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REVERSES OF THE CAUCHY-BUNYAKOVSKY-SCHWARZ
INEQUALITY FOR n−TUPLES OF COMPLEX NUMBERS

S.S. DRAGOMIR

Abstract. Some new reverses of the Cauchy-Bunyakovsky-Schwarz inequal-

ity for n−tuples of real and complex numbers related to Cassels and Shisha-
Mond results are given.

1. Introduction

Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two positive n-tuples with the
property that there exists the positive numbers mi,Mi (i = 1, 2) such that

(1.1) 0 < m1 ≤ ai ≤ M1 < ∞ and 0 < m2 ≤ bi ≤ M2 < ∞,

for each i ∈ {1, . . . , n} .
The following reverses of the Cauchy-Bunyakovsky-Schwarz (CBS) inequality are

well known in the literature:

(1) Pólya-Szegö’s inequality [8]

(1.2)
∑n

k=1 a2
k

∑n
k=1 b2

k

(
∑n

k=1 akbk)2
≤ 1

4

(√
M1M2

m1m2
+
√

m1m2

M1M2

)2

;

(2) Shisha-Mond’s inequality [9]

(1.3)
∑n

k=1 a2
k∑n

k=1 akbk
−
∑n

k=1 akbk∑n
k=1 b2

k

≤

(√
M1

m2
−
√

m1

M2

)2

;

(3) Ozeki’s inequality [7]

(1.4)
n∑

k=1

a2
k

n∑
k=1

b2
k −

(
n∑

k=1

akbk

)2

≤ 1
4
n2 (M1M2 −m1m2)

2 ;

(4) Diaz-Metcalf ’s inequality [1]

(1.5)
n∑

k=1

b2
k +

m2M2

m1M1

n∑
k=1

a2
k ≤

(
M2

m1
+

m2

M1

) n∑
k=1

akbk.

If the weight w̄ = (w1, . . . , wn) is a positive n−tuple, then we have the following
inequalities, which are also well known.
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5. Cassels’ inequality [10]
If the positive n−tuples a = (a1, . . . , an) and b = (b1, . . . , bn) satisfy the
condition

(1.6) 0 < m ≤ ak

bk
≤ M < ∞ for each k ∈ {1, . . . , n} ,

where m,M are given, then

(1.7)
∑n

k=1 wka2
k

∑n
k=1 wkb2

k

(
∑n

k=1 wkakbk)2
≤ (M + m)2

4mM
.

6. Greub-Reinboldt’s inequality [4]
If a and b satisfy the condition (1.1), then

(1.8)
∑n

k=1 wka2
k

∑n
k=1 wkb2

k

(
∑n

k=1 wkakbk)2
≤ (M1M2 + m1m2)

2

4m1m2M1M2
.

7. Generalised Diaz-Metcalf inequality [1] (see also [6, p. 123])
If u, v ∈ [0, 1] and v ≤ u, u + v = 1 and (1.6) holds, then one has the
inequality

(1.9) u
n∑

k=1

wkb2
k + vmM

n∑
k=1

wka2
k ≤ (vm + uM)

n∑
k=1

wkakbk.

8. Klamkin-McLenaghan’s inequality [5]
If a and b satisfy (1.6), then we have the inequality

(1.10)
n∑

k=1

wka2
k

n∑
k=1

wkb2
k−

(
n∑

k=1

wkakbk

)2

≤
(√

M −
√

m
)2 n∑

k=1

wkakbk

n∑
k=1

wka2
k.

For other reverse results of the (CBS)-inequality, see the recent survey online [3].
The main aim of this paper is to point out some new reverse inequalities of the

classical Cauchy-Bunyakovsky-Schwarz result for both real and complex n−tuples.

2. Some Reverses of the Cauchy-Bunyakovsky-Schwarz Inequality

The following result holds.

Theorem 1. Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Kn, where K = R, C and
p = (p1, . . . , pn) ∈ Rn

+ with
∑n

i=1 pi = 1. If bi 6= 0, i ∈ {1, . . . , n} and there exists
the constant α ∈ K and r > 0 such that for any k ∈ {1, . . . , n}

(2.1)
ak

bk

∈ D̄ (α, r) := {z ∈ K| |z − α| ≤ r} ,

then we have the inequality
n∑

k=1

pk |ak|2 +
(
|α|2 − r2

) n∑
k=1

pk |bk|2 ≤ 2 Re

[
ᾱ

(
n∑

k=1

pkakbk

)]
(2.2)

≤ 2 |α| ·

∣∣∣∣∣
n∑

k=1

pkakbk

∣∣∣∣∣ .
The constant c = 2 is best possible in the sense that it cannot be replaced by a
smaller constant.
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Proof. From (2.1) we have
∣∣ak − αb̄k

∣∣2 ≤ r |bk|2 for each k ∈ {1, . . . , n} , which is
clearly equivalent to

(2.3) |ak|2 +
(
|α|2 − r2

)
|bk|2 ≤ 2 Re [ᾱ (akbk)]

for each k ∈ {1, . . . , n} .
Multiplying (2.3) with pk ≥ 0 and summing over k from 1 to n, we deduce the

first inequality in (1.2). The second inequality is obvious.
To prove the sharpness of the constant 2, assume that under the hypothesis of

the theorem there exists a constant c > 0 such that

(2.4)
n∑

k=1

pk |ak|2 +
(
|α|2 − r2

) n∑
k=1

pk |bk|2 ≤ cRe

[
ᾱ

(
n∑

k=1

pkakbk

)]
,

provided ak

bk
∈ D̄ (α, r) , k ∈ {1, . . . , n} .

Assume that n = 2, p1 = p2 = 1
2 , b1 = b2 = 1, α = r > 0 and a2 = 2r, a1 = 0.

Then
∣∣∣a2

b2
− α

∣∣∣ = r,
∣∣∣a1

b1
− α

∣∣∣ = r showing that the condition (2.1) holds. For these

choices, the inequality (2.4) becomes 2r2 ≤ cr2, giving c ≥ 2.

The case where the disk D̄ (α, r) does not contain the origin, i.e., |α| > r, provides
the following interesting reverse of the Cauchy-Bunyakovsky-Schwarz inequality.

Theorem 2. Let a, b, p as in Theorem 1 and assume that |α| > r > 0. Then we
have the inequality

n∑
k=1

pk |ak|2
n∑

k=1

pk |bk|2 ≤
1

|α|2 − r2

{
Re

[
ᾱ

(
n∑

k=1

pkakbk

)]}2

(2.5)

≤ |α|2

|α|2 − r2

∣∣∣∣∣
n∑

k=1

pkakbk

∣∣∣∣∣
2

.

The constant c = 1 in the first and second inequality is best possible in the sense
that it cannot be replaced by a smaller constant.

Proof. Since |α| > r, we may divide (2.2) by
√
|α|2 − r2 > 0 to obtain

(2.6)
1√

|α|2 − r2

n∑
k=1

pk |ak|2 +
√
|α|2 − r2

n∑
k=1

pk |bk|2

≤ 2√
|α|2 − r2

Re

[
ᾱ

(
n∑

k=1

pkakbk

)]
.

On the other hand, by the use of the following elementary inequality

(2.7)
1
β

p + βq ≥ 2
√

pq for β > 0 and p, q ≥ 0,
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we may state that

(2.8) 2

(
n∑

k=1

pk |ak|2
) 1

2

·

(
n∑

k=1

pk |bk|2
) 1

2

≤ 1√
|α|2 − r2

n∑
k=1

pk |ak|2 +
√
|α|2 − r2

n∑
k=1

pk |bk|2 .

Utilising (2.6) and (2.8), we deduce(
n∑

k=1

pk |ak|2
) 1

2

·

(
n∑

k=1

pk |bk|2
) 1

2

≤ 1√
|α|2 − r2

Re

[
ᾱ

(
n∑

k=1

pkakbk

)]
,

which is clearly equivalent to the first inequality in (2.6).
The second inequality is obvious.
To prove the sharpness of the constant, assume that (2.5) holds with a constant

c > 0, i.e.,

(2.9)
n∑

k=1

pk |ak|2
n∑

k=1

pk |bk|2 ≤
c

|α|2 − r2

{
Re

[
ᾱ

(
n∑

k=1

pkakbk

)]}2

provided ak

bk
∈ D̄ (α, r) and |α| > r.

For n = 2, b2 = b1 = 1, p1 = p2 = 1
2 , a2, a1 ∈ R, α, r > 0 and α > r, we get from

(2.9) that

(2.10)
a2
1 + a2

2

2
≤ cα2

α2 − r2

(
a1 + a2

2

)2

.

If we choose a2 = α + r, a1 = α − r, then |ai − α| ≤ r, i = 1, 2 and by (2.10) we
deduce

α2 + r2 ≤ cα4

α2 − r2
,

which is clearly equivalent to

(c− 1) α4 + r4 ≥ 0 for α > r > 0.

If in this inequality we choose α = 1, r = ε ∈ (0, 1) and let ε → 0+, then we deduce
c ≥ 1.

The following corollary is a natural consequence of the above theorem.

Corollary 1. Under the assumptions of Theorem 2, we have the following additive
reverse of the Cauchy-Bunyakovsky-Schwarz inequality

0 ≤
n∑

k=1

pk |ak|2
n∑

k=1

pk |bk|2 −

∣∣∣∣∣
n∑

k=1

pkakbk

∣∣∣∣∣
2

(2.11)

≤ r2

|α|2 − r2

∣∣∣∣∣
n∑

k=1

pkakbk

∣∣∣∣∣
2

.

The constant c = 1 is best possible in the sense mentioned above.
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Remark 1. If in Theorem 1, we assume that |α| = r, then we obtain the inequality:
n∑

k=1

pk |ak|2 ≤ 2 Re

[
ᾱ

(
n∑

k=1

pkakbk

)]
(2.12)

≤ 2 |α|

∣∣∣∣∣
n∑

k=1

pkakbk

∣∣∣∣∣ .
The constant 2 is sharp in both inequalities.

We also remark that, if r > |α|, then (2.2) may be written as
n∑

k=1

pk |ak|2 ≤
(
r2 − |α|2

) n∑
k=1

pk |bk|2 + 2 Re

[
ᾱ

(
n∑

k=1

pkakbk

)]
(2.13)

≤
(
r2 − |α|2

) n∑
k=1

pk |bk|2 + 2 |α|

∣∣∣∣∣
n∑

k=1

pkakbk

∣∣∣∣∣ .
The following reverse of the Cauchy-Bunyakovsky-Schwarz inequality also holds.

Theorem 3. Let a, b, p be as in Theorem 1 and assume that α ∈ K, α 6= 0 and
r > 0. Then we have the inequalities

0 ≤

(
n∑

k=1

pk |ak|2
) 1

2

·

(
n∑

k=1

pk |bk|2
) 1

2

−

∣∣∣∣∣
n∑

k=1

pkakbk

∣∣∣∣∣(2.14)

≤

(
n∑

k=1

pk |ak|2
) 1

2

·

(
n∑

k=1

pk |bk|2
) 1

2

− Re

[
ᾱ

|α|

(
n∑

k=1

pkakbk

)]

≤ 1
2
· r2

|α|

n∑
k=1

pk |bk|2 .

The constant 1
2 is best possible in the sense mentioned above.

Proof. From Theorem 1, we have

(2.15)
n∑

k=1

pk |ak|2 + |α|2
n∑

k=1

pk |bk|2 ≤ 2 Re

[
ᾱ

(
n∑

k=1

pkakbk

)]
+ r2

n∑
k=1

pk |bk|2 .

Since α 6= 0, we can divide (2.15) by |α| , getting

(2.16)
1
|α|

n∑
k=1

pk |ak|2 + |α|
n∑

k=1

pk |bk|2

≤ 2 Re

[
ᾱ

|α|

(
n∑

k=1

pkakbk

)]
+

r2

|α|

n∑
k=1

pk |bk|2 .

Utilising the inequality (2.7), we may state that

(2.17) 2

(
n∑

k=1

pk |ak|2
) 1

2

·

(
n∑

k=1

pk |bk|2
) 1

2

≤ 1
|α|

n∑
k=1

pk |ak|2 + |α|
n∑

k=1

pk |bk|2 .

Making use of (2.16) and (2.17), we deduce the second inequality in (2.14).
The first inequality in (2.14) is obvious.
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To prove the sharpness of the constant 1
2 , assume that there exists a c > 0 such

that

(2.18)

(
n∑

k=1

pk |ak|2
) 1

2

·

(
n∑

k=1

pk |bk|2
) 1

2

− Re

[
ᾱ

|α|

(
n∑

k=1

pkakbk

)]

≤ c · r2

|α|

n∑
k=1

pk |bk|2 ,

provided
∣∣∣ak

bk
− α

∣∣∣ ≤ r, α 6= 0, r > 0.

If we choose n = 2, α > 0, b1 = b2 = 1, a1 = α + r, a2 = α− r, then from (2.18)
we deduce

(2.19)
√

r2 + α2 − α ≤ c
r2

α
.

If we multiply (2.19) with
√

r2 + α2 +α > 0 and then divide it by r > 0, we deduce

(2.20) 1 ≤
√

r2 + α2 + α

α
· c

for any r > 0, α > 0.
If in (2.20) we let r → 0+, then we get c ≥ 1

2 , and the sharpness of the constant
is proved.

3. A Cassels Type Inequality for Complex Numbers

The following result holds.

Theorem 4. Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Kn, where K = R, C and
p = (p1, . . . , pn) ∈ Rn

+ with
∑n

i=1 pi = 1. If bi 6= 0, i ∈ {1, . . . , n} and there exist
the constants γ, Γ ∈ K with Re (Γγ̄) > 0 and Γ 6= γ, so that either

(3.1)
∣∣∣∣ak

bk

− γ + Γ
2

∣∣∣∣ ≤ 1
2
|Γ− γ| for each k ∈ {1, . . . , n} ,

or, equivalently,

(3.2) Re
[(

Γ− ak

bk

)(
ak

bk
− γ̄

)]
≥ 0 for each k ∈ {1, . . . , n}

holds, then we have the inequalities

n∑
k=1

pk |ak|2
n∑

k=1

pk |bk|2 ≤
1

2 Re (Γγ̄)

{
Re

[(
γ̄ + Γ̄

) n∑
k=1

pkakbk

]}2

(3.3)

≤ |Γ + γ|2

4 Re (Γγ̄)

∣∣∣∣∣
n∑

k=1

pkakbk

∣∣∣∣∣
2

.

The constants 1
2 and 1

4 are best possible in (3.3).

Proof. The fact that the relations (3.1) and (3.2) are equivalent follows by the
simple fact that for z, u, U ∈ C, the following inequalities are equivalent∣∣∣∣z − u + U

2

∣∣∣∣ ≤ 1
2
|U − u|
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and
Re [(u− z) (z̄ − ū)] ≥ 0.

Define α = γ+Γ
2 and r = 1

2 |Γ− γ| . Then

|α|2 − r2 =
|Γ + γ|2

4
− |Γ− γ|2

4
= Re (Γγ̄) > 0.

Consequently, we may apply Theorem 2, and the inequalities (3.3) are proved.
The sharpness of the constants may be proven in a similar way to that in the

proof of Theorem 2, and we omit the details.

The following additive version also holds.

Corollary 2. With the assumptions in Theorem 4, we have

(3.4)
n∑

k=1

pk |ak|2
n∑

k=1

pk |bk|2 −

∣∣∣∣∣
n∑

k=1

pkakbk

∣∣∣∣∣
2

≤ |Γ− γ|2

4 Re (Γγ̄)

∣∣∣∣∣
n∑

k=1

pkakbk

∣∣∣∣∣
2

.

The constant 1
4 is also best possible.

Remark 2. With the above assumptions and if Re (Γγ̄) = 0, then by the use of
Remark 1, we may deduce the inequality

(3.5)
n∑

k=1

pk |ak|2 ≤ Re

[(
γ̄ + Γ̄

) n∑
k=1

pkakbk

]
≤ |Γ + γ|

∣∣∣∣∣
n∑

k=1

pkakbk

∣∣∣∣∣ .
If Re (Γγ̄) < 0, then, by Remark 1, we also have

n∑
k=1

pk |ak|2 ≤ −Re (Γγ̄)
n∑

k=1

pk |bk|2 + Re

[(
Γ̄ + γ̄

) n∑
k=1

pkakbk

]
(3.6)

≤ −Re (Γγ̄)
n∑

k=1

pk |bk|2 + |Γ + γ|

∣∣∣∣∣
n∑

k=1

pkakbk

∣∣∣∣∣ .
Remark 3. If ak, bk > 0 and there exist the constants m,M > 0 (M > m) with

(3.7) m ≤ ak

bk
≤ M for each k ∈ {1, . . . , n} ,

then, obviously (3.1) holds with γ = m, Γ = M, also Γγ̄ = Mm > 0 and by (3.3)
we deduce

(3.8)
n∑

k=1

pka2
k

n∑
k=1

pkb2
k ≤

(M + m)2

4mM

(
n∑

k=1

pkakbk

)2

,

that is, Cassels’ inequality.

4. A Shisha-Mond Type Inequality for Complex Numbers

The following result holds.

Theorem 5. Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Kn, where K = R, C and
p = (p1, . . . , pn) ∈ Rn

+ with
∑n

i=1 pi = 1. If bi 6= 0, i ∈ {1, . . . , n} and there exist
the constants γ, Γ ∈ K such that Γ 6= γ,−γ and either

(4.1)
∣∣∣∣ak

bk

− γ + Γ
2

∣∣∣∣ ≤ 1
2
|Γ− γ| for each k ∈ {1, . . . , n} ,



8 S.S. DRAGOMIR

or, equivalently,

(4.2) Re
[(

Γ− ak

bk

)(
ak

bk
− γ̄

)]
≥ 0 for each k ∈ {1, . . . , n} ,

holds, then we have the inequalities

0 ≤

(
n∑

k=1

pk |ak|2
) 1

2

·

(
n∑

k=1

pk |bk|2
) 1

2

−

∣∣∣∣∣
n∑

k=1

pkakbk

∣∣∣∣∣(4.3)

≤

(
n∑

k=1

pk |ak|2
) 1

2

·

(
n∑

k=1

pk |bk|2
) 1

2

− Re

[
Γ̄ + γ̄

|Γ + γ|

n∑
k=1

pkakbk

]

≤ 1
4
· |Γ− γ|2

|Γ + γ|

n∑
k=1

pk |bk|2 .

The constant 1
4 is best possible in the sense that it cannot be replaced by a smaller

constant.

Proof. Follows by Theorem 3 on choosing α = γ+Γ
2 6= 0 and r = 1

2 |Γ− γ| > 0.
The proof for the best constant follows in a similar way to that in the proof of

Theorem 3 and we omit the details.

Remark 4. If ak, bk > 0 and there exists the constants m,M > 0 (M > m) with

(4.4) m ≤ ak

bk
≤ M for each k ∈ {1, . . . , n} ,

then we have the inequality

0 ≤

(
n∑

k=1

pka2
k

) 1
2

·

(
n∑

k=1

pkb2
k

) 1
2

−
n∑

k=1

pkakbk(4.5)

≤ 1
4
· (M −m)2

(M + m)

n∑
k=1

pkb2
k.

The constant 1
4 is best possible. For pk = 1

n , k ∈ {1, . . . , n} , we recapture the
result from [2, Theorem 5.21] that has been obtained from a reverse inequality due
to Shisha and Mond [8].

5. Further Reverses of the (CBS)-Inequality

The following result holds.

Theorem 6. Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Kn and r > 0 such that for
pi ≥ 0 with

∑n
i=1 pi = 1

(5.1)
n∑

i=1

pi |bi − ai|2 ≤ r2 <
n∑

i=1

pi |ai|2 .
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Then we have the inequality

0 ≤
n∑

i=1

pi |ai|2
n∑

i=1

pi |bi|2 −

∣∣∣∣∣
n∑

i=1

piaibi

∣∣∣∣∣
2

(5.2)

≤
n∑

i=1

pi |ai|2
n∑

i=1

pi |bi|2 −

[
Re

(
n∑

i=1

piaibi

)]2

≤ r2
n∑

i=1

pi |bi|2 .

The constant c = 1 in front of r2 is best possible in the sense that it cannot be
replaced by a smaller constant.

Proof. From the first condition in (5.1), we have
n∑

i=1

pi

[
|bi|2 − 2 Re (biai) + |ai|2

]
≤ r2,

giving

(5.3)
n∑

i=1

pi |bi|2 +
n∑

i=1

pi |ai|2 − r2 ≤ 2 Re

(
n∑

i=1

piaibi

)
.

Since, by the second condition in (5.1) we have
n∑

i=1

pi |ai|2 − r2 > 0,

we may divide (5.3) by
√∑n

i=1 pi |ai|2 − r2 > 0, getting

(5.4)
∑n

i=1 pi |bi|2√∑n
i=1 pi |ai|2 − r2

+

√√√√ n∑
i=1

pi |ai|2 − r2 ≤
2 Re (

∑n
i=1 piaibi)√∑n

i=1 pi |ai|2 − r2

.

Utilising the elementary inequality

(5.5)
p

α
+ qα ≥ 2

√
pq for p, q ≥ 0 and α > 0,

we may write that

(5.6) 2

√√√√ n∑
i=1

pi |bi|2 ≤
∑n

i=1 pi |bi|2√∑n
i=1 pi |ai|2 − r2

+

√√√√ n∑
i=1

pi |ai|2 − r2.

Combining (5.5) with (5.6) we deduce

(5.7)

√√√√ n∑
i=1

pi |bi|2 ≤
Re (

∑n
i=1 piaibi)√∑n

i=1 pi |ai|2 − r2

.

Taking the square in (5.7), we obtain

n∑
i=1

pi |bi|2
(

n∑
i=1

pi |ai|2 − r2

)
≤

[
Re

(
n∑

i=1

piaibi

)]2

,
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giving the third inequality in (5.2).
The other inequalities are obvious.
To prove the sharpness of the constant, assume, under the hypothesis of the

theorem, that there exists a constant c > 0 such that

(5.8)
n∑

i=1

pi |ai|2
n∑

i=1

pi |bi|2 −

[
Re

(
n∑

i=1

piaibi

)]2

≤ cr2
n∑

i=1

pi |bi|2 ,

provided
n∑

i=1

pi |bi − ai|2 ≤ r2 <
n∑

i=1

pi |ai|2 .

Let r =
√

ε, ε ∈ (0, 1) , ai, ei ∈ C, i ∈ {1, . . . , n} with
∑n

i=1 pi |ai|2 =
∑n

i=1 pi |ei|2 =
1 and

∑n
i=1 piaiei = 0. Put bi = ai +

√
εei. Then, obviously

n∑
i=1

pi |bi − ai|2 = r2,
n∑

i=1

pi |ai|2 = 1 > r

and
n∑

i=1

pi |bi|2 =
n∑

i=1

pi |ai|2 + ε
n∑

i=1

pi |ei|2 = 1 + ε,

Re

(
n∑

i=1

piaibi

)
=

n∑
i=1

pi |ai|2 = 1

and thus
n∑

i=1

pi |ai|2
n∑

i=1

pi |bi|2 −

[
Re

(
n∑

i=1

piaibi

)]2

= ε.

Using (5.8), we may write

ε ≤ cε (1 + ε) for ε ∈ (0, 1) ,

giving 1 ≤ c (1 + ε) for ε ∈ (0, 1) . Making ε → 0+, we deduce c ≥ 1.

The following result also holds.

Theorem 7. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Kn, p = (p1, . . . , pn) ∈ Rn
+

with
∑n

i=1 pi = 1 and γ, Γ ∈ K such that Re
(
γΓ̄
)

> 0 and either

(5.9)
n∑

i=1

pi Re [(Γyi − xi) (xi − γ̄yi)] ≥ 0,

or, equivalently,

(5.10)
n∑

i=1

pi

∣∣∣∣xi −
γ + Γ

2
· yi

∣∣∣∣2 ≤ 1
4
|Γ− γ|2

n∑
i=1

pi |yi|2 .

Then we have the inequalities
n∑

i=1

pi |xi|2
n∑

i=1

pi |yi|2 ≤
1
4
·
{
Re
[(

Γ̄ + γ̄
)∑n

i=1 pixiyi

]}2

Re (Γγ̄)
(5.11)

≤ 1
4
· |Γ + γ|2

Re (Γγ̄)

∣∣∣∣∣
n∑

i=1

pixiyi

∣∣∣∣∣
2

.
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The constant 1
4 is best possible in both inequalities.

Proof. Define bi = xi and ai = Γ̄+γ̄
2 · yi and r = 1

2 |Γ− γ|
(∑n

i=1 pi |yi|2
) 1

2
. Then,

by (5.10)
n∑

i=1

pi |bi − ai|2 =
n∑

i=1

pi

∣∣∣∣xi −
γ + Γ

2
· yi

∣∣∣∣2
≤ 1

4
|Γ− γ|2

n∑
i=1

pi |yi|2 = r2,

showing that the first condition in (5.1) is fulfilled.
We also have

n∑
i=1

pi |ai|2 − r2 =
n∑

i=1

pi

∣∣∣∣Γ + γ

2

∣∣∣∣2 |yi|2 −
1
4
|Γ− γ|2

n∑
i=1

pi |yi|2

= Re (Γγ̄)
n∑

i=1

pi |yi|2 > 0

since Re
(
γΓ̄
)

> 0, and thus the condition in (5.1) is also satisfied.
Using the second inequality in (5.2), one may write

n∑
i=1

pi

∣∣∣∣Γ + γ

2

∣∣∣∣2 |yi|2
n∑

i=1

pi |xi|2 −

[
Re

n∑
i=1

pi

(
Γ̄ + γ̄

2

)
yixi

]2

≤ 1
4
|Γ− γ|2

n∑
i=1

pi |yi|2
n∑

i=1

pi |xi|2 ,

giving

|Γ + γ|2 − |Γ− γ|2

4

n∑
i=1

pi |yi|2
n∑

i=1

pi |xi|2 ≤
1
4

Re

[(
Γ̄ + γ̄

) n∑
i=1

pixiyi

]2

,

which is clearly equivalent to the first inequality in (5.11).
The second inequality in (5.11) is obvious.
To prove the sharpness of the constant 1

4 , assume that the first inequality in
(5.11) holds with a constant C > 0, i.e.,

(5.12)
n∑

i=1

pi |xi|2
n∑

i=1

pi |yi|2 ≤ C ·
{
Re
[(

Γ̄ + γ̄
)∑n

i=1 pixiyi

]}2

Re (Γγ̄)
,

provided Re
(
γΓ̄
)

> 0 and either (5.9) or (5.10) holds.
Assume that Γ, γ > 0 and let xi = γȳi. Then (5.9) holds true and by (5.12) we

deduce

γ2

(
n∑

i=1

pi |yi|2
)2

≤ C
(Γ + γ)2 γ2

(∑n
i=1 pi |yi|2

)2

Γγ
,

giving

(5.13) Γγ ≤ C (Γ + γ)2 for any Γ, γ > 0.
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Let ε ∈ (0, 1) and choose in (5.13) Γ = 1 + ε, γ = 1− ε > 0 to get 1− ε2 ≤ 4C for
any ε ∈ (0, 1) . Letting ε → 0+, we deduce C ≥ 1

4 and the sharpness of the constant
is proved.

Finally, we note that the conditions (5.9) and (5.10) are equivalent since in an in-
ner product space (H, 〈·, ·〉) for any vectors x, z, Z ∈ H one has Re 〈Z − x, x− z〉 ≥
0 iff

∥∥x− z+Z
2

∥∥ ≤ 1
2 ‖Z − z‖ [1]. We omit the details.

6. More Reverses of the (CBS)-Inequality

The following result holds.

Theorem 8. Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Kn and p = (p1, . . . , pn) ∈
Rn

+ with
∑n

i=1 pi = 1. If r > 0 and the following condition is satisfied

(6.1)
n∑

i=1

pi |bi − ai|2 ≤ r2,

then we have the inequalities

0 ≤

(
n∑

i=1

pi |bi|2
n∑

i=1

pi |ai|2
) 1

2

−

∣∣∣∣∣
n∑

i=1

piaibi

∣∣∣∣∣(6.2)

≤

(
n∑

i=1

pi |bi|2
n∑

i=1

pi |ai|2
) 1

2

−

∣∣∣∣∣
n∑

i=1

pi Re (aibi)

∣∣∣∣∣
≤

(
n∑

i=1

pi |bi|2
n∑

i=1

pi |ai|2
) 1

2

−
n∑

i=1

pi Re (aibi)

≤ 1
2
r2.

The constant 1
2 is best possible in (6.2) in the sense that it cannot be replaced by a

smaller constant.

Proof. The condition (6.1) is clearly equivalent to

(6.3)
n∑

i=1

pi |bi|2 +
n∑

i=1

pi |ai|2 ≤ 2
n∑

i=1

pi Re (biai) + r2.

Using the elementary inequality

(6.4) 2

(
n∑

i=1

pi |bi|2
n∑

i=1

pi |ai|2
) 1

2

≤
n∑

i=1

pi |bi|2 +
n∑

i=1

pi |ai|2

and (6.3), we deduce

(6.5) 2

(
n∑

i=1

pi |bi|2
n∑

i=1

pi |ai|2
) 1

2

≤ 2
n∑

i=1

pi Re (biai) + r2,

giving the last inequality in (6.2). The other inequalities are obvious.
To prove the sharpness of the constant 1

2 , assume that

(6.6) 0 ≤

(
n∑

i=1

pi |bi|2
n∑

i=1

pi |ai|2
) 1

2

−
n∑

i=1

pi Re (biai) ≤ cr2
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for any a, b ∈ Kn and r > 0 satisfying (6.1).
Assume that a, ē ∈ H, ē = (e1, . . . , en) with

∑n
i=1 pi |ai|2 =

∑n
i=1 pi |ei|2 = 1

and
∑n

i=1 piaiei = 0. If r =
√

ε, ε > 0, and if we define b = a +
√

εē where
a = (a1, . . . , an) ∈ Kn, then

∑n
i=1 pi |bi − ai|2 = ε = r2, showing that the condition

(6.1) is fulfilled.
On the other hand,(

n∑
i=1

pi |bi|2
n∑

i=1

pi |ai|2
) 1

2

−
n∑

i=1

pi Re (biai)

=

(
n∑

i=1

pi

∣∣ai +
√

εei

∣∣2) 1
2

−
n∑

i=1

pi Re
[(

ai +
√

εei

)
ai

]
=

(
n∑

i=1

pi |ai|2 + ε
n∑

i=1

|ei|2
) 1

2

−
n∑

i=1

pi |ai|2

=
√

1 + ε− 1.

Utilizing (6.6), we conclude that

(6.7)
√

1 + ε− 1 ≤ cε for any ε > 0.

Multiplying (6.7) by
√

1 + ε + 1 > 0 and thus dividing by ε > 0, we get

(6.8)
(√

1 + ε− 1
)
c ≥ 1 for any ε > 0.

Letting ε → 0+ in (6.8), we deduce c ≥ 1
2 , and the theorem is proved.

Finally, the following result also holds.

Theorem 9. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Kn, p = (p1, . . . , pn) ∈ Rn
+

with
∑n

i=1 pi = 1, and γ, Γ ∈ K with Γ 6= γ,−γ, so that either

(6.9)
n∑

i=1

pi Re [(Γyi − xi) (xi − γ̄yi)] ≥ 0,

or, equivalently,

(6.10)
n∑

i=1

pi

∣∣∣∣xi −
γ + Γ

2
· yi

∣∣∣∣2 ≤ 1
4
|Γ− γ|2

n∑
i=1

pi |yi|2

holds. Then we have the inequalities

0 ≤

(
n∑

i=1

pi |xi|2
n∑

i=1

pi |yi|2
) 1

2

−

∣∣∣∣∣
n∑

i=1

pixiyi

∣∣∣∣∣(6.11)

≤

(
n∑

i=1

pi |xi|2
n∑

i=1

pi |yi|2
) 1

2

−

∣∣∣∣∣
n∑

i=1

pi Re
[

Γ̄ + γ̄

|Γ + γ|
xiyi

]∣∣∣∣∣
≤

(
n∑

i=1

pi |xi|2
n∑

i=1

pi |yi|2
) 1

2

−
n∑

i=1

pi Re
[

Γ̄ + γ̄

|Γ + γ|
xiyi

]

≤ 1
4
· |Γ− γ|2

|Γ + γ|

n∑
i=1

pi |yi|2 .
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The constant 1
4 in the last inequality is best possible.

Proof. Consider bi = xi, ai = Γ̄+γ̄
2 · yi, i ∈ {1, . . . , n} and

r :=
1
2

(Γ− γ)

(
n∑

i=1

pi |yi|2
) 1

2

.

Then, by (6.10), we have
n∑

i=1

pi |bi − ai|2 =
n∑

i=1

pi

∣∣∣∣xi −
γ + Γ

2
· yi

∣∣∣∣2 ≤ 1
4
|Γ− γ|2

n∑
i=1

pi |yi|2 = r2

showing that (6.1) is valid.
By the use of the last inequality in (6.2), we have

0 ≤

(
n∑

i=1

pi |xi|2
n∑

i=1

pi

∣∣∣∣Γ + γ

2

∣∣∣∣2 |yi|2
) 1

2

−
n∑

i=1

pi Re
[
Γ̄ + γ̄

2
xiyi

]

≤ 1
8
|Γ− γ|2

n∑
i=1

pi |yi|2 .

Dividing by 1
2 |Γ + γ| > 0, we deduce

0 ≤

(
n∑

i=1

pi |xi|2
n∑

i=1

pi |yi|2
) 1

2

−
n∑

i=1

pi Re
[

Γ̄ + γ̄

|Γ + γ|
xiyi

]

≤ 1
4
· |Γ− γ|2

|Γ + γ|

n∑
i=1

pi |yi|2 ,

which is the last inequality in (6.11).
The other inequalities are obvious.
To prove the sharpness of the constant 1

4 , assume that there exists a constant
c > 0, such that (

n∑
i=1

pi |xi|2
n∑

i=1

pi |yi|2
) 1

2

−
n∑

i=1

pi Re
[

Γ̄ + γ̄

|Γ + γ|
xiyi

]
(6.12)

≤ c · |Γ− γ|2

|Γ + γ|

n∑
i=1

pi |yi|2 ,

provided either (6.9) or (6.10) holds.
Let n = 2, y = (1, 1) , x = (x1, x2) ∈ R2, p =

(
1
2 , 1

2

)
and Γ, γ > 0 with Γ > γ.

Then by (6.12) we deduce

(6.13)
√

2
√

x2
1 + x2

2 − (x1 + x2) ≤ 2c
(Γ− γ)2

Γ + γ
.

If x1 = Γ, x2 = γ, then (Γ− x1) (x1 − γ) + (Γ− x2) (x2 − γ) = 0, showing that the
condition (6.9) is valid for n = 2 and p, x, y as above. Replacing x1 and x2 in
(6.13), we deduce

(6.14)
√

2
√

Γ2 + γ2 − (Γ + γ) ≤ 2c
(Γ− γ)2

Γ + γ
.
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If in (6.14) we choose Γ = 1 + ε, γ = 1− ε with ε ∈ (0, 1) , we deduce

(6.15)
√

1 + ε2 − 1 ≤ 2cε2.

Finally, multiplying (6.15) with
√

1 + ε2+1 > 0 and then dividing by ε2, we deduce

(6.16) 1 ≤ 2c
(√

1 + ε2 + 1
)

for any ε > 0.

Letting ε → 0+ in (6.16), we get c ≥ 1
4 , and the sharpness of the constant is

proved.

Remark 5. The integral version may be stated in a canonical way. The correspond-
ing inequalities for integrals will be considered in another work devoted to positive
linear functionals with complex values that is in preparation.
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