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MONOTONICITY AND CONVEXITY OF THE FUNCTION

YL(x+1)/**YT(x+a+1)
FENG QI AND BAI-NI GUO

/T (z+1)
x+({‘/ T'(z4+a+1)

ing with = € (zo,00) and logarithmically concave with x € [1,00), where
zo € (0,1) is a constant. Moreover, some monotonicity and convexity results
and inequalities of functions involving the gamma function and polygamma
functions are obtained as corollaries and by-products.

ABSTRACT. For a > 0 a real number, the function is increas-

1. INTRODUCTION

In this section, we first state some known results: monotonicity of the geometric
mean sequence and some sequences involving geometric means, inequalities of ratio
between geometric means and ratio between power means, and monotonicity and
convexity of ratio between two gamma functions and functions involving the gamma
function.

1.1. Inequalities of ratio between power means. H. Minc and L. Sathre in
[27] gave the lower and upper bounds of ratio between two geometric means of

natural numbers:
-1 "~/(n —1)!
n-l - DE (1)

n vn!

The right hand side inequality in (1) also reveals that the geometric mean sequence
{ vn! }n N is strictly increasing and the sequence {@ }n N is strictly decreasing.

Note that I'(n + 1) = n!, where the gamma function is usually defined [19, 54] for
Rez > 0 by

I'(z) = /000 t*~le~tdt. (2)

In [2, 26], H. Alzer and J. S. Martins refined the left hand side inequality in (1)
and showed that, if n is a positive integer, then, for all positive real numbers 7,

1/r
1 n -7 n
n R n!

< < —.
n+1 oyt "/ (n+1)!
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2 F. QI AND B.-N. GUO

Both bounds in (3) are the best possible. The middle term in (3) is indeed a ratio

between the power means (37" i’“)l/ "and (5 S " The inequality

1
n

(3) implies that the sequence { (3" | ir)l/ 3 oy 18 decreasing strictly and the

1 - . . .
sequence { ,Lln! (% S zr) /r}neN is increasing strictly for given r > 0.

The integral form of inequality (3) was established in [29, 41] by the authors:
Let b > a > 0 and é > 0 be real numbers. Then, for any positive r € R, we have

b <b+5—a prtl — grtl )”T

b10 \ b—a  (broyrl o

1/r
( e Jyardr >/ 0 a0
= <

- [P0 g da [(b+ 0)0+0 /qa]l/(b+3-a)" (4)

a

The lower and upper bounds in (4) are the best possible. The inequality (4) can be
2Tl _grtl ) 1/7«

r—a

restated as monotonicity results: The function %(
1 zTHl_qrtiN1/r
[z /aa]l/(@=a) ( T—a )

Notice that %[i—:] Y/(e=a) is called the identric or exponential mean.

After obtaining the following generalization of the left hand side inequality of

(3):
n - 1/r
n+k << %Zijkkﬂz >
/l'f’

nemk S\ oy

is decreasing and

the function is increasing with « > 0 for given r > 0.

(®)

n+m
where 7 is a given positive real number, n and m are natural numbers and k is a

nonnegative integer, the first author in [31] asked as an open problem the validity
of an inequality below:

1/r
DML R (6)
+ B

n+1m Z?:lm a’; * a"+m!
where 7 is a positive number, a,,! denotes the sequence factorial defined by [T, a;.
The upper bound in (6) is the best possible. Inequality (5) means that the sequence
{n—ik(% Z?:Jrkkﬂ ir)l/r}neN is decreasing for given r > 0 and nonnegative integer
k.

Inequality (6) has been researched in [3, 36, 55], some sufficient conditions are
found. The first author in [36] obtained: Let n,m € N and {a;}"]™ be an in-
creasing, logarithmically concave, positive, and nonconstant sequence such that
the sequence {i[“= —1] }?:17”_1 is increasing, then inequality (6) holds. In partic-
ular, let a be a positive real numbers, b a nonnegative real number, k a nonnegative
integer, and m,n € N, then, for any real number r > 0, we have

n . 1/r n/Tyn+k .
( %Zi:kl,:-l(az +b)" - [[iZx i1 (ai +0)
)"

1 +m+k, . .
Z?:ﬁl (G/Z + b n+m H:li’kﬂii»k(al + b)

n+m
The authors and a coworker in [17] give a lower bound for ratio betweem two
power means: Let n and m be natural numbers, suppose {a; }//™ is an increasing,

(7)
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logarithmically convex, and positive sequence, then
1/r
1 n r
7 Die1 0 > _On (8
1 Zn—i—m, CLT ~a °
n+m i=1 % n+tm

The lower bound in (8) is the best possible.

~—

Remark 1. Indeed, the inequalities (3) to (7) are also valid for negative power r.
For more information, please refer to [1, 5] and some unpublished papers.

1.2. Inequalities of ratio between geometric means. The inequalities in (1)

were also refined and generalized in [33, 45, 48] and the following inequalities were
obtained:
n Al/n
n+k+1 (HiJrkkJrl@)/ n+k
< < ; (9)
n+m+k+1 ([T )1/(n+m> n+m-+k
k+1

where k is a nonnegative integer, n and m are natural numbers. For n = m = 1,
the equality in (9) is valid.

In [15, 34], inequalities in (9) were generalized and obtained the following in-
equalities on the ratio for the geometric means of a positive arithmetic sequence:

an+k+1)+0b < [H?Ikkﬂ(ai—i-b)]% <\/ a(n+k)+b (10)

aln+m+k+1)+b— [H?:Jrkrﬁk(m”)]nm “Valn+m+k)+0b’

where a and b are positive constants, k is a nonnegative integer, n and m are natural
numbers.

In [13, 44], the following general monotonicity properties are established: Let f
be a positive function defined on [1, 00) such that fg;ﬁ; > iﬁ [fﬁjg] % for ¢ >0,
then the sequence {% }HEN is increasing;; if f(ijﬁ; < (i—jr'g) [%]w
holds on [0,00), then the sequence {W }neN is decreasing. Let f be a
positive function such that x[f 5?(1')1) — 1] is increasing on [1,00), then the se-

VI, £()

o0
quence {Tﬂ)} is decreasing;; if f is a logarithmically concave and positive
n=1

VI, f(0)
V£(n)

consequences of these monotonicities, the lower and upper bounds for the ratio
VIS, £
n+77\L/Hn+kk+lm f(

function defined on [1,00), then the sequence { } is increasing. As
n=1

are obtained, where k is a nonnegative integer and m a natural

number.
As lemmas in [36], the following results were showed: Let n,m € N, and
{al}’”mJrl a nonconstant positive sequence such that the sequence { [——1] }Z:lm

Ve T Vanl

is increasing, then the sequence {H} is decreasing, and then Wifbi‘ >
z =1 An4m

—Antl_ Tet n > 1 be a positive integer and {a;}" ; an increasing nonconstant

An4+m+1

" rag -1 . . .
positive sequence such that {z[% — 1]}?:1 is increasing, then the sequence
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n ’
a; .. . ag Fagl o . .
{7(%!)1” }i:1 is increasing, and then o < Varl for any positive integer ¢ satis

fying 1 < £ < n, where a,,! denotes the sequence factorial ]_[?:1 a;.

In [42] and a subsequent paper [7], some inequalities for ratios of geometric
means of positive sequence are obtained as applications: If {a;};cn is an increasing,
positive sequence such that { (a—+1 — 1)} increases, then we have

H (al + an { H Q;
(o7 =1 =1
< (11)

Gn+1 n+1 n+1
H (@i + ant1) 1 a
=1

If o is increasing, convex, positive and defined on (0, c0) with {(p i) [Sa‘é(i)l) — 1] } N
i€

@ (n) H _|_
[om)]/5 e )

[sp(n_’_l)](nJrl)/Lp(nﬁLl) —
oo o0+ o0+ )

decreases, then

There are much literature devoted to research of ratios of mean values, for ex-
ample [50]. For more detailed information, please refer to references in this paper
and references therein.

1.3. Monotonicity and convexity of functions involving gamma functions
and ratio of gamma functions. It is well-known that the incomplete gamma
function is defined and denoted for Rez > 0 by

F(z,x):/ t*~letdt, fy(z,x):/ t*"le~tdt, (13)
T 0

with T'(z,0) = T'(z) and T'(0,z) = F1(x) is called the exponential integral.

In [18], the following monotonicity results for the gamma function were estab-
lished: The function [I'(1 + 2)]” decreases with « > 0 and z[['(1 4+ 1)]* increases
with & > 0, which recover the inequalities (1), which refer to integer values of n.

These are equivalent to the function [I(1 + z)]* being increasing and 1+7””)]

being decreasing on (0, 00), respectively. In addition, it was proved that the func—
tion z'7Y[I'(1 + 2)7] decreases for 0 < 2 < 1, where v = 0.57721566 - - - denotes

the Euler-Mascheroni constant, which is equivalent to M

(1, 00).
In [6, 39], it is proved that the function f(z) =

being increasing on

Ja

% is strictly decreasing
1/x

and strictly logarithmically convex in (0, 00) and the function g(z) = % is

strictly increasing and strictly logarithmically concave in (0, 00). Moreover, if s is

a positive real number, then for all real numbers x > 0,

e [

[C(s+ D]/~ [D(z + s+ 1))/ ts)

lim, o f(7) = e™7 and lim, ., f(z) = e~ L.

<1, (14)
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Using monotonicity properties and inequalities of the generalized weighted mean
values (see [13, 30, 32, 37, 51]), the first author proved [35] that the functions

1/(s—r) 1/(s—r) 1/(s—r)
L(s) L(s,z) v(s,7)
[m)} ) [F(m)] and [v(nr)}

are increasing in r > 0, s > 0 and

x > 0; for any given = > 0, the function % is decreasing in s > 0. These
generalize and extend the related results in [10, 11, 17, 18, 27] for the range of
the argument. For more inequalities of quotients between gamma functions can be
found in [16], [28, p. 526] and [52, pp. 442-443)].

Using the approach by A. Laforgia and S. Sismondi in [20], some more general
inequalities of the functions [ e?’ dt and Iy e P dt = w for p > 0
and x > 0 are obtained in [19]. These two functions are also been investigated by
utilizing T'chebysheff integral inequality and Hermite-Hadamard integral inequality
in [40, 46] by the first author and coworkers. For more information, please refer to
5]

In [9], Elezovi¢, Giordana and Pecari¢, among others, verified the convexity with
1/(t=s)
F(m+t)}

for [t — s| < 1, obtained the best

respect to variable x of the function {F(x )

bounds for Egiig, where s € (0,1) and = > 1, given some different approach from

Gautschi’s in [11], proved several new simple inequalities for digamma function,
and improved related results by D. Kershaw in [17].
In [53], it is shown that the function 1+ LInT'(z + 1) — In(z + 1) is strictly
completely monotone on (—1,00) and tends to 1 as  — —1 and to 0 as © — oo.
In [14], the following monotonicity result was obtained: The function

C(z+y+1)/T(y+ 1))/
z+y+1

(15)

is decreasing in > 1 for fixed y > 0. Then, for positive real numbers z and y, we
have
r+y+l_ [Cl+y+1)/Ty+ )Y/
z+y+2 = [D(z+y+2)/T(y+ 1)/ e+’

(16)

Inequality (16) extends and generalizes inequality (9), since I'(n + 1) = nl.
In this article, we are about to prove monotonicity and convexity properties of

ratio between {/I'(x +1) and “*{/I'(x + o+ 1) which are generalizations of the

geometric means. Our main results are as follows.

. /T (z+1) L .
Th 1. F —_
eorem or a > 0 a real number, the function — TaragD ¢ inereasing

with x € (xg,00), where xg € (0,1) is a constant.

Theorem 2. For a > 0 a real number, the function H(:/t Vll:((wil)_m is logarithmically
rT+o

concave with x € [1,00).

/T (z+1)

Remark 2. Basing on the graph of —Y———— pictured by Mathematica, we

2t/ T'(z+a+1)

conjecture that the function ”‘i/t Vll:((:cilll) is increasing and logarithmically concave
T

with z € (—1,00) for a given a > 0.
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2. LEMMA

It is well known that the Bernoulli numbers B,, is defined ([1] and [54, p. 1]) in
general by

1 S t2n
- =N"(-1)"'——B,. 1
G172 7 ;( N (17)
In particular, we have the following
1 1 1 1
Bi==, By=-—, B;= By = — 18
1 6 ’ 2 30a 3 42a 4 30 ( )
In [54, p. 45], the following summation formula is given
i (_1)n B 7T2]€+1Ek (19)
= (2n+ 1)L T 22042(2k))

for nonnegative integer k, where Ej denotes the Euler number, which implies

2(2n)! = 1
B, = , neN. 20
(27’()2” mZZI m2n n ( )
Remark 3. Recently, the Bernoulli and Euler numbers and polynomials are gener-
alized in [12, 21, 22, 23, 24, 25] and some unpublished papers by the authors and
coworkers.

Lemma 1. For real number x > 0 and natural number m, we have

1 1 m o B, 1
InD(z) = 5 In(2m) + (m - 5) z—z+) (1) 2(2n — )n  z2n-1
n=1 (21)
Berl
—1)m0, - . 0<6 1:
D G T em ey e 0SSl
1 i B 1 B 1
=1 _ 1)y —1 7)’L+19 . m+1l .
V(@) =Mz -~ +n:1( ) 5+ (1) 2 Im+3 T (99)
0<b <1,

11 - w_1 Bn mn  Bm
V) ==+ -—+> (-1 + (=1)™5 - Wﬁg, 0<63<1; (23)

. Bm+1
x2m+4 ?

0<by<1.
Proof. Let x > 0, then we have

1 1 o101 1 oye
sl 1
=35 In(27) + (x— 2) Inz — 2 —w(x),

which is called the first Binet’s formula. See [1] and [54, p. 106].



MONOTONICITY AND CONVEXITY OF THE FUNCTION ¥T(z+1)/*T¢/T(z+a+1)

It is well-known that

= 2x
cothx = — + kZ:l poRy
for x # 0, and
T 2 _Zcoths
ec—1 2 2 ’
therefore
1 1 11 = 1
4] = . 26
x(ezl x+2) §x2+4772k2 (26)
For any given natural number m, we have
1 m i x2(n71) . me 1
2 2222(_1) sy T (=1) 212 ym+1 z (27)
x? +Amck? (4m2k2) (Am2k2)mtl 14 2
for 1 < n < m, we have

0 x2(n—1) xQ(n—l) < 1
§ (_1)n—1 —_ (_1)n—1
(

—. 28
47r2k2)n (27-(-)277, k2n ( )
k=1 k=1
Substituting (20) into (28) leads to
© 2(n—1) B
)t () 2 <<, 29
;( @y YV gyt lsnsm (29)
Summing up on both sides of (27) over k € N yields
> (EQm 1 ~ B +1
—1m : = (—1)mmELg2m 30
;;1( @ Ty = D™ 2 (30)

where 6 is a positive proper fraction (This means that 0 < 0 < 1) and dependent
on x. Hence, we have the following

1 1 1 & B ~ B
_ i 71 n—1 n 2n—1 71 mo m+1 2m+1' 1
1 72 ;( A S A o ey T (31)
It is easy to see that
0 )
2n — 2)!
/ emtth—Q dt :/ e—mtt2n—2 dt _ ( ’n‘z 71) , (32)
o) 0 x="
o xt 2m 0 xt 2m (27’71)'
[ fe tt2 dt = 01 / (& tt2 dt = le, (33)
where 0 < 61 < 1 and 6 is indepent on x.
Substituting (32) and (33) into w(x) reveals
i _ B 1 Bpi1 1
_ —1)" 1 n . —1)™mp m+
w(z) 7;( ) 2n(2n — 1) a27—1 (="

. 34
(2m+1)(2m+2) a?mtl’ (34)
and then formula (21) follows.

Differentiating on both sides of (25) yields
d

— 1 /
ﬁlnr(x)flnx—%er(x), (35)
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Easy computation gives

0 e’}
1 2n —1)!
/ ertth—l dt = - e—tt2n—1 dt = _( n > ) , (36)
o xr2n 0 xr2n
o - xt 2m+1 0 xt  2m+1 (2m+ 1)'
. fe*'t dt = 92 . et dt = —egw, (37)
where 65 is independent of z and 0 < 65 < 1.
Substituting (31) into w’(z) and utilizing (36) and (37) shows
- B, 1 B 1
2) =3 (~1)" 22— () 0<fy <1 (38
w'(z) ;( V' g F (D) s, 0< <1 (38)
Formula (22) follows from combinating of (38) with w'(z).
Differentiating with x on both sides of (35) yields
d? 11
substituting (31) into w”(z) and integrating directly produces
“ B, [° B 0 .
" — _1)yn—t n / 2n et 4t 1™ m+1 / o12mt27t 4t
) =D VTG [ et (GO [ e
= B Byt 0
_ -1 n—1 n —1)™ m+ 0 t2m+2 zt q¢
n;( A o] 3/40 ‘
- B B
_ n—1 n m m—+1
= ()" i+ ()"
n=1
where 603 is independent of z and 0 < 63 < 1. Formula (23) follows.
By the same argument as above, we obtain
L (=D)"2n+ 1B, (—=1)"™104(2m + 3) By
w///(g;) = Z 23 —+ 2 s (40)
n=1
where 60,4 is independent of z and 0 < 64 < 1. Then formula (24) is proved. O
3. PROOFS OF THEOREM 1 AND 2
Proof of Theorem 1. For @ > 0, let
YT(x+1)
fo(z) = — (41)
W (z+a+1)
for z > —1. By direct calculation, we obtain
InT(z+1) Wnlz+4+a+1)
1 = — 42
n fo () - T+ ) (42)
P(r+1 InT(z+1 Plr+a+1 InT(z+a+1
g = [2E D WD DT ) mrGtatn)
x x T+« (z+ «)
2 g(x) — g(z +a), (44)
and
2InT(z + 1) — 2z¢(x + 1) + 229 (z + 1 h(x

3 3
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_ 3" (x + 1) — 322 (x + 1) + 62¢(x + 1) —6InT(z + 1) s p(x)

T (46)

g"(x)

x4 T
where () = [I;((Z))]/ is known as the digamma function, the logarithmic derivative
of T'(z). Therefore, it is sufficient to verify h(x) < 0 for z > 0 and h(z) > 0 for
—-l<zx<O.

Using the inequality

t(2+1)
In(1+1¢) < 21+ 1)

for t > 0 in [38] and the special cases m = 2 of formulas (21), (22) and (23), we
have

(47)

h(z) =2InT(z 4+ 1) — 229(z + 1) + 2%/ (x + 1)

1 1 1
-1 -1 1) — 1 _
<2{2 n(27r)+(a:+2) nx+1)—(z+ )+12(I+1)
1 1 1
- — 221 - ——
360(x + 18 | 1260(z + 1)5] v [ SR A Py
L 1 1 e
— - | —
12(z+1)2 " 120(z + 1)*  252(z + 1)6 z+1
n 1 n 1 1 n 1
2+ 12 6(x+1)3 30(x+1)° 42(z+1)7
622 + 6z + 1
=In(27) —2+1 1)—2 _—
n(2r) +In(z+1) -2z + ST 1)
322 +x 302% — 1 T
— 48
+ 6(x +1)2 + 180(z +1)3  60(x + 1)* (48)
1— 2122 z z?

630(z + 1) 126z 1 1)° T 20z + 1)
99:2+12:17+1+ 32 4z + 3022 -1
6(z+1) 6(zx+1)2  180(z + 1)3

<In(27) -2 -2z +

z n 1— 2122 n z n x?
60(x+1)*  630(x+1)>  126(x+1)¢  42(z+1)7
T 1 1
=In@2r)—1- = —
n(2m) 2 2+l o@r1p

1 1 1
+ 12(x + )7 18(z + 1)8 * 42(z 4+ 1)7

éln(2ﬁ)_%+¢<xi1>’

and, for y € (0,1],
6

3 5
e 1 Ly
¢'(y) +2+3+3 3+6’
1 2y 5y* 5
¢//(y)**yfg+§+y2*?+y,
f 2 3 203
(3) — 27 54
o (y) 3+y4+y — - T



10 F. QI AND B.-N. GUO

12
oW (y) =2 - = —20y% + 20y°,
Yy

60
¢ (y) = — — 40y + 60y°,
Yy

o9 (y) = —40 — ?’yﬂ + 120y,
o7 1 2

It is clear that ¢(")(y) > 0 and ¢©)(y) is increasing. Since ¢ (1) = —280
and lim, o (¥ (y) = —oo, we have ¢(®(y) < 0 and ¢ (y) is decreasing. It is
easy to see that lim, .o ¢ (y) = oo and ¢ (1) = 80, thus ¢ (y) > 0 and
then ¢®(y) is increasing. From lim,_.o #®(y) = —oo and ¢ (1) = —10, it is
deduced that ¢®* (y) < 0, hence ¢ (y) decreases. From lim, .o #3) (y) = oo and
#3) (1) = 4, it is concluded that ¢®(y) > 0, therefore ¢”(y) increases. Because
of limy_,o ¢"(y) = —oo and ¢”(1) = 0, we obtain ¢”(y) < 0, then ¢'(y) decreases.
By lim,_.o ¢'(y) = oo and ¢'(1) = 0, it follows that ¢'(y) > 0, and then ¢(y) is
increasing in (0, 1].

Utilizing monotonicity property of ¢(y) and the inequality

1 1
h@) < In(2m) = 5 + ¢($ - 1) (49)
with
1 1 1 337 463
In (27r)—7+d><0+1> In(2m) - 5 — 52 = In(2m) = 5> > 0 (50)
and
1 1 2655 3551
In(27) — = In(2m) — = — 222 _p(2r) — 222 1
(2m) +“5<1+1) (2m) =5 = o0 ~ O — g7 <0 B

we conclude that there exists a point zo € (0,1) such that h(z) < 0 in x € (zo,00).
This implies ¢'(x) < 0 for € (xg,00) and g(z) is decreasing in (z,00). Hence
[In fo(x)])" > 0 in (29, 00), and then In f,(z) is increasing in (zg, 00), that is, f,(x)
is increasing in (zg, 00). The proof is complete. a

Proof of Theorem 2. Using the inequality (47) for ¢ > 0 in [38] and the special cases
m = 2 of formulas (21), (22), (23) and (24), we obtain

p(z) = 2*¢"(x +1) — 322 (2 + 1) + 62(x + 1) —6InT(z + 1)

o [_ L SRR S S| ]
(x+1)2 (412 2@x+1)5 6(z+1)7 6(x+1)8
~ 3x2{ LSS SRS S S| }
z+1 2x+1)2 6(zx+1)3 30(x+1)° 42(z+1)7

1 1 1 1
N _ _
+ 6z [ln(x +1) 20z +1)  12(x + 1)2 + 120(z + 1)*  252(x + 1)6}

—6{ In(27) + <x+;>ln(x+1)—(w+1)+12(x+1)

1 1
T 360(z + 17 | 1260(z + 1)5}
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o3 [_ R SRR SR S }
@+ D2 @+1F 3@+1p  6@r1) 6@+ D
- 3332{ LN N DS S }
x+1 2(x+4+1)2 6(z+1)3% 30(@x+1)>° 42(x+1)7
+ 6z [— L - ! + ! - ! ]
2z +1) 12+ 12 120+ 1)*  252(z +1)°
1 1 1
=6 [2 m2m) =@+ U+ 50775 ~ 360 117 T 120000 © 1)5}
3x(2+x)
C 2(14x)
3 5 13 19
=A4-3em At ot T Ty T 1)
1 7 31 1

6z 17 610 2@+ 6@t
2 (z+ 1)Q<xil>,

and, for t € [0, %],

7 1562 26¢3  95¢t 4915 124t 3¢8
q(t) = = — 3In(27) + 6t — + t5

2 2 3 12 6 21 2
q"(t) = 6 — 15t + 26t — 0ot 5t4 + 4965 — % + 12t7,
P (t) = =15+ 52t — 95t2 — 20¢> + 245t* — 248t> + 84¢°,
@ (1) = 52 — 190t — 60t + 980> — 1240t* + 504¢°,
q(5) (t) = —190 — 120t 4 2940t — 4960t + 2520t*,
©) () = —120 + 5880t — 14880t + 10080,
q<7 (t) = 5880 — 29760t + 302402,
®)(t) = —29760 + 60480t.
It is easy to see that ¢t = 73 is an unique minimum point of ¢ (t) on [0, %] Since

¢ (0) = 5880 and q(7)( ) = —1440, thus ¢(®)(¢) has an unique maximum on [0, %]
Since ¢(®(0) = —120 and ¢'®(3) = 360, then q(5) (t) has an unique minimum on
[0, 2]. Because of ¢®(0) = —190 and ¢(®)(3) = 4, therefore ¢)(¢) has an unique

minimum on [0, ]. The unique zero point of q(5)( ) in [0, 3] is

31 1 1 204848] v
to= 2+ —— | = |381528 — 1323k — 7938 _Z
"= 63 756 7[ " pt 2 (52)
— 0.4437889482188733 - - - |
where
K= i/ 5600664 — 1296v/ 17855817, (53)

- \/ 3 <8643 n 2\/17855817) , (54)
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757 3/8643 + 24/17855817
— 4 —1296v/1 17
v N/3969 756\/560066 961/17855817 + 2% . (55)

0. 03717920 . Hence ¢ (t) > 0 and ¢®(t) is increasing
= -3 it follows that ¢(®) () < 0 and ¢”(t) is decreasing
34, it is deduced that ¢”(t) > 0 and ¢/(t) is increasing on
[0, 1]. Since ¢/(3) = ?0752 - 31n(27r) < 0, we have ¢/(t) < 0 and ¢(t) is decreasing
on [0, 3]. From ¢(3) = 22993 4+ 1(Z —31In(27)) > 0, it is concluded that the function
q(t) >0 on [0, 3].

Note that g(t) > 0 with ¢ € (0, 1] is equivalent to q( =) > 0 with z € [1,00).
This implies that p(z) > 0 and g”( ) > 0 with z € [1, ) then ¢'(x) is increasing
and g(z) is convex with z € [1,00). Therefore [In fa(x)]” =g @) —-¢d@x+a)<
0, that is, the function f,(x) is logarithmically concave on [1,00). The proof is
complete. O

Y/ T(z+1)

Remark 4. To prove that ——Y——=— is increasing and logarithmically concave
/T (z+a+1)

with z € (=1, 00) for a given « > 0, it is sufficient to verify

. 1
h — 3 " . <
(@) = (") - 1y ) <0 (56)
2 11 21
— A — 12 . >
where
1 [~/1 1 (-t

= — - = - dt. 58
7() x/o (t et1>e t (58)

We will give proofs of (56) and (57) in a subsequent article.

4. COROLLARIES

As by-products, from Theorem 1 and 2, the following corollaries are deduced.

P(x+1) InT(x+1)
T o x?

Corollary 1. The function is decreasing and convezx on [1,00).

Corollary 2. For z € [1,00), we have

2

1nmx+n<x¢@+1y—%¢ax+n, (59)
D+ 1) < 2(e 1) - S+ 1)+ S 4 1) (60)

Remark 5. Tt is conjectured that Corallary 1 and 2 are valid on the interval (—1, o).

Corollary 3. Let n be natural number. Then the sequence

n

n!

"/t k+ 1)

(61)

are increasing with k € N.
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5. OPEN PROBLEMS

. /T (z+1
The function __ VTt can be expressed as
“:Jro‘w/l—‘(:v«%oc«#l)

§ S tret dt
- : (62)

where [ e~"dt = 1. Then we propose the following

Open Problem 1. Let w(z) > 0 be a nonnegative weight defined on a domain €
with [, w(z)dz = 1. Find conditions about w(z) and f(x) > 0 such that the ratio
between two power means

8

" 1/t
o) - L) @) s -

[fQ w(m)ft"‘o‘ (.’17) d.’L‘] 1/(t+a)

monotonic or convex with t € R for a given a > 0.

Open Problem 2. Find conditions about the positive sequence {a;}nen such that
the function

8

In

1/r
1 S ab
_ i=1 "1
)= | S (64)
n+m i=1 4
monotonic or convexr with r € R, where n and m are two given natural numbers.
particular, for {a;}nen being the natural number sequence (that is, a; = 1), show

that the function F(r) is decreasing strictly with r € R.
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