + O(\sqrt[n]{x}),$$

and the stronger result

(1.1)
$$\left|\frac{x}{\zeta(n)} - f_n(x)\right| < \frac{n}{n-1}\sqrt[n]{x} - 1.$$

In particular,

$$f_2(x) < \frac{x}{\zeta(2)} + \sqrt{x} - 1.$$

As you will see soon, during the proof of (1.1) we use $\left|\frac{x}{\zeta(n)} - f_n(x)\right| < \sum_{1 < k \le \sqrt[n]{x}} |\mu(k)| + \frac{\sqrt[n]{x}}{n-1}$ and $\sum_{1 < k \le \sqrt[n]{x}} |\mu(k)| < \sqrt[n]{x} - 1$, in which μ is the well-known *Mobius Function* and defined by

$$\mu(m) = \begin{cases} 1 & m = 1; \\ (-1)^k & m = p_1 p_2 \cdots p_k; \\ 0 & \text{otherwise.} \end{cases}$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 39B72, 26D15, 26D20.

Key words and phrases. Self sharpening inequality, Square free integer, n^{th} -power free integer, Density.

MEHDI HASSANI

Since the function $\mu(k)$ vanishes if k is not square free, we can claim that

$$\sum_{1 < k \le \sqrt[n]{x}} |\mu(k)| \le f_2(\sqrt[n]{x}) < \frac{\sqrt[n]{x}}{\zeta(2)} + \sqrt[2^n]{x} - 1.$$

The obtained bound for $\sum_{1 \le k \le \sqrt[n]{x}} |\mu(k)|$ is sharper than $\sqrt[n]{x} - 1$. Thus, (1.1) becomes sharper as follows:

(1.2)
$$\left| \frac{x}{\zeta(n)} - f_n(x) \right| < \frac{\sqrt[n]{x}}{n-1} + \frac{\sqrt[n]{x}}{\zeta(2)} + 2\sqrt[n]{x} - 1.$$

By using (1.2) we have

$$f_2(x) < \frac{x}{\zeta(2)} + \left(1 + \frac{1}{\zeta(2)}\right)\sqrt{x} + 2\sqrt[4]{x} - 1,$$

and repeating above method we obtain,

$$\left|\frac{x}{\zeta(n)} - f_n(x)\right| < \frac{\sqrt[n]{x}}{n-1} + \frac{\sqrt[n]{x}}{\zeta(2)} + \left(1 + \frac{1}{\zeta(2)}\right)^{2n}\sqrt[n]{x} + 2\sqrt[4n]{x} - 1.$$

This process leads us to the following definition:

Definition 1 (Self Sharpening Inequality). We say that an inequality is self sharpening, if it sharp itself!

In the next section we continue above method to show that (1.1) is self sharpening.

2. Proofs and Self Sharpening Inequality

For a proof of (1.1), we note that

$$\sum_{m=1}^{\infty} \frac{\mu(m)}{m^s} = \frac{1}{\zeta(s)}.$$

Now, by a counting we have

$$f_n(x) = x - \sum_{p \in \mathbb{P}} \left\lfloor \frac{x}{p^n} \right\rfloor + \sum_{p,q \in \mathbb{P}, p \neq q} \left\lfloor \frac{x}{(pq)^n} \right\rfloor - \dots = \sum_{k \leq \sqrt[n]{x}} \mu(k) \left\lfloor \frac{x}{k^n} \right\rfloor.$$

and so,

$$\left|\frac{x}{\zeta(n)} - f_n(x)\right| = \left|\sum_{1 < k \le \sqrt[n]{x}} \mu(k) \left(\frac{x}{k^n} - \left\lfloor\frac{x}{k^n}\right\rfloor\right) + \sum_{k > \sqrt[n]{x}} \mu(k) \frac{x}{k^n}\right|$$
$$< \sum_{1 < k \le \sqrt[n]{x}} |\mu(k)| + x \sum_{k > \sqrt[n]{x}} \frac{1}{k^n}$$
$$< \sqrt[n]{x} - 1 + x \int_{\sqrt[n]{x}}^{\infty} \frac{ds}{s^n} = \frac{n}{n-1}\sqrt[n]{x} - 1.$$

Now, we show that (1.1) is self sharpening.

Theorem 1. For all $M \in \mathbb{N}$ the inequality

$$(2.1) \quad \left|\frac{x}{\zeta(n)} - f_n(x)\right| < \frac{\sqrt[n]{x}}{n-1} + \left(\frac{\sqrt[n]{x}}{\zeta(2)} - 1\right) + \left(1 + \frac{1}{\zeta(2)}\right) \sum_{i=1}^M x^{\frac{1}{n^{2^i}}} + 2x^{\frac{1}{n^{2^{M+1}}}},$$

is self sharpening and the order of its sharpening is

$$O\left(x^{\frac{1}{n2^{M+1}}}\right).$$

Proof. The inequality (2.1) yields by induction on M and using (1.1). Now, let U(M) be the right side of (2.1);

x 6

$$U(M) = \frac{\sqrt[n]{x}}{n-1} + \left(\frac{\sqrt[n]{x}}{\zeta(2)} - 1\right) + \left(1 + \frac{1}{\zeta(2)}\right) \sum_{i=1}^{M} x^{\frac{1}{n2^{i}}} + 2x^{\frac{1}{n2^{M+1}}}.$$

Now, we have

(2.2)
$$\Delta U(M) := U(M) - U(M+1) = \left(1 - \frac{1}{\zeta(2)}\right) x^{\frac{1}{n^2 M + 1}} - 2x^{\frac{1}{n^2 M + 2}}.$$

For $x > \left(\frac{2}{1-\frac{1}{\zeta(2)}}\right)^{n2^{M+1}}$ we easily have $\Delta U(M) > 0$; which means that (2.1) is self sharpening. Also, according to (2.2), we have

$$\Delta U(M) = O\left(x^{\frac{1}{n2^{M+1}}}\right),$$

which is the order of sharpening.

As you see, the idea of sharpening (1.1) and (2.1) comes from noting the definition of the Mobius function and applying them for n = 2.

3. Acknowledgements

I would like to express my gratitude to Dr J. Rooin for his valuable comments.

References

[1] Razvan, Hassani and Pirayesh, $DENSITY OF n^{th}$ -POWER FREES, Submitted.

DEPARTMENT OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDIES IN BASIC SCIENCES, ZANJAN, IRAN

E-mail address: mhassani@iasbs.ac.ir