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ON BESSEL’S AND GRÜSS’ INEQUALITIES FOR
ORTHORNORMAL FAMILIES IN 2-INNER PRODUCT SPACES

AND APPLICATIONS

S.S. DRAGOMIR, Y.J. CHOF, S.S. KIM�, AND Y.-H. KIM

Abstract. A new counterpart of Bessel’s inequality for orthornormal families

in real or complex 2-inner product spaces is obtained. Applications for some
Grüss type results with applications for determinantal integral inequalities are

also provided.

1. Introduction

The concepts of 2-inner products and 2-inner product spaces have been inten-
sively studied by many authors in the last three decades. A systematic presentation
of the recent results related to the theory of 2-inner product spaces as well as an
extensive list of the related references can be found in [1]. Here we give the basic
definitions and the elementary properties of 2-inner product spaces.

Let X be a linear space of dimension greater than 1 over the field K = R of real
numbers or the field K = C of complex numbers. Suppose that (·, ·|·) is a K-valued
function defined on X ×X ×X satisfying the following conditions:

(2I1) (x, x|z) ≥ 0 and (x, x|z) = 0 if and only if x and z are linearly dependent,
(2I2) (x, x|z) = (z, z|x),
(2I3) (y, x|z) = (x, y|z),
(2I4) (αx, y|z) = α(x, y|z) for any scalar α ∈ K,
(2I5) (x + x′, y|z) = (x, y|z) + (x′, y|z).
(·, ·|·) is called a 2-inner product on X and (X, (·, ·|·)) is called a 2-inner product

space (or 2-pre-Hilbert space). Some basic properties of 2-inner product spaces can
be immediately obtained as follows [2]:

(1) If K = R, then (2I3) reduces to

(y, x|z) = (x, y|z).
(2) From (2I3) and (2I4), we have

(0, y|z) = 0, (x, 0|z) = 0
and also

(1.1) (x, αy|z) = ᾱ(x, y|z).

(3) Using (2I2)-(2I5), we have
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(z, z|x± y) = (x± y, x± y|z) = (x, x|z) + (y, y|z)± 2Re(x, y|z)
and

(1.2) Re(x, y|z) =
1
4
[(z, z|x + y)− (z, z|x− y)].

In the real case K = R, (1.2) reduces to

(1.3) (x, y|z) =
1
4
[(z, z|x + y)− (z, z|x− y)]

and, using this formula, it is easy to see that, for any α ∈ R,

(1.4) (x, y|αz) = α2(x, y|z).

In the complex case, using (1.1) and (1.2), we have

Im(x, y|z) = Re[−i(x, y|z)] =
1
4
[(z, z|x + iy)− (z, z|x− iy)],

which, in combination with (1.2), yields

(1.5) (x, y|z) =
1
4
[(z, z|x + y)− (z, z|x− y)] +

i

4
[(z, z|x + iy)− (z, z|x− iy)].

Using the above formula and (1.1), we have, for any α ∈ C,

(1.6) (x, y|αz) = |α|2(x, y|z).

However, for α ∈ R, (1.6) reduces to (1.4).
Also, from (1.6) it follows that

(x, y|0) = 0.

(4) For any three given vectors x, y, z ∈ X, consider the vector u = (y, y|z)x −
(x, y|z)y. By (2I1), we know that (u, u|z) ≥ 0 with the equality if and only if u and
z are linearly dependent. The inequality (u, u|z) ≥ 0 can be rewritten as,

(1.7) (y, y|z)[(x, x|z)(y, y|z)− |(x, y|z)|2] ≥ 0.

For x = z, (1.7) becomes

−(y, y|z)|(z, y|z)|2 ≥ 0,

which implies that

(1.8) (z, y|z) = (y, z|z) = 0

provided y and z are linearly independent. Obviously, when y and z are linearly
dependent, (1.8) holds too. Thus (1.8) is true for any two vectors y, z ∈ X. Now, if
y and z are linearly independent, then (y, y|z) > 0 and, from (1.7), it follows that

(1.9) |(x, y|z)|2 ≤ (x, x|z)(y, y|z).
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Using (1.8), it is easy to check that (1.9) is trivially fulfilled when y and z are linearly
dependent. Therefore, the inequality (1.9) holds for any three vectors x, y, z ∈ X
and is strict unless the vectors u = (y, y|z)x−(x, y|z)y and z are linearly dependent.
In fact, we have the equality in (1.9) if and only if the three vectors x, y and z are
linearly dependent.

In any given 2-inner product space (X, (·, · | ·)), we can define a function ‖ · | · ‖
on X ×X by

(1.10) ‖x|z‖ =
√

(x, x|z)

for all x, z ∈ X.
It is easy to see that this function satisfies the following conditions:
(2N1) ‖x|z‖ ≥ 0 and ‖x|z‖ = 0 if and only if x and z are linearly dependent,
(2N2) ‖z|x‖ = ‖x|z‖,
(2N3) ‖αx|z‖ = |α|‖x|z‖ for any scalar α ∈ K,
(2N4) ‖x + x′|z‖ ≤ ‖x|z‖+ ‖x′|z‖.
Any function ‖ · | · ‖ defined on X ×X and satisfying the conditions (2N1)-(2N4)

is called a 2-norm on X and (X, ‖ · | · ‖) is called a linear 2-normed space [5].
Whenever a 2-inner product space (X, (·, ·|·)) is given, we consider it as a linear
2-normed space (X, ‖ · | · ‖) with the 2-norm defined by (1.10).

Let (X; (·, ·|·)) be a 2-inner product space over the real or complex number field
K. If (fi)1≤i≤n are linearly independent vectors in the 2-inner product space X,

and, for a given z ∈ X, (fi, fj |z) = δij for all i, j ∈ {1, . . . , n} where δij is the
Kronecker delta (we say that the family (fi)1≤i≤n is z−orthonormal), then the
following inequality is the corresponding Bessel’s inequality (see for example [2])
for the z−orthonormal family (fi)1≤i≤n in the 2-inner product space (X; (·, ·|·)):

(1.11)
n∑

i=1

|(x, fi|z)|2 ≤ ‖x|z‖2

for any x ∈ X. For more details on this inequality, see the recent paper [2] and the
references therein.

The following reverse of Bessel’s inequality in 2-inner product spaces has been
obtained in [3]:

Theorem 1. Let {ei}i∈I , F, φi,Φi, i ∈ F and x, z ∈ X so that either
(i) Re

(∑
i∈F Φiei − x, x−

∑
i∈F φiei|z

)
≥ 0

or, equivalently,

(ii)
∥∥∥x−∑i∈F

φi+Φi

2 ei|z
∥∥∥ ≤ 1

2

(∑
i∈F |Φi − φi|

2
) 1

2

holds. Then we have the inequality:

0 ≤ ‖x|z‖2 −
∑
i∈F

|(x, ei|z)|2

≤ 1
4

∑
i∈F

|Φi − φi|
2 − Re

(∑
i∈F

Φiei − x, x−
∑
i∈F

φiei|z

)
(
≤ 1

4

∑
i∈F

|Φi − φi|
2

)
.
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The constant 1
4 is best possible.

The main aim of the present paper is to establish a different reverse inequality
for (1.11). Some companion results and applications for determinantal integral
inequalities are also given.

2. Another Reverse of Bessel’s Inequality

The following lemma holds.

Lemma 1. Let {ei}i∈I be a family of z-orthornormal vectors in X, F a finite part
of I, λi ∈ K, i ∈ F , r > 0 and x ∈ X. If

(2.1)

∥∥∥∥∥x−∑
i∈F

λiei|z

∥∥∥∥∥ ≤ r,

then we have the inequality

(2.2) 0 ≤ ‖x|z‖2 −
∑
i∈F

|(x, ei|z)|2 ≤ r2 −
∑
i∈F

|λi − (x, ei|z)|2 .

Proof. Consider

I1 :=

∥∥∥∥∥x−∑
i∈F

λiei|z

∥∥∥∥∥
2

=

x−
∑
i∈F

λiei, x−
∑
j∈F

λjej |z


= ‖x|z‖2 −

∑
i∈F

λi(x, ei|z)−
∑
i∈F

λi (x, ei|z) +
∑
i∈F

∑
j∈F

λiλj (ei, ej |z)

= ‖x|z‖2 −
∑
i∈F

λi(x, ei|z)−
∑
i∈F

λi (x, ei|z) +
∑
i∈F

|λi|2

and

I2 :=
∑
i∈F

|λi − (x, ei|z)|2 =
∑
i∈F

(λi − (x, ei|z))
(
λi − (x, ei|z)

)
=
∑
i∈F

[
|λi|2 + |(x, ei|z)|2 − λi (x, ei|z)− λi(x, ei|z)

]
=
∑
i∈F

|λi|2 +
∑
i∈F

|(x, ei|z)|2 −
∑
i∈F

λi (x, ei|z)−
∑
i∈F

λi(x, ei|z).

If we subtract I2 from I1, we deduce an identity that is interesting in its own right:

(2.3)

∥∥∥∥∥x−∑
i∈F

λiei|z

∥∥∥∥∥
2

−
∑
i∈F

|λi − (x, ei|z)|2 = ‖x|z‖2 −
∑
i∈F

|(x, ei|z)|2 ,

from which we easily deduce (2.2).

The following reverse of Bessel’s inequality holds.

Theorem 2. Let {ei}i∈I be a family of z-orthornormal vectors in X, F a finite
part of I, φi, Φi, i ∈ I real or complex numbers. For x ∈ X, if either

(i) Re
(∑

i∈F Φiei − x, x−
∑

i∈F φiei|z
)
≥ 0,

or, equivalently,

(ii)
∥∥∥x−∑i∈F

φi+Φi

2 ei|z
∥∥∥ ≤ 1

2

(∑
i∈F |Φi − φi|

2
) 1

2
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holds, then the following reverse of Bessel’s inequality

0 ≤ ‖x|z‖2 −
∑
i∈F

|(x, ei|z)|2(2.4)

≤ 1
4

∑
i∈F

|Φi − φi|
2 −

∑
i∈F

∣∣∣∣φi + Φi

2
− (x, ei|z)

∣∣∣∣2(
≤ 1

4

∑
i∈F

|Φi − φi|
2

)
,

is valid. The constant 1
4 is best possible.

Proof. Firstly, we observe that, for y, a, A ∈ X, the following are equivalent

(2.5) Re (A− y, y − a|z) ≥ 0

and

(2.6)
∥∥∥∥y − a + A

2
|z
∥∥∥∥ ≤ 1

2
‖A− a|z‖ .

Now, for a =
∑

i∈F φiei, A =
∑

i∈F Φiei, we have

‖A− a|z‖ =

∥∥∥∥∥∑
i∈F

(Φi − φi) ei|z

∥∥∥∥∥ =

∥∥∥∥∥∑
i∈F

(Φi − φi) ei|z

∥∥∥∥∥
2
 1

2

=

(∑
i∈F

|Φi − φi|
2 ‖ei|z‖2

) 1
2

=

(∑
i∈F

|Φi − φi|
2

) 1
2

,

which gives, for y = x, the desired equivalence.
Now, if we apply Lemma 1 for λi = φi+Φi

2 and

r :=
1
2

(∑
i∈F

|Φi − φi|
2

) 1
2

,

then we deduce the first inequality in (2.4).
Let us prove that 1

4 is best possible in the second inequality in (2.4).
Assume that there is a c > 0 such that

(2.7) 0 ≤ ‖x|z‖2 −
∑
i∈F

|(x, ei|z)|2 ≤ c
∑
i∈F

|Φi − φi|
2 −

∑
i∈F

∣∣∣∣φi + Φi

2
− (x, ei|z)

∣∣∣∣2 ,

provided that φi, Φi, x and F satisfy (i) or (ii).
Now, let F = {1} , e1 = e, ‖e|z‖ = 1 and m ∈ X so that ‖m|z‖ = 1 and

(m, e|z) = 0. For Φ1 = Φ, φ1 = φ,Φ 6= φ, define the vector

x :=
Φ + φ

2
e +

Φ− φ

2
m.

A simple calculation shows that

(Φe− x, x− φe|z) =
∣∣∣∣Φ− φ

2

∣∣∣∣2 (e− x, x− e|z) = 0

and thus the condition (i) of the theorem holds true for F = {1} .
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Observe also that

‖x|z‖2 =
∥∥∥∥Φ + φ

2
e +

Φ− φ

2
m|z

∥∥∥∥2

=
∣∣∣∣Φ + φ

2

∣∣∣∣2 +
∣∣∣∣Φ− φ

2

∣∣∣∣2
and

(x, e|z) =
(

Φ + φ

2
e +

Φ− φ

2
m, e|z

)
=

Φ + φ

2
.

Consequently, by (2.7), we deduce∣∣∣∣Φ− φ

2

∣∣∣∣2 ≤ c |Φ− φ|2 ,

which gives c ≥ 1
4 , and the proof is completed.

Remark 1. If F = {1} , e1 = e, ‖e|z‖ = 1 and, for φ,Φ ∈ K and x ∈ X, one has
either

(2.8) Re (Φe− x, x− φe|z) ≥ 0

or, equivalently,

(2.9)
∥∥∥∥x− φ + Φ

2
e|z
∥∥∥∥ ≤ 1

2
|Φ− φ| ,

then

0 ≤ ‖x|z‖2 − |(x, e|z)|2(2.10)

≤ 1
4
|Φ− φ|2 −

∣∣∣∣φ + Φ
2

− (x, e|z)
∣∣∣∣2(

≤ 1
4
|Φ− φ|2

)
.

The constant 1
4 is best possible.

3. A Refinement of the Grüss Inequality

The following result holds.

Theorem 3. Let {ei}i∈I be a family of z-orthornormal vectors in X, F a finite
part of I, φi,Φi, γi,Γi ∈ K, i ∈ F and x, y ∈ X. If either

Re

(∑
i∈F

Φiei − x, x−
∑
i∈F

φiei|z

)
≥ 0,(3.1)

Re

(∑
i∈F

Γiei − y, y −
∑
i∈F

γiei|z

)
≥ 0
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or, equivalently,

∥∥∥∥∥x−∑
i∈F

Φi + φi

2
ei|z

∥∥∥∥∥ ≤ 1
2

(∑
i∈F

|Φi − φi|
2

) 1
2

,(3.2)

∥∥∥∥∥y −∑
i∈F

Γi + γi

2
ei|z

∥∥∥∥∥ ≤ 1
2

(∑
i∈F

|Γi − γi|
2

) 1
2

hold, then we have the inequalities

0 ≤

∣∣∣∣∣(x, y|z)−
∑
i∈F

(x, ei|z) (ei, y|z)

∣∣∣∣∣(3.3)

≤ 1
4

(∑
i∈F

|Φi − φi|
2

) 1
2

·

(∑
i∈F

|Γi − γi|
2

) 1
2

−
∑
i∈F

∣∣∣∣Φi + φi

2
− (x, ei|z)

∣∣∣∣ ∣∣∣∣Γi + γi

2
− (y, ei|z)

∣∣∣∣≤ 1
4

(∑
i∈F

|Φi − φi|
2

) 1
2

·

(∑
i∈F

|Γi − γi|
2

) 1
2
 .

The constant 1
4 is best possible.

Proof. Using Schwarz’s inequality in the 2-inner product space (X, (·, ·|·)) , one has

∣∣∣∣∣
(

x−
∑
i∈F

(x, ei) ei, y −
∑
i∈F

(y, ei) ei|z

)∣∣∣∣∣
2

(3.4)

≤

∥∥∥∥∥x−∑
i∈F

〈x, ei〉 ei|z

∥∥∥∥∥
2 ∥∥∥∥∥y −∑

i∈F

〈y, ei〉 ei|z

∥∥∥∥∥
2

and, since a simple calculation shows that

(
x−

∑
i∈F

(x, ei) ei, y −
∑
i∈F

(y, ei) ei|z

)
= (x, y|z)−

∑
i∈F

(x, ei|z) (ei, y|z)

and ∥∥∥∥∥x−∑
i∈F

(x, ei) ei|z

∥∥∥∥∥
2

= ‖x|z‖2 −
∑
i∈F

|(x, ei|z)|2
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for any x, y ∈ X, then, by (3.4) and the reverse of Bessel’s inequality in Theorem
2, we have ∣∣∣∣∣(x, y|z)−

∑
i∈F

(x, ei|z) (ei, y|z)

∣∣∣∣∣
2

(3.5)

≤

(
‖x|z‖2 −

∑
i∈F

|(x, ei|z)|2
)(

‖y|z‖2 −
∑
i∈F

|(y, ei|z)|2
)

≤

[
1
4

∑
i∈F

|Φi − φi|
2 −

∑
i∈F

∣∣∣∣Φi + φi

2
− (x, ei|z)

∣∣∣∣2
]

×

[
1
4

∑
i∈F

|Γi − γi|
2 −

∑
i∈F

∣∣∣∣Γi + γi

2
− (y, ei|z)

∣∣∣∣2
]

:= K.

Using Aczél’s inequality for real numbers, i.e., we recall that

(3.6)

(
a2 −

∑
i∈F

a2
i

)(
b2 −

∑
i∈F

b2
i

)
≤

(
ab−

∑
i∈F

aibi

)2

,

provided that a, b, ai, bi > 0, i ∈ F, (originally, Aczél proved it under more re-
strictive assumptions for a, b, ai, bi, i.e., either a2 −

∑
i∈F a2

i or b2 −
∑

i∈F b2
i are

nonnegative, but those conditions are not necessary), we may state that

K ≤

1
4

(∑
i∈F

|Φi − φi|
2

) 1
2

·

(∑
i∈F

|Γi − γi|
2

) 1
2

(3.7)

−
∑
i∈F

∣∣∣∣Φi + φi

2
− (x, ei|z)

∣∣∣∣ ∣∣∣∣Γi + γi

2
− (y, ei|z)

∣∣∣∣
]2

.

Using (3.5) and (3.7) we conclude that∣∣∣∣∣(x, y|z)−
∑
i∈F

(x, ei|z) (ei, y|z)

∣∣∣∣∣
2

(3.8)

≤

1
4

(∑
i∈F

|Φi − φi|
2

) 1
2

·

(∑
i∈F

|Γi − γi|
2

) 1
2

−
∑
i∈F

∣∣∣∣Φi + φi

2
− (x, ei|z)

∣∣∣∣ ∣∣∣∣Γi + γi

2
− (y, ei|z)

∣∣∣∣
]2

.

Taking the square root in (3.8) and taking into account that the quantity in the
last square brackets is nonnegative (see for example (2.4)), we deduce the second
inequality in (3.3).

The fact that 1
4 is the best possible constant follows by Theorem 2 and we omit

the details.

The following corollary may be stated.
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Corollary 1. Let e ∈ X, ‖e|z‖ = 1, φ, Φ, γ,Γ ∈ K and x, y ∈ X such that either

(3.9) Re (Φe− x, x− φe|z) ≥ 0, Re (Γe− y, y − γe|z) ≥ 0

or, equivalently,

(3.10)
∥∥∥∥x− φ + Φ

2
e|z
∥∥∥∥ ≤ 1

2
|Φ− φ| ,

∥∥∥∥y − γ + Γ
2

e|z
∥∥∥∥ ≤ 1

2
|Γ− γ| .

Then we have the following refinement of Grüss’ inequality

0 ≤ |(x, y|z)− (x, e|z) (e, y|z)|(3.11)

≤ 1
4
|Φ− φ| |Γ− γ| −

∣∣∣∣φ + Φ
2

− (x, e|z)
∣∣∣∣ ∣∣∣∣γ + Γ

2
− (y, e|z)

∣∣∣∣(
≤ 1

4
|Φ− φ| |Γ− γ|

)
.

The constant 1
4 is best possible.

4. Some Companion Inequalities

The following companion of the Grüss inequality also holds.

Theorem 4. Let {ei}i∈I be a family of orthornormal vectors in X, F a finite part
of I and φi,Φi ∈ K, i ∈ F , x, y ∈ X and λ ∈ (0, 1) such that either

(4.1) Re

(∑
i∈F

Φiei − (λx + (1− λ) y) , λx + (1− λ) y −
∑
i∈F

φiei|z

)
≥ 0

or, equivalently,

(4.2)

∥∥∥∥∥λx + (1− λ) y −
∑
i∈F

Φi + φi

2
· ei|z

∥∥∥∥∥ ≤ 1
2

(∑
i∈F

|Φi − φi|
2

) 1
2

holds. Then we have the inequality

Re

[
(x, y|z)−

∑
i∈F

(x, ei|z) (ei, y|z)

]
(4.3)

≤ 1
16

· 1
λ (1− λ)

∑
i∈F

|Φi − φi|
2

− 1
4

1
λ (1− λ)

∑
i∈F

∣∣∣∣Φi + φi

2
− (λx + (1− λ) y, ei|z)

∣∣∣∣2(
≤ 1

16
· 1
λ (1− λ)

∑
i∈F

|Φi − φi|
2

)
.

The constant 1
16 is the best possible constant in (4.3) in the sense that it cannot be

replaced by a smaller constant.

Proof. We know, for any z, u, v ∈ X, that one has

Re (z, u|v) ≤ 1
4
‖z + u|v‖2

.
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Then, for any a, b, z ∈ X and λ ∈ (0, 1) , one has

(4.4) Re (a, b|z) ≤ 1
4λ (1− λ)

‖λa + (1− λ) b|z‖2
.

Since

(x, y|z)−
∑
i∈F

(x, ei|z) (ei, y|z) =

(
x−

∑
i∈F

(x, ei) ei, y −
∑
i∈F

(y, ei) ei|z

)
,

for any x, y ∈ X, then, by (4.4), we get

Re

[
(x, y|z)−

∑
i∈F

(x, ei|z) (ei, y|z)

]
(4.5)

= Re

[(
x−

∑
i∈F

〈x, ei〉 ei, y −
∑
i∈F

〈y, ei〉 ei|z

)]

≤ 1
4λ (1− λ)

∥∥∥∥∥λ
(

x−
∑
i∈F

(x, ei) ei

)
+ (1− λ)

(
y −

∑
i∈F

(y, ei) ei

)
|z

∥∥∥∥∥
2

=
1

4λ (1− λ)

∥∥∥∥∥λx + (1− λ) y −
∑
i∈F

(λx + (1− λ) y, ei) ei|z

∥∥∥∥∥
2

=
1

4λ (1− λ)

[
‖λx + (1− λ) y|z‖2 −

∑
i∈F

|(λx + (1− λ) y, ei|z)|2
]

.

If we apply the reverse of Bessel’s inequality in Theorem 2 for λx + (1− λ) y, we
may state that

‖λx + (1− λ) y|z‖2 −
∑
i∈F

|(λx + (1− λ) y, ei|z)|2(4.6)

≤ 1
4

∑
i∈F

|Φi − φi|
2 −

∑
i∈F

∣∣∣∣Φi + φi

2
− (λx + (1− λ) y, ei|z)

∣∣∣∣2
≤ 1

4

∑
i∈F

|Φi − φi|
2
.

Now, by making use of (4.5) and (4.6), we deduce (4.3).
The fact that 1

16 is the best possible constant in (4.3) follows by the fact that if
in (4.1) we choose x = y, then it becomes (i) of Theorem 2, which implies for λ = 1

2

the inequality (2.4), and so we have shown that 1
4 is the best constant.

Remark 2. In practical applications, we may use only the inequality between the
first and the last term in (4.3).
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Remark 3. If, in Theorem 4, we choose λ = 1
2 , then we get

Re

[
(x, y|z)−

∑
i∈F

(x, ei|z) (ei, y|z)

]
(4.7)

≤ 1
4

∑
i∈F

|Φi − φi|
2 −

∑
i∈F

∣∣∣∣Φi + φi

2
−
(

x + y

2
, ei|z

)∣∣∣∣2(
≤ 1

4

∑
i∈F

|Φi − φi|
2

)
,

provided

Re

(∑
i∈F

Φiei −
x + y

2
,
x + y

2
−
∑
i∈F

φiei|z

)
≥ 0

or, equivalently,∥∥∥∥∥x + y

2
−
∑
i∈F

Φi + φi

2
· ei|z

∥∥∥∥∥ ≤ 1
2

(∑
i∈F

|Φi − φi|
2

) 1
2

.

Corollary 2. With the assumptions of Theorem 4 and if

(4.8) Re

(∑
i∈F

Φiei − (λx± (1− λ) y) , λx± (1− λ) y −
∑
i∈F

φiei|z

)
≥ 0

or, equivalently,

(4.9)

∥∥∥∥∥λx± (1− λ) y −
∑
i∈F

Φi + φi

2
· ei|z

∥∥∥∥∥ ≤ 1
2

(∑
i∈F

|Φi − φi|
2

) 1
2

,

then we have the inequality

(4.10)

∣∣∣∣∣Re

[
(x, y|z)−

∑
i∈F

(x, ei|z) (ei, y|z)

]∣∣∣∣∣ ≤ 1
16

· 1
λ (1− λ)

∑
i∈F

|Φi − φi|
2
.

The constant 1
16 is best possible in (4.10).

Remark 4. If X is a real inner product space and mi,Mi ∈ R with the property

(4.11)

(∑
i∈F

Miei − (λx± (1− λ) y) , λx± (1− λ) y −
∑
i∈F

miei|z

)
≥ 0

or, equivalently,

(4.12)

∥∥∥∥∥λx± (1− λ) y −
∑
i∈F

Mi + mi

2
· ei|z

∥∥∥∥∥ ≤ 1
2

[∑
i∈F

(Mi −mi)
2

] 1
2

,

then we have the Grüss type inequality

(4.13)

∣∣∣∣∣(x, y|z)−
∑
i∈F

(x, ei|z) (ei, y|z)

∣∣∣∣∣ ≤ 1
16

· 1
λ (1− λ)

∑
i∈F

(Mi −mi)
2
.



12 S.S. DRAGOMIR, Y.J. CHOF, S.S. KIM�, AND Y.-H. KIM

5. Applications for Determinantal Integral Inequalities

Let (Ω,Σ, µ) be a measure space consisting of a set Ω, Σ a σ−algebra of subsets
of Ω and µ a countably additive and positive measure on Σ with values in R ∪ {∞}.

Denote by L2
ρ (Ω) the Hilbert space of all real-valued functions f defined on Ω

that are 2−ρ−integrable on Ω, i.e.,
∫
Ω

ρ (s) |f (s)|2 dµ (s) < ∞, where ρ : Ω → [0,∞)
is a measurable function on Ω.

We can introduce the following 2-inner product on L2
ρ (Ω) by formula

(5.1)

(f, g|h)ρ :=
1
2

∫
Ω

∫
Ω

ρ (s) ρ (t)

∣∣∣∣∣∣
f (s) f (t)

h (s) h (t)

∣∣∣∣∣∣
∣∣∣∣∣∣

g (s) g (t)

h (s) h (t)

∣∣∣∣∣∣ dµ (s) dµ (t) ,

where ∣∣∣∣ f (s) f (t)
h (s) h (t)

∣∣∣∣
denotes the determinant of the matrix[

f (s) f (t)
h (s) h (t)

]
,

which generates the 2-norm on L2
ρ (Ω) expressed by

(5.2) ‖f |h‖ρ :=

1
2

∫
Ω

∫
Ω

ρ (s) ρ (t)

∣∣∣∣∣∣
f (s) f (t)

h (s) h (t)

∣∣∣∣∣∣
2

dµ (s) dµ (t)


1/2

.

A simple calculation with integrals reveals that

(5.3) (f, g|h)ρ =

∣∣∣∣∣∣
∫
Ω

ρfgdµ
∫
Ω

ρfhdµ∫
Ω

ρghdµ
∫
Ω

ρh2dµ

∣∣∣∣∣∣
and

(5.4) ‖f |h‖ρ =

∣∣∣∣∣∣
∫
Ω

ρf2dµ
∫
Ω

ρfhdµ∫
Ω

ρfhdµ
∫
Ω

ρh2dµ

∣∣∣∣∣∣
1/2

,

where, for simplicity, instead of
∫
Ω

ρ (s) f (s) g (s) dµ (s) , we have written
∫
Ω

ρfgdµ.

We recall that the pair of functions (q, p) ∈ L2
ρ (Ω)×L2

ρ (Ω) is called synchronous
if

(q (x)− q (y)) (p (x)− p (y)) ≥ 0

for a.e. x, y ∈ Ω.
We note that, if Ω = [a, b] , then a sufficient condition for synchronicity is that

the functions are both monotonic increasing or decreasing. This condition is not
necessary.

Now, suppose that h ∈ L2
ρ (Ω) is such that h (x) 6= 0 for µ − a.e. x ∈ Ω. Then,

by the definition of 2-inner product (f, g|h)ρ , we have

(f, g|h)ρ(5.5)

=
1
2

∫
Ω

∫
Ω

ρ (s) ρ (t) h2 (s)h2 (t)
(

f (s)
h (s)

− f (t)
h (t)

)(
g (s)
h (s)

− g (t)
h (t)

)
dµ (s) dµ (t)
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and thus a sufficient condition for the inequality

(5.6) (f, g|h)ρ ≥ 0

to hold, is that, the functions
(

f
h , g

h

)
are synchronous. It is obvious that, this

condition is not necessary.
Using the representations (5.3), (5.4) and the inequalities for 2-inner products

and 2-norms established in the previous sections, we have some interesting deter-
minantal integral inequalities.

Proposition 1. Let h ∈ L2
ρ (Ω) be such that h (x) 6= 0 for µ − a.e. x ∈ Ω and

(fi)i∈I a family of functions in L2
ρ (Ω) with the property that∣∣∣∣∣∣

∫
Ω

ρfifjdµ
∫
Ω

ρfihdµ∫
Ω

ρfjhdµ
∫
Ω

ρh2dµ

∣∣∣∣∣∣ = δi,j

for any i, j ∈ I, where δi,j is the Kronecker delta.
If we assume that there exists the real numbers Mi,mi, i ∈ F, where F is a given

finite part of I, such that the functions∑
i∈F

Mi ·
fi

h
− f

h
,
f

h
−
∑
i∈F

mi ·
fi

h

are synchronous on Ω, then we have the inequalities

0 ≤

∣∣∣∣∣∣
∫
Ω

ρf2dµ
∫
Ω

ρfhdµ∫
Ω

ρfhdµ
∫
Ω

ρh2dµ

∣∣∣∣∣∣−
∑
i∈F

∣∣∣∣∣∣
∫
Ω

ρfifdµ
∫
Ω

ρfihdµ∫
Ω

ρfhdµ
∫
Ω

ρh2dµ

∣∣∣∣∣∣
2

≤ 1
4

∑
i∈F

(Mi −mi)
2

−
∑
i∈F

∣∣∣∣∣∣Mi + mi

2
− det

 ∫
Ω

ρfifdµ
∫
Ω

ρfihdµ∫
Ω

ρfhdµ
∫
Ω

ρh2dµ

∣∣∣∣∣∣
2

(
≤ 1

4

∑
i∈F

(Mi −mi)
2

)
.

The proof follows by Theorem 2 applied for the 2-inner product (·, ·|·)ρ and we
omit the details.

Similar determinantal integral inequalities may be stated if one uses the other
results for 2-inner products obtained above, but we do not present them here.
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