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MONOTONICITY AND CONVEXITY RESULTS FOR
FUNCTIONS INVOLVING THE GAMMA FUNCTION

FENG QI AND CHAO-PING CHEN

Abstract. The function f(x) =
[Γ(x+1)]1/x

x+1
is strictly decreasing and strictly

logarithmically convex in (0,∞). The function g(x) =
[Γ(x+1)]1/x
√

x+1
is strictly

increasing and strictly logarithmically concave in (0,∞). Several inequalities
are obtained and some new proofs for the monotonicity of the funtion xr[Γ(x+

1)]1/x on (0,∞) are given for r 6∈ (0, 1). An open problem is proposed.

1. Introduction

In [19], H. Minc and L. Sathre proved that, if n is a positive integer and φ(n) =
(n!)1/n, then

1 <
φ(n+ 1)
φ(n)

<
n+ 1
n

, (1)

which can be rearranged as

[Γ(1 + n)]
1
n < [Γ(2 + n)]

1
n+1 (2)

and
[Γ(1 + n)]

1
n

n
>

[Γ(2 + n)]
1

n+1

n+ 1
, (3)

where Γ(x) denotes the well known gamma function usually defined by

Γ(z) =
∫ ∞

0

e−ttz−1 dt (4)

for <(z) > 0
In [2, 18], H. Alzer and J.S. Martins refined the right inequality in (1) and showed

that, if n is a positive integer, then, for all positive real numbers r, we have

n

n+ 1
<

(
1
n

n∑
i=1

ir

/
1

n+ 1

n+1∑
i=1

ir

)1/r

<
n
√
n!

n+1
√

(n+ 1)!
. (5)

Both bounds in (5) are the best possible.
There have been many extensions and generalizations of the inequalities in (5),

please refer to [4, 6, 17, 20, 21, 30, 31, 38, 41] and the references therein.
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2 F. QI AND CH.-P. CHEN

The inequalities in (1) were refined and generalized in [13, 24, 34, 35, 36] and
the following inequalities were obtained:

n+ k + 1
n+m+ k + 1

<

(
n+k∏

i=k+1

i

)1/n/(
n+m+k∏
i=k+1

i

)1/(n+m)

≤
√

n+ k

n+m+ k
, (6)

where k is a nonnegative integer, n and m are natural numbers. For n = m = 1,
the equality in (6) is valid.

Inequality (6) is equivalent to

n+ k + 1
n+m+ k + 1

<

(
Γ(n+k+1)

Γ(k+1)

)1/n

(
Γ(n+m+k+1)

Γ(k+1)

)1/(n+m)
≤
√

n+ k

n+m+ k
, (7)

which can be rewritten as(
Γ(n+m+k+1)

Γ(k+1)

)1/(n+m)

n+m+ k + 1
<

(
Γ(n+k+1)

Γ(k+1)

)1/n

n+ k + 1
, (8)(

Γ(n+m+k+1)
Γ(k+1)

)1/(n+m)

√
n+m+ k

≥

(
Γ(n+k+1)

Γ(k+1)

)1/n

√
n+ k

. (9)

In [14, 25], the inequalities in (6) were generalized and the following inequalities
on the ratio for the geometric means of a positive arithmetic sequence for any
nonnegative integer k and natural numbers n and m, were obtained:

a(n+ k + 1) + b

a(n+m+ k + 1) + b
<

[∏n+k
i=k+1(ai+ b)

] 1
n

[∏n+m+k
i=k+1 (ai+ b)

] 1
n+m

≤

√
a(n+ k) + b

a(n+m+ k) + b
, (10)

where a is a positive constant and b a nonnegative integer. For m = n = 1, the
equality in (10) is valid.

In [32, 32], the following related results were obtained: Let f be a positive
function such that x

[
f(x+ 1)/f(x)− 1

]
is increasing on [1,∞), then the sequence{

n
√∏n

i=1 f(i)
/
f(n+ 1)

}∞
n=1

is decreasing. If f is a logarithmically concave and
positive function defined on [1,∞), then the sequence

{
n
√∏n

i=1 f(i)
/√

f(n)
}∞

n=1
is increasing. As consequences of these monotonicities, the lower and upper bounds

for the ratio n

√∏n+k
i=k+1 f(i)

/
n+m

√∏n+k+m
i=k+1 f(i) of the geometric mean sequence{

n

√∏n+k
i=k+1 f(i)

}∞
n=1

are obtained, where k is a nonnegative integer and m a nat-

ural number.
In [15], the following monotonicity results for the gamma function were estab-

lished: The function [Γ(1 + 1
x )]x decreases with x > 0 and x[Γ(1 + 1

x )]x increases
with x > 0, recovering the inequalities in (1) which refer to integer values of n.

These are equivalent to the function [Γ(1 + x)]
1
x being increasing and [Γ(1+x)]

1
x

x
being decreasing on (0,∞), respectively. In addition, it was proved that the func-
tion x1−γ [Γ(1 + 1

x )x] decreases for 0 < x < 1, where γ = 0.57721566490153286 · · ·

denotes the Euler’s constant, which is equivalent to [Γ(1+x)]
1
x

x1−γ being increasing on
(1,∞).
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In [13], the following monotonicity result was obtained: The function

[Γ(x+ y + 1)/Γ(y + 1)]1/x

x+ y + 1
(11)

is decreasing in x ≥ 1 for fixed y ≥ 0. Then, for positive real numbers x and y, we
have

x+ y + 1
x+ y + 2

≤ [Γ(x+ y + 1)/Γ(y + 1)]1/x

[Γ(x+ y + 2)/Γ(y + 1)]1/(x+1)
. (12)

Inequality (12) extends and generalizes inequality (6), since Γ(n+ 1) = n!.
In [13, 14, 34], the authors, F. Qi and B.-N. Guo, proposed the following

Open Problem 1. For positive real numbers x and y, we have

[Γ(x+ y + 1)/Γ(y + 1)]1/x

[Γ(x+ y + 2)/Γ(y + 1)]1/(x+1)
≤
√

x+ y

x+ y + 1
, (13)

where Γ denotes the gamma function. If x = 1 and y = 0, the equality in (13)
holds.

Open Problem 2. For any positive real number z, define z! = z(z − 1) · · · {z},
where {z} = z − [z − 1], and [z] denotes the Gauss function whose value is the
largest integer not more than z. Let x > 0 and y ≥ 0 be real numbers, then

x+ 1
x+ y + 1

≤
x
√
x!

x+y
√

(x+ y)!
≤
√

x

x+ y
. (14)

Equality holds in the right hand side of (14) when x = y = 1.

Hence the inequalities in (13) and (14) are equivalent to the following mono-
tonicity results in some sense for x ≥ 1, which are obtained in [5] by Ch.-P. Chen
and F. Qi: The function [Γ(x+1)]1/x

x+1 is strictly decreasing on [1,∞), the function
[Γ(x+1)]1/x

√
x

is strictly increasing on [2,∞), and the function [Γ(x+1)]1/x

√
x+1

is strictly
incresing on [1,∞), respectively.

Remark 1. Note that the function [Γ(x+1)]1/x

x+1 is a special case of the one defined by
(11). The results in [5] partially solve the two open problems above.

Remark 2. In recent years, many monotonicity results and inequalities involving
the gamma function and incomplete gamma functions have been established, please
refer to [8, 9, 10, 27, 28, 29, 35, 37] and some references therein.

In this paper, we will obtain the following monotonocity and convexity results
for functions [Γ(x+1)]1/x

x+1 and [Γ(x+1)]1/x

√
x+1

in (0,∞).

Theorem 1. The function f(x) = [Γ(x+1)]1/x

x+1 is strictly decreasing and strictly
logarithmically convex in (0,∞). Moreover, we have limx→0 f(x) = 1/eγ and
limx→∞ f(x) = 1/e, where γ = 0.577215664901 · · · denotes the Euler’s constant.

Theorem 2. The function g(x) = [Γ(x+1)]1/x

√
x+1

is strictly increasing and strictly
logarithmically concave in (0,∞).
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Corollary 1. Let 0 < x < y, then we have

x+ 1
y + 1

<
[Γ(x+ 1)]1/x

[Γ(y + 1)]1/y
<

√
x+ 1
y + 1

. (15)

Corollary 2. Let y > 0, then we have

eγ

y + 1
<

1
[Γ(y + 1)]1/y

<
eγ

√
y + 1

. (16)

Theorem 3. Let x > 1, then

e >

(
1 +

1
x

)x

>
x+ 1

[Γ(x+ 1)]1/x
> 2, (17)

where Γ(x) denotes the gamma function.

Remark 3. The monotonicity property of f in Theorem 1 was already proved in
1989 by J. Sándor [40]. In this paper, we provide another proof.

A survey with many references can be found in the article [12] by W. Gautschi.

2. Preliminaries

In this section, we present some useful formulas related to the derivatives of the
logarithm of the gamma function.

In [42, pp. 103–105], the following formula was given:

Γ′(z)
Γ(z)

+ γ =
∫ ∞

0

e−t − e−zt

1− e−t
dt =

∫ 1

0

1− tz−1

1− t
dt, (18)

where γ = 0.57721566490153286 · · · denotes the Euler’s constant. See [42, p. 94].
Formula (18) can be used to calculate Γ′(k) for k ∈ N. We call ψ(z) = Γ′(z)

Γ(z) the
digamma or psi function. See [3, p. 71].

It is well known that the Bernoulli numbers Bn are generally defined [42, p. 1]
by

1
et − 1

+
1
2
− 1
t

=
∞∑

n=1

(−1)n−1 t2n

(2n)!
Bn. (19)

In particular, we have the following

B1 =
1
6
, B2 =

1
30
, B3 =

1
42
, . . . .

In [42, p. 45], the following summation formula is given
∞∑

n=0

(−1)n

(2n+ 1)2k+1
=

π2k+1Ek

22k+2(2k)!
(20)

for nonnegative integer k, where Ek denotes Euler’s number, which implies

Bn =
2(2n)!
(2π)2n

∞∑
m=1

1
m2n

, n ∈ N. (21)

The formula (21) can also be found in [1, Chapter 23] or in [7, p. 1237].
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Lemma 1. For a real number x > 0 and natural number m, we have

ln Γ(x) =
1
2

ln(2π) +
(
x− 1

2

)
lnx− x+

m∑
n=1

(−1)n−1 Bn

2(2n− 1)n
· 1
x2n−1

+ (−1)mθ1 ·
Bm+1

(2m+ 1)(2m+ 2)
· 1
x2m+1

, 0 < θ1 < 1,

(22)

d
dx

ln Γ(x) = lnx− 1
2x

+
m∑

n=1

(−1)nBn

2n
· 1
x2n

+ (−1)m+1θ2 ·
Bm+1

2m+ 2
· 1
x2m+2

, 0 < θ2 < 1,

(23)

d2

dx2
ln Γ(x) =

1
x

+
1

2x2
+

m∑
n=1

(−1)n−1 Bn

x2n+1

+ (−1)mθ3 ·
Bm+1

x2m+3
, 0 < θ3 < 1,

(24)

d3

dx3
ln Γ(x) = − 1

x2
− 1
x3

+
m∑

n=1

(−1)n(2n+ 1)
Bn

x2n+3

+ (−1)m+1(2m+ 3)θ4 ·
Bm+1

x2m+4
, 0 < θ4 < 1.

(25)

Remark 4. The formulas and their proofs in Lemma 1 are well-known and can
be found in many textbooks on Analysis; see, for instance, [11, Sections 54 and
Section 541].

3. Proofs of Theorems

Proof of Theorem 1. Taking the logarithm and straightforward calculation gives

ln f(x) =
1
x

ln Γ(x+ 1)− ln(x+ 1), (26)

d
dx

ln f(x) = − 1
x2

ln Γ(x+ 1) +
1
x

d
dx

ln Γ(x+ 1)− 1
x+ 1

,

d 2

dx2
ln f(x) =

1
x3

[
2 ln Γ(x+ 1)− 2x

d
dx

ln Γ(x+ 1)

+ x2 d 2

dx2
ln Γ(x+ 1) +

x3

(x+ 1)2

]
,
φ(x)
x3

.

1. Differentiating with respect to x on both sides of (26) and rearranging leads to

x2 f
′(x)
f(x)

= − ln Γ(x+ 1) + x
d

dx
ln Γ(x+ 1)− x2

x+ 1
(27)



6 F. QI AND CH.-P. CHEN

and, using (24),(
x2 f

′(x)
f(x)

)′
= x

d 2

dx2
ln Γ(x+ 1)− 1 +

1
(x+ 1)2

< x

[
1

x+ 1
+

1
2(x+ 1)2

+
1

6(x+ 1)3

]
− 1 +

1
(x+ 1)2

= − 3x2 + 2x
6(x+ 1)3

< 0,

(28)

therefore the function τ(x) , x2 f ′(x)
f(x) is strictly decreasing in (0,∞), τ(x) < τ(0) =

0, and then f ′(x) < 0, hence f(x) is strictly decreasing in (0,∞).

2. Differentiating φ(x) directly and using formula (25), we have that

φ′(x) = x2 d3

dx3
ln Γ(x+ 1) +

x2(x+ 3)
(x+ 1)3

= x2

[
− 1

(x+ 1)2
− 1

(x+ 1)3
− 1

2(x+ 1)4
+

5θ4B2

(x+ 1)6

]
+
x2(x+ 3)
(x+ 1)3

> x2

[
− 1

(x+ 1)2
− 1

(x+ 1)3
− 1

2(x+ 1)4

]
+
x2(x+ 3)
(x+ 1)3

=
x2(2x+ 1)
2(x+ 1)4

> 0

(29)

for x > 0, so the function φ(x) is strictly increasing in (0,∞), and then φ(x) >
φ(0) = 0. Hence d 2

dx2 ln f(x) > 0, and the function f(x) is strictly logarithmic
convex in (0,∞).

3. Using (22), we have

ln f(x) =
1
x

[
1
2

ln(2π) +
(
x+

1
2

)
ln(x+ 1)− (x+ 1) +

θ1
12(x+ 1)

]
− ln(x+ 1)

=
ln(2π)

2x
+

ln(x+ 1)
2x

− x+ 1
x

+
θ1

12x(x+ 1)
→ −1 as x→∞.

It is easy to see that

lim
x→0

ln f(x) = lim
x→0

ln Γ(x+ 1)
x

= lim
x→0

Γ′(x+ 1)
Γ(x+ 1)

= Γ′(1) = −γ.

The proof of Theorem 1 is complete. �

Proof of Theorem 2. Taking the logarithm and a simple calculation yields

ln g(x) =
1
x

ln Γ(x+ 1)− 1
2

ln(x+ 1), (30)

d
dx

ln g(x) = − 1
x2

ln Γ(x+ 1) +
1
x
· d
dx

ln Γ(x+ 1)− 1
2(x+ 1)

,

d 2

dx2
ln g(x) =

1
x3

[
2 ln Γ(x+ 1)− 2x

d
dx

ln Γ(x+ 1)
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+ x2 d 2

dx2
ln Γ(x+ 1) +

x3

2(x+ 1)2

]
,
µ(x)
x3

.

Differentiating with respect to x on both sides of (30) and rearranging leads to

x2 g
′(x)
g(x)

= − ln Γ(x+ 1) + x
d

dx
ln Γ(x+ 1)− x2

2(x+ 1)
(31)

and, using (24),(
x2 g

′(x)
g(x)

)′
= x

d 2

dx2
ln Γ(x+ 1)− 1

2
+

1
2(x+ 1)2

> x

[
1

x+ 1
+

1
2(x+ 1)2

]
− 1

2
+

1
2(x+ 1)2

=
x

2(x+ 1)
> 0,

therefore the function ξ(x) , x2 f ′(x)
f(x) is strictly increasing in (0,∞), ξ(x) > ξ(0) =

0, and then g′(x) > 0; hence g(x) is strictly increasing in (0,∞).
A simple computation and considering formula (25) gives us

µ′(x) = x2 d 3

dx3
ln Γ(x+ 1) +

x2(x+ 3)
2(x+ 1)3

= x2

[
− 1

(x+ 1)2
− 1

(x+ 1)3
− 1

2(x+ 1)4
+

5θ4B2

(x+ 1)6

]
+
x2(x+ 3)
2(x+ 1)3

< x2

[
− 1

(x+ 1)2
− 1

(x+ 1)3
− 1

2(x+ 1)4
+

1
6(x+ 1)6

]
+
x2(x+ 3)
2(x+ 1)3

=
1

2(x+ 1)2

[
−2

3
− 1

(x+ 1)2

]
< 0.

Therefore µ(x) is strictly decreasing in (0,∞), and µ(x) < µ(0) = 0, and then
d 2

dx2 ln g(x) < 0. Thus g(x) is strictly logarithmically concave in (0,∞).
The proof of Theorem 2 is complete. �

Proof of Theorem 3. The inequality (17) can be rewritten as

h(x) , (x2 − x) ln(x+ 1) + lnΓ(x+ 1)− x2 lnx > 0. (32)

From inequality ln(1 + 1
x ) > 2

2x+1 for x > 0 and inequality (23), simple compu-
tation reveals that

h′(x) = (2x− 1) ln(x+ 1) +
x(x− 1)
x+ 1

+
d

dx
ln Γ(x+ 1)− 2x lnx− x

>
4x

2x+ 1
− ln(x+ 1) +

[
ln(x+ 1)− 1

2(x+ 1)
− 1

12(x+ 1)2

]
− 2 +

2
x+ 1

=
12x2 + 4x− 7

12(x+ 1)2(2x+ 1)
> 0.
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Thus h(x) is strictly increasing in (1,∞), and then h(x) > h(1) > 0. Inequality
(17) follows. �

4. Appendix

In this section, we will give some new proofs for the monotonicity of the funtion
xr[Γ(x+ 1)]

1
x on (0,∞) for r 6∈ (0, 1).

Theorem 4. The function G(x) = [Γ(x+ 1)]
1
x is strictly increasing in (0,∞).

The first new proof. Taking the logarithm and differentiating on G(x) leads to

x2G′(x)
G(x)

= x

(∫∞
0
e−uux lnu du∫∞

0
e−uux du

)
− ln

∫ ∞

0

e−uux du , H(x),

and

H ′(x) = x

[(∫∞
0
e−uux(lnu)2 du

)(∫∞
0
e−uux du

)
−
(∫∞

0
e−uux lnu du

)2(∫∞
0
e−uux du

)2
]
.

By Cauchy-Schwarz-Buniakowski’s inequality, we have(∫ ∞

0

e−uux(lnu)2 du
)(∫ ∞

0

e−uux du
)

>

(∫ ∞

0

[e−uux(lnu)2]
1
2 [e−uux]

1
2 du

)2

=
(∫ ∞

0

e−uux lnu du
)2

.

(33)

Therefore, for x > 0, we have H ′(x) > 0, and H(x) is increasing. Since H(0) = 0,
we have H(x) > 0 which implies G′(x) > 0, and then G(x) is increasing. �

Second new proof. Define W (t) =
∫∞
0
e−uut du for t > 0. Then

lnG(x) =
1
x

∫ x

0

W ′(t)
W (t)

dt, x > 0.

In [26], the following well known fact was restated: If F(t) is an increasing inte-
grable function on an interval I ⊆ R, then the arithmetic mean G(r, s) of function
F(t),

G(r, s) =


1

s− r

∫ s

r

F(t) dt, r 6= s,

F(r), r = s,
(34)

is also increasing with both r and s on I. If F is a twice-differentiable convex
function, then the function G(r, s) is also convex with both r and s on I.

Thus, it is sufficient to prove
(

W ′(t)
W (t)

)′
> 0. Straightforward computation yields

d
dt

(
W ′(t)
W (t)

)
=
W ′′(t)W (t)− [W (t)]2

[W (t)]2
,

The inequality (33) means W ′′(t)W (t) > [W (t)]2. Hence
(W ′(t)

W (t)

)′
> 0. The proof

is complete. �
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Remark 5. Notice that another proofs were established in [27], since we can regard
[Γ(1 + r)]

1
r for r > 0 as a special case of the generalized weighted mean values

defined and researched in [22, 23, 39] and references therein.

Theorem 5. The function q(x) = xr [Γ(x+ 1)]
1
x for x > 0 is strictly increasing

for r ≥ 0 and strictly decreasing for r ≤ −1, respectively.

Proof. Taking the logrithm and differentiating directly yields

x2 q
′(x)
q(x)

= rx− ln Γ(x+ 1) + x
d

dx
ln Γ(x+ 1) , p(x),

p′(x) = r + x
d 2

dx2
ln Γ(x+ 1).

Using (24) and taking m = 0 or m = 1, we have

p′(x) = r +
2x2 + 3x
2(x+ 1)2

+
θ̄3x

6(x+ 1)3
, 0 < θ̄3 < 1, (35)

p′(x) = r +
6x3 + 15x+ 8x

6(x+ 1)3
−

¯̄θ3x
30(x+ 1)5

, 0 < ¯̄θ3 < 1. (36)

From (35), it is easy see that p′(x) > 0 for r ≥ 0, and p(x) is strictly increasing
in (0,∞). Hence p(x) > p(0) = 0, and then q′(x) > 0 which implies that q(x) is
strictly increasing in (0,∞) for r ≥ 0.

It is clear that

0 <
6x3 + 15x+ 8x

6(x+ 1)3
< 1 (37)

for x > 0. Therefore, from (36) and (37), we obtain p′(x) < 0 for r ≤ −1. Thus,
p(x) is strictly decreasing in (0,∞). Hence, we have p(x) < p(0) = 0, further,
q′(x) < 0 which means that q(x) is strictly decreasing in (0,∞) for r ≤ −1. The
proof is complete. �

5. An open Problem

To close, the first author would like to pose the following open problem.

Open Problem 3. Discuss the monotonicity and convexity of the following func-
tion

[Γ(x+ y + 1)/Γ(y + 1)]1/xβ

(x+ ay + b)α
(38)

with respect to x > 0 and y ≥ 0, where a ≥ 0, b ≥ 0, α > 0, and β > 0.
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