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MONOTONICITY AND CONVEXITY OF THE FUNCTION
x
√

Γ(x + 1)
/

x+α
√

Γ(x + α + 1)

FENG QI AND BAI-NI GUO

Abstract. For α > 0 a real number, the function
x
√

Γ(x+1)
x+α
√

Γ(x+α+1)
is increas-

ing with x ∈ (x0,∞) and logarithmically concave with x ∈ [1,∞), where
x0 ∈ (0, 1) is a constant. Moreover, some monotonicity and convexity results

and inequalities of functions involving the gamma function and polygamma

functions are obtained as corollaries and by-products.

1. Introduction

In this section, we first state some known results: monotonicity of the geometric
mean sequence and some sequences involving geometric means, inequalities of ratio
between geometric means and ratio between power means, and monotonicity and
convexity of ratio between two gamma functions and functions involving the gamma
function.

1.1. Inequalities of ratio between power means. H. Minc and L. Sathre in
[27] gave the lower and upper bounds of ratio between two geometric means of
natural numbers:

n− 1
n

<
n−1
√

(n− 1)!
n
√
n!

< 1. (1)

The right hand side inequality in (1) also reveals that the geometric mean sequence{
n
√
n!
}
n∈N is strictly increasing and the sequence

{ n√
n!
n

}
n∈N is strictly decreasing.

Note that Γ(n+ 1) = n!, where the gamma function is usually defined [19, 54] for
Re z > 0 by

Γ(z) =
∫ ∞

0

tz−1e−t dt. (2)

In [2, 26], H. Alzer and J. S. Martins refined the left hand side inequality in (1)
and showed that, if n is a positive integer, then, for all positive real numbers r,

n

n+ 1
<

(
1
n

∑n
i=1 i

r

1
n+1

∑n+1
i=1 i

r

)1/r

<
n
√
n!

n+1
√

(n+ 1)!
. (3)
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Both bounds in (3) are the best possible. The middle term in (3) is indeed a ratio
between the power means

(
1
n

∑n
i=1 i

r
)1/r and

(
1

n+1

∑n+1
i=1 i

r
)1/r. The inequality

(3) implies that the sequence
{

1
n

(
1
n

∑n
i=1 i

r
)1/r}

n∈N is decreasing strictly and the

sequence
{

1
n√
n!

(
1
n

∑n
i=1 i

r
)1/r}

n∈N is increasing strictly for given r > 0.
The integral form of inequality (3) was established in [29, 41] by the authors:

Let b > a > 0 and δ > 0 be real numbers. Then, for any positive r ∈ R, we have

b

b+ δ
<

(
b+ δ − a

b− a
· br+1 − ar+1

(b+ δ)r+1 − ar+1

)1/r

=

(
1
b−a

∫ b
a
xr dx

1
b+δ−a

∫ b+δ
a

xr dx

)1/r

<
[bb/aa]1/(b−a)

[(b+ δ)b+δ/aa]1/(b+δ−a)
. (4)

The lower and upper bounds in (4) are the best possible. The inequality (4) can be
restated as monotonicity results: The function 1

x

(
xr+1−ar+1

x−a
)1/r is decreasing and

the function 1
[xx/aa]1/(x−a)

(
xr+1−ar+1

x−a
)1/r is increasing with x > 0 for given r > 0.

Notice that 1
e

[
xx

aa

]1/(x−a) is called the identric or exponential mean.
After obtaining the following generalization of the left hand side inequality of

(3):

n+ k

n+m+ k
<

(
1
n

∑n+k
i=k+1 i

r

1
n+m

∑n+m+k
i=k+1 ir

)1/r

, (5)

where r is a given positive real number, n and m are natural numbers and k is a
nonnegative integer, the first author in [31] asked as an open problem the validity
of an inequality below:(

1
n

∑n
i=1 a

r
i

1
n+m

∑n+m
i=1 ari

)1/r

<
n
√
an!

n+m
√
an+m!

, (6)

where r is a positive number, an! denotes the sequence factorial defined by
∏n
i=1 ai.

The upper bound in (6) is the best possible. Inequality (5) means that the sequence{
1

n+k

(
1
n

∑n+k
i=k+1 i

r
)1/r}

n∈N is decreasing for given r > 0 and nonnegative integer
k.

Inequality (6) has been researched in [3, 36, 55], some sufficient conditions are
found. The first author in [36] obtained: Let n,m ∈ N and {ai}n+m

i=1 be an in-
creasing, logarithmically concave, positive, and nonconstant sequence such that
the sequence

{
i
[ai+1
ai

−1
]}n+m−1

i=1
is increasing, then inequality (6) holds. In partic-

ular, let a be a positive real numbers, b a nonnegative real number, k a nonnegative
integer, and m,n ∈ N, then, for any real number r > 0, we have(

1
n

∑n+k
i=k+1(ai+ b)r

1
n+m

∑n+m+k
i=k+1 (ai+ b)r

)1/r

<

n

√∏n+k
i=k+1(ai+ b)

n+m

√∏n+m+k
i=k+1 (ai+ b)

. (7)

The authors and a coworker in [47] give a lower bound for ratio betweem two
power means: Let n and m be natural numbers, suppose {ai}n+m

i=1 is an increasing,
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logarithmically convex, and positive sequence, then(
1
n

∑n
i=1 a

r
i

1
n+m

∑n+m
i=1 ari

)1/r

≥ an
an+m

. (8)

The lower bound in (8) is the best possible.

Remark 1. Indeed, the inequalities (3) to (7) are also valid for negative power r.
For more information, please refer to [4, 5] and some unpublished papers.

1.2. Inequalities of ratio between geometric means. The inequalities in (1)
were also refined and generalized in [33, 45, 48] and the following inequalities were
obtained:

n+ k + 1
n+m+ k + 1

<

(∏n+k
i=k+1 i

)1/n(∏n+m+k
i=k+1 i

)1/(n+m)
≤
√

n+ k

n+m+ k
, (9)

where k is a nonnegative integer, n and m are natural numbers. For n = m = 1,
the equality in (9) is valid.

In [15, 34], inequalities in (9) were generalized and obtained the following in-
equalities on the ratio for the geometric means of a positive arithmetic sequence:

a(n+ k + 1) + b

a(n+m+ k + 1) + b
≤

[∏n+k
i=k+1(ai+ b)

] 1
n[∏n+m+k

i=k+1 (ai+ b)
] 1

n+m

≤

√
a(n+ k) + b

a(n+m+ k) + b
, (10)

where a and b are positive constants, k is a nonnegative integer, n and m are natural
numbers.

In [43, 44], the following general monotonicity properties are established: Let f
be a positive function defined on [1,∞) such that f(x+2)

f(x+1) ≥
x+2
x+1

[x(x+2)
(x+1)2

] x
2 for x ≥ 0,

then the sequence
{ n
√∏n

i=1 f(i)
√
n

}
n∈N

is increasing; if f(x+2)
f(x+1) ≤

(
x+3
x+2

)2[ (x+1)(x+3)
(x+2)2

]x
holds on [0,∞), then the sequence

{ n
√∏n

i=1 f(i)

(n+1)

}
n∈N

is decreasing. Let f be a

positive function such that x
[ f(x+1)
f(x) − 1

]
is increasing on [1,∞), then the se-

quence
{ n
√∏n

i=1 f(i)

f(n+1)

}∞
n=1

is decreasing; if f is a logarithmically concave and positive

function defined on [1,∞), then the sequence
{ n
√∏n

i=1 f(i)√
f(n)

}∞
n=1

is increasing. As

consequences of these monotonicities, the lower and upper bounds for the ratio
n
√∏n+k

i=k+1 f(i)

n+m
√∏n+k+m

i=k+1 f(i)
are obtained, where k is a nonnegative integer and m a natural

number.
As lemmas in [36], the following results were showed: Let n,m ∈ N, and

{ai}n+m+1
i=1 a nonconstant positive sequence such that the sequence

{
i
[ai+1
ai
−1
]}n+m

i=1

is increasing, then the sequence
{

i√ai!
ai+1

}n+m

i=1
is decreasing, and then

n√an!
n+m
√
an+m!

>

an+1
an+m+1

. Let n > 1 be a positive integer and {ai}ni=1 an increasing nonconstant

positive sequence such that
{
i
[ai+1
ai

− 1
]}n−1

i=1
is increasing, then the sequence
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ai

(ai!)
1/i

}n
i=1

is increasing, and then a`

an
<

√̀
a`!

n√an!
for any positive integer ` satis-

fying 1 ≤ ` < n, where an! denotes the sequence factorial
∏n
i=1 ai.

In [42] and a subsequent paper [7], some inequalities for ratios of geometric
means of positive sequence are obtained as applications: If {ai}i∈N is an increasing,
positive sequence such that

{
i
(ai+1
ai

− 1
)}
i∈N increases, then we have

an
an+1

≤

n

√
n∏
i=1

(ai + an)

n+1

√
n+1∏
i=1

(ai + an+1)

≤

n

√
n∏
i=1

ai

n+1

√
n+1∏
i=1

ai

. (11)

If ϕ is increasing, convex, positive and defined on (0,∞) with
{
ϕ(i)

[ ϕ(i)
ϕ(i+1) − 1

]}
i∈N

decreases, then

[ϕ(n)]n/ϕ(n)

[ϕ(n+ 1)](n+1)/ϕ(n+1)
≤

ϕ(n)

√
n∏
i=1

[ϕ(i) + ϕ(n)]

ϕ(n+1)

√
n+1∏
i=1

[ϕ(i) + ϕ(n+ 1)]

. (12)

There are much literature devoted to research of ratios of mean values, for ex-
ample [50]. For more detailed information, please refer to references in this paper
and references therein.

1.3. Monotonicity and convexity of functions involving gamma functions
and ratio of gamma functions. It is well-known that the incomplete gamma
function is defined and denoted for Re z > 0 by

Γ(z, x) =
∫ ∞

x

tz−1e−t dt, γ(z, x) =
∫ x

0

tz−1e−t dt, (13)

with Γ(z, 0) = Γ(z) and Γ(0, x) = E1(x) is called the exponential integral.
In [18], the following monotonicity results for the gamma function were estab-

lished: The function [Γ(1 + 1
x )]x decreases with x > 0 and x[Γ(1 + 1

x )]x increases
with x > 0, which recover the inequalities (1), which refer to integer values of n.

These are equivalent to the function [Γ(1 + x)]
1
x being increasing and [Γ(1+x)]

1
x

x
being decreasing on (0,∞), respectively. In addition, it was proved that the func-
tion x1−γ [Γ(1 + 1

x )x] decreases for 0 < x < 1, where γ = 0.57721566 · · · denotes

the Euler-Mascheroni constant, which is equivalent to [Γ(1+x)]
1
x

x1−γ being increasing on
(1,∞).

In [6, 39], it is proved that the function f(x) = [Γ(x+1)]1/x

x+1 is strictly decreasing

and strictly logarithmically convex in (0,∞) and the function g(x) = [Γ(x+1)]1/x

√
x+1

is
strictly increasing and strictly logarithmically concave in (0,∞). Moreover, if s is
a positive real number, then for all real numbers x > 0,

e−γ

[Γ(s+ 1)]1/s
<

[Γ(x+ 1)]1/x

[Γ(x+ s+ 1)]1/(x+s)
< 1, (14)

limx→0 f(x) = e−γ and limx→∞ f(x) = e−1.
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Using monotonicity properties and inequalities of the generalized weighted mean
values (see [13, 30, 32, 37, 51]), the first author proved [35] that the functions[

Γ(s)
Γ(r)

]1/(s−r)
,
[

Γ(s,x)
Γ(r,x)

]1/(s−r)
and

[
γ(s,x)
γ(r,x)

]1/(s−r)
are increasing in r > 0, s > 0 and

x > 0; for any given x > 0, the function sγ(s,x)
xs is decreasing in s > 0. These

generalize and extend the related results in [10, 11, 17, 18, 27] for the range of
the argument. For more inequalities of quotients between gamma functions can be
found in [16], [28, p. 526] and [52, pp. 442–443].

Using the approach by A. Laforgia and S. Sismondi in [20], some more general
inequalities of the functions

∫ x
0
ep

t

dt and
∫ x
0
e−p

t

dt = Γ(1/p)−Γ(1/p,xp)
p for p > 0

and x > 0 are obtained in [49]. These two functions are also been investigated by
utilizing Tchebysheff integral inequality and Hermite-Hadamard integral inequality
in [40, 46] by the first author and coworkers. For more information, please refer to
[8].

In [9], Elezović, Giordana and Pečarić, among others, verified the convexity with

respect to variable x of the function
[

Γ(x+t)
Γ(x+s)

]1/(t−s)
for |t− s| < 1, obtained the best

bounds for Γ(x+1)
Γ(x+s) , where s ∈ (0, 1) and x ≥ 1, given some different approach from

Gautschi’s in [11], proved several new simple inequalities for digamma function,
and improved related results by D. Kershaw in [17].

In [53], it is shown that the function 1 + 1
x ln Γ(x + 1) − ln(x + 1) is strictly

completely monotone on (−1,∞) and tends to 1 as x→ −1 and to 0 as x→∞.
In [14], the following monotonicity result was obtained: The function

[Γ(x+ y + 1)/Γ(y + 1)]1/x

x+ y + 1
(15)

is decreasing in x ≥ 1 for fixed y ≥ 0. Then, for positive real numbers x and y, we
have

x+ y + 1
x+ y + 2

≤ [Γ(x+ y + 1)/Γ(y + 1)]1/x

[Γ(x+ y + 2)/Γ(y + 1)]1/(x+1)
. (16)

Inequality (16) extends and generalizes inequality (9), since Γ(n+ 1) = n!.
In this article, we are about to prove monotonicity and convexity properties of

ratio between x
√

Γ(x+ 1) and x+α
√

Γ(x+ α+ 1) which are generalizations of the
geometric means. Our main results are as follows.

Theorem 1. For α > 0 a real number, the function
x
√

Γ(x+1)

x+α
√

Γ(x+α+1)
is increasing

with x ∈ (x0,∞), where x0 ∈ (0, 1) is a constant.

Theorem 2. For α > 0 a real number, the function
x
√

Γ(x+1)

x+α
√

Γ(x+α+1)
is logarithmically

concave with x ∈ [1,∞).

Remark 2. Basing on the graph of
x
√

Γ(x+1)

x+α
√

Γ(x+α+1)
pictured by Mathematica, we

conjecture that the function
x
√

Γ(x+1)

x+α
√

Γ(x+α+1)
is increasing and logarithmically concave

with x ∈ (−1,∞) for a given α > 0.



6 F. QI AND B.-N. GUO

2. Lemma

It is well known that the Bernoulli numbers Bn is defined ([1] and [54, p. 1]) in
general by

1
et − 1

+
1
2
− 1
t

=
∞∑
n=1

(−1)n−1 t2n

(2n)!
Bn. (17)

In particular, we have the following

B1 =
1
6
, B2 =

1
30
, B3 =

1
42
, B4 =

1
30
. (18)

In [54, p. 45], the following summation formula is given
∞∑
n=0

(−1)n

(2n+ 1)2k+1
=

π2k+1Ek
22k+2(2k)!

(19)

for nonnegative integer k, where Ek denotes the Euler number, which implies

Bn =
2(2n)!
(2π)2n

∞∑
m=1

1
m2n

, n ∈ N. (20)

Remark 3. Recently, the Bernoulli and Euler numbers and polynomials are gener-
alized in [12, 21, 22, 23, 24, 25] and some unpublished papers by the authors and
coworkers.

Lemma 1. For real number x > 0 and natural number m, we have

ln Γ(x) =
1
2

ln(2π) +
(
x− 1

2

)
lnx− x+

m∑
n=1

(−1)n−1 Bn
2(2n− 1)n

· 1
x2n−1

+ (−1)mθ1 ·
Bm+1

(2m+ 1)(2m+ 2)
· 1
x2m+1

, 0 < θ1 < 1;

(21)

ψ(x) = lnx− 1
2x

+
m∑
n=1

(−1)n
Bn
2n

· 1
x2n

+ (−1)m+1θ2 ·
Bm+1

2m+ 2
· 1
x2m+2

;

0 < θ2 < 1,

(22)

ψ′(x) =
1
x

+
1

2x2
+

m∑
n=1

(−1)n−1 Bn
x2n+1

+ (−1)mθ3 ·
Bm+1

x2m+3
, 0 < θ3 < 1; (23)

ψ′′(x) = − 1
x2
− 1
x3

+
m∑
n=1

(−1)n(2n+ 1)
Bn
x2n+3

+ (−1)m+1(2m+ 3)θ4 ·
Bm+1

x2m+4
, 0 < θ4 < 1.

(24)

Proof. Let x > 0, then we have

ln Γ(x) =
1
2

ln(2π) +
(
x− 1

2

)
lnx− x−

∫ 0

−∞

(1
2
− 1
t
− 1

1− et

)ext
t

dt

,
1
2

ln(2π) +
(
x− 1

2

)
lnx− x− ω(x),

(25)

which is called the first Binet’s formula. See [1] and [54, p. 106].
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It is well-known that

cothx =
1
x

+
∞∑
k=1

2x
x2 + k2π2

for x 6= 0, and
x

ex − 1
+
x

2
=
x

2
coth

x

2
,

therefore
1
x

(
1

ex − 1
− 1
x

+
1
2

)
= 2

∞∑
k=1

1
x2 + 4π2k2

. (26)

For any given natural number m, we have

1
x2 + 4π2k2

=
m∑
n=1

(−1)n−1 x2(n−1)

(4π2k2)n
+ (−1)m

x2m

(4π2k2)m+1
· 1
1 + x2

4π2k2

, (27)

for 1 ≤ n ≤ m, we have
∞∑
k=1

(−1)n−1 x2(n−1)

(4π2k2)n
= (−1)n−1x

2(n−1)

(2π)2n

∞∑
k=1

1
k2n

. (28)

Substituting (20) into (28) leads to
∞∑
k=1

(−1)n−1 x2(n−1)

(4π2k2)n
= (−1)n−1 Bn

2(2n)!
x2(n−1), 1 ≤ n ≤ m. (29)

Summing up on both sides of (27) over k ∈ N yields
∞∑
k=1

(−1)m
x2m

(4π2k2)m+1
· 1
1 + x2

4π2k2

= (−1)mθ̃
Bm+1

2(2m+ 2)!
x2m, (30)

where θ̃ is a positive proper fraction (This means that 0 < θ̃ < 1) and dependent
on x. Hence, we have the following

1
ex − 1

− 1
x

+
1
2

=
m∑
n=1

(−1)n−1 Bn
(2n)!

x2n−1 + (−1)mθ̃
Bm+1

(2m+ 2)!
x2m+1. (31)

It is easy to see that∫ 0

−∞
extt2n−2 dt =

∫ ∞

0

e−xtt2n−2 dt =
(2n− 2)!
x2n−1

, (32)∫ 0

−∞
θ̃extt2m dt = θ1

∫ 0

−∞
extt2m dt = θ1

(2m)!
x2m+1

, (33)

where 0 < θ1 < 1 and θ1 is indepent on x.
Substituting (32) and (33) into ω(x) reveals

ω(x) =
m∑
n=1

(−1)n−1 Bn
2n(2n− 1)

· 1
x2n−1

+(−1)mθ1
Bm+1

(2m+ 1)(2m+ 2)
· 1
x2m+1

, (34)

and then formula (21) follows.
Differentiating on both sides of (25) yields

d
dx

ln Γ(x) = lnx− 1
2x

+ ω′(x), (35)
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Easy computation gives∫ 0

−∞
extt2n−1 dt = − 1

x2n

∫ ∞

0

e−tt2n−1 dt = − (2n− 1)!
x2n

, (36)∫ 0

−∞
θ̃extt2m+1 dt = θ2

∫ 0

−∞
extt2m+1 dt = −θ2

(2m+ 1)!
x2m+2

, (37)

where θ2 is independent of x and 0 < θ2 < 1.
Substituting (31) into ω′(x) and utilizing (36) and (37) shows

ω′(x) =
m∑
n=1

(−1)n
Bn
2n

· 1
x2n

+ (−1)m+1θ2
Bm+1

2m+ 2
· 1
x2m+2

, 0 < θ2 < 1. (38)

Formula (22) follows from combinating of (38) with ω′(x).
Differentiating with x on both sides of (35) yields

d2

dx2
ln Γ(x) =

1
x

+
1

2x2
+ ω′′(x), (39)

substituting (31) into ω′′(x) and integrating directly produces

ω′′(x) =
m∑
n=1

(−1)n−1 Bn
(2n)!

∫ 0

−∞
t2next dt+ (−1)m

Bm+1

(2m+ 2)!

∫ 0

−∞
θ̃t2m+2ext dt

=
m∑
n=1

(−1)n−1 Bn
x2n+1

+ (−1)m
Bm+1

(2m+ 2)!
θ3

∫ 0

−∞
t2m+2ext dt

=
m∑
n=1

(−1)n−1 Bn
x2n+1

+ (−1)mθ3
Bm+1

x2m+3
,

where θ3 is independent of x and 0 < θ3 < 1. Formula (23) follows.
By the same argument as above, we obtain

ω′′′(x) =
m∑
n=1

(−1)n(2n+ 1)Bn
x2n+3

+
(−1)m+1θ4(2m+ 3)Bm+1

x2m+4
, (40)

where θ4 is independent of x and 0 < θ4 < 1. Then formula (24) is proved. �

3. Proofs of Theorem 1 and 2

Proof of Theorem 1. For α > 0, let

fα(x) =
x
√

Γ(x+ 1)
x+α
√

Γ(x+ α+ 1)
(41)

for x > −1. By direct calculation, we obtain

ln fα(x) =
lnΓ(x+ 1)

x
− ln Γ(x+ α+ 1)

x+ α
, (42)

[ln fα(x)]′ =
[
ψ(x+ 1)

x
− ln Γ(x+ 1)

x2

]
−
[
ψ(x+ α+ 1)

x+ α
− ln Γ(x+ α+ 1)

(x+ α)2

]
(43)

, g(x)− g(x+ α), (44)

and

g′(x) =
2 ln Γ(x+ 1)− 2xψ(x+ 1) + x2ψ′(x+ 1)

x3
,
h(x)
x3

, (45)
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g′′(x) =
x3ψ′′(x+ 1)− 3x2ψ′(x+ 1) + 6xψ(x+ 1)− 6 ln Γ(x+ 1)

x4
,
p(x)
x4

, (46)

where ψ(x) = [Γ(x)]′

Γ(x) is known as the digamma function, the logarithmic derivative
of Γ(x). Therefore, it is sufficient to verify h(x) < 0 for x > 0 and h(x) > 0 for
−1 < x < 0.

Using the inequality

ln(1 + t) ≤ t(2 + t)
2(1 + t)

(47)

for t ≥ 0 in [38] and the special cases m = 2 of formulas (21), (22) and (23), we
have

h(x) = 2 lnΓ(x+ 1)− 2xψ(x+ 1) + x2ψ′(x+ 1)

< 2
[
1
2

ln(2π) +
(
x+

1
2

)
ln(x+ 1)− (x+ 1) +

1
12(x+ 1)

− 1
360(x+ 1)3

+
1

1260(x+ 1)5

]
− 2x

[
ln(x+ 1)− 1

2(x+ 1)

− 1
12(x+ 1)2

+
1

120(x+ 1)4
− 1

252(x+ 1)6

]
+ x2

[
1

x+ 1

+
1

2(x+ 1)2
+

1
6(x+ 1)3

− 1
30(x+ 1)5

+
1

42(x+ 1)7

]
= ln(2π)− 2 + ln(x+ 1)− 2x+

6x2 + 6x+ 1
6(x+ 1)

+
3x2 + x

6(x+ 1)2
+

30x2 − 1
180(x+ 1)3

− x

60(x+ 1)4
(48)

+
1− 21x2

630(x+ 1)5
+

x

126(x+ 1)6
+

x2

42(x+ 1)7

< ln(2π)− 2− 2x+
9x2 + 12x+ 1

6(x+ 1)
+

3x2 + x

6(x+ 1)2
+

30x2 − 1
180(x+ 1)3

− x

60(x+ 1)4
+

1− 21x2

630(x+ 1)5
+

x

126(x+ 1)6
+

x2

42(x+ 1)7

= ln(2π)− 1− x

2
− 1
x+ 1

+
1

9(x+ 1)3

+
1

12(x+ 1)4
− 1

18(x+ 1)6
+

1
42(x+ 1)7

, ln(2π)− 1
2

+ φ
( 1
x+ 1

)
,

and, for y ∈ (0, 1],

φ′(y) = −1 +
1

2y2
+
y2

3
+
y3

3
− y5

3
+
y6

6
,

φ′′(y) = − 1
y3

+
2y
3

+ y2 − 5y4

3
+ y5,

φ(3)(y) =
2
3

+
3
y4

+ 2y − 20y3

3
+ 5y4,
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φ(4)(y) = 2− 12
y5
− 20y2 + 20y3,

φ(5)(y) =
60
y6
− 40y + 60y2,

φ(6)(y) = −40− 360
y7

+ 120y,

φ(7)(y) = 120 +
2520
y8

.

It is clear that φ(7)(y) > 0 and φ(6)(y) is increasing. Since φ(6)(1) = −280
and limy→0 φ

(6)(y) = −∞, we have φ(6)(y) < 0 and φ(5)(y) is decreasing. It is
easy to see that limy→0 φ

(5)(y) = ∞ and φ(5)(1) = 80, thus φ(5)(y) > 0 and
then φ(4)(y) is increasing. From limy→0 φ

(4)(y) = −∞ and φ(4)(1) = −10, it is
deduced that φ(4)(y) < 0, hence φ(3)(y) decreases. From limy→0 φ

(3)(y) = ∞ and
φ(3)(1) = 4, it is concluded that φ(3)(y) > 0, therefore φ′′(y) increases. Because
of limy→0 φ

′′(y) = −∞ and φ′′(1) = 0, we obtain φ′′(y) ≤ 0, then φ′(y) decreases.
By limy→0 φ

′(y) = ∞ and φ′(1) = 0, it follows that φ′(y) ≥ 0, and then φ(y) is
increasing in (0, 1].

Utilizing monotonicity property of φ(y) and the inequality

h(x) < ln(2π)− 1
2

+ φ
( 1
x+ 1

)
(49)

with

ln(2π)− 1
2

+ φ
( 1

0 + 1

)
= ln(2π)− 1

2
− 337

252
= ln(2π)− 463

252
> 0 (50)

and

ln(2π)− 1
2

+ φ
( 1

1 + 1

)
= ln(2π)− 1

2
− 2655

1792
= ln(2π)− 3551

1792
< 0, (51)

we conclude that there exists a point x0 ∈ (0, 1) such that h(x) < 0 in x ∈ (x0,∞).
This implies g′(x) < 0 for x ∈ (x0,∞) and g(x) is decreasing in (x0,∞). Hence
[ln fα(x)]′ > 0 in (x0,∞), and then ln fα(x) is increasing in (x0,∞), that is, fα(x)
is increasing in (x0,∞). The proof is complete. �

Proof of Theorem 2. Using the inequality (47) for t ≥ 0 in [38] and the special cases
m = 2 of formulas (21), (22), (23) and (24), we obtain

p(x) = x3ψ′′(x+ 1)− 3x2ψ′(x+ 1) + 6xψ(x+ 1)− 6 ln Γ(x+ 1)

> x3

[
− 1

(x+ 1)2
− 1

(x+ 1)3
− 1

2(x+ 1)5
+

1
6(x+ 1)7

− 1
6(x+ 1)8

]
− 3x2

[
1

x+ 1
+

1
2(x+ 1)2

+
1

6(x+ 1)3
− 1

30(x+ 1)5
+

1
42(x+ 1)7

]
+ 6x

[
ln(x+ 1)− 1

2(x+ 1)
− 1

12(x+ 1)2
+

1
120(x+ 1)4

− 1
252(x+ 1)6

]
− 6
[
1
2

ln(2π) +
(
x+

1
2

)
ln(x+ 1)− (x+ 1) +

1
12(x+ 1)

− 1
360(x+ 1)3

+
1

1260(x+ 1)5

]



MONOTONICITY AND CONVEXITY OF THE FUNCTION x
√

Γ(x+ 1)
/

x+α
√

Γ(x+ α+ 1) 11

> x3

[
− 1

(x+ 1)2
− 1

(x+ 1)3
− 1

2(x+ 1)5
+

1
6(x+ 1)7

− 1
6(x+ 1)8

]
− 3x2

[
1

x+ 1
+

1
2(x+ 1)2

+
1

6(x+ 1)3
− 1

30(x+ 1)5
+

1
42(x+ 1)7

]
+ 6x

[
− 1

2(x+ 1)
− 1

12(x+ 1)2
+

1
120(x+ 1)4

− 1
252(x+ 1)6

]
− 6
[
1
2

ln(2π)− (x+ 1) +
1

12(x+ 1)
− 1

360(x+ 1)3
+

1
1260(x+ 1)5

]
− 3x(2 + x)

2(1 + x)

= 4− 3 ln(2π) +
x

2
+

3
x+ 1

− 5
2(x+ 1)2

+
13

6(x+ 1)3
− 19

12(x+ 1)4

− 1
6(x+ 1)5

+
7

6(x+ 1)6
− 31

42(x+ 1)7
+

1
6(x+ 1)8

, (x+ 1)q
(

1
x+ 1

)
,

and, for t ∈ [0, 1
2 ],

q′(t) =
7
2
− 3 ln(2π) + 6t− 15t2

2
+

26t3

3
− 95t4

12
− t5 +

49t6

6
− 124t7

21
+

3t8

2
,

q′′(t) = 6− 15t+ 26t2 − 95t3

3
− 5t4 + 49t5 − 124t6

3
+ 12t7,

q(3)(t) = −15 + 52t− 95t2 − 20t3 + 245t4 − 248t5 + 84t6,

q(4)(t) = 52− 190t− 60t2 + 980t3 − 1240t4 + 504t5,

q(5)(t) = −190− 120t+ 2940t2 − 4960t3 + 2520t4,

q(6)(t) = −120 + 5880t− 14880t2 + 10080t3,

q(7)(t) = 5880− 29760t+ 30240t2,

q(8)(t) = −29760 + 60480t.

It is easy to see that t = 31
63 is an unique minimum point of q(7)(t) on [0, 1

2 ]. Since
q(7)(0) = 5880 and q(7)( 1

2 ) = −1440, thus q(6)(t) has an unique maximum on [0, 1
2 ].

Since q(6)(0) = −120 and q(6)( 1
2 ) = 360, then q(5)(t) has an unique minimum on

[0, 1
2 ]. Because of q(5)(0) = −190 and q(5)( 1

2 ) = 45
2 , therefore q(4)(t) has an unique

minimum on [0, 1
2 ]. The unique zero point of q(5)(t) in [0, 1

2 ] is

t0 =
31
63

+
1

756

√
1
7

[
381528− 1323κ− 7938µ+

294848
ν

]
− ν

2

= 0.4437889482188733 · · · ,
(52)

where

κ =
3
√

5600664− 1296
√

17855817 , (53)

µ = 3

√
3
(
8643 + 2

√
17855817

)
, (54)



12 F. QI AND B.-N. GUO

ν =

√
757
3969

+
1

756
3
√

5600664− 1296
√

17855817 +
3
√

8643 + 2
√

17855817
42 3
√

9
, (55)

the minimum q(4)(t0) = 0.03717920 · · · . Hence q(4)(t) > 0 and q(3)(t) is increasing
on [0, 1

2 ]. From q(3)( 1
2 ) = − 51

8 , it follows that q(3)(t) < 0 and q′′(t) is decreasing
on [0, 1

2 ]. From q′′( 1
2 ) = 41

24 , it is deduced that q′′(t) > 0 and q′(t) is increasing on
[0, 1

2 ]. Since q′( 1
2 ) = 56659

10752 − 3 ln(2π) < 0, we have q′(t) < 0 and q(t) is decreasing
on [0, 1

2 ]. From q( 1
2 ) = 22093

21504 + 1
2 ( 7

2 −3 ln(2π)) > 0, it is concluded that the function
q(t) > 0 on [0, 1

2 ].
Note that q(t) > 0 with t ∈ (0, 1

2 ] is equivalent to q
(

1
x+1

)
> 0 with x ∈ [1,∞).

This implies that p(x) > 0 and g′′(x) > 0 with x ∈ [1,∞), then g′(x) is increasing
and g(x) is convex with x ∈ [1,∞). Therefore [ln fα(x)]′′ = g′(x) − g′(x + α) <
0, that is, the function fα(x) is logarithmically concave on [1,∞). The proof is
complete. �

Remark 4. To prove that
x
√

Γ(x+1)

x+α
√

Γ(x+α+1)
is increasing and logarithmically concave

with x ∈ (−1,∞) for a given α > 0, it is sufficient to verify

h(x) = x3

(
τ ′′(x)− 1

x2 + 1

)
≤ 0, (56)

p(x) = x4τ ′′′(x)− 12 + 5x+
2

(1 + x)3
− 11

(1 + x)2
+

21
1 + x

≥ 0, (57)

where

τ(x) =
1
x

∫ ∞

0

(
1
t
− 1
et − 1

)
e−t

1− e−xt

t
dt. (58)

We will give proofs of (56) and (57) in a subsequent article.

4. Corollaries

As by-products, from Theorem 1 and 2, the following corollaries are deduced.

Corollary 1. The function ψ(x+1)
x − ln Γ(x+1)

x2 is decreasing and convex on [1,∞).

Corollary 2. For x ∈ [1,∞), we have

ln Γ(x+ 1) < xψ(x+ 1)− x2

2
ψ′(x+ 1), (59)

ln Γ(x+ 1) < xψ(x+ 1)− x2

2
ψ′(x+ 1) +

x3

6
ψ′′(x+ 1). (60)

Remark 5. It is conjectured that Corallary 1 and 2 are valid on the interval (−1,∞).

Corollary 3. Let n be natural number. Then the sequence

n
√
n!

n+k
√

(n+ k + 1)!
(61)

are increasing with k ∈ N.
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5. Open problems

The function
x
√

Γ(x+1)

x+α
√

Γ(x+α+1)
can be expressed as

x

√∫∞
0
txe−t dt

x+α

√∫∞
0
tx+αe−t dt

, (62)

where
∫∞
0
e−t dt = 1. Then we propose the following

Open Problem 1. Let w(x) ≥ 0 be a nonnegative weight defined on a domain Ω
with

∫
Ω
w(x) dx = 1. Find conditions about w(x) and f(x) ≥ 0 such that the ratio

between two power means

Q(t) =

[∫
Ω
w(x)f t(x) dx

]1/t[∫
Ω
w(x)f t+α(x) dx

]1/(t+α)
(63)

is monotonic or convex with t ∈ R for a given α > 0.

Open Problem 2. Find conditions about the positive sequence {ai}n∈N such that
the function

F(r) =

(
1
n

∑n
i=1 a

r
i

1
n+m

∑n+m
i=1 ari

)1/r

(64)

is monotonic or convex with r ∈ R, where n and m are two given natural numbers.
In particular, for {ai}n∈N being the natural number sequence (that is, ai = i), show
that the function F(r) is decreasing strictly with r ∈ R.
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