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REVERSES OF THE CAUCHY-BUNYAKOVSKY-SCHWARZ
INEQUALITY FOR n—TUPLES OF COMPLEX NUMBERS

S.S. DRAGOMIR

ABSTRACT. Some new reverses of the Cauchy-Bunyakovsky-Schwarz inequal-
ity for n—tuples of real and complex numbers related to Cassels and Shisha-
Mond results are given.

1. INTRODUCTION

Let a = (a1,...,a,) and b = (by,...,b,) be two positive n-tuples with the
property that there exists the positive numbers m;, M; (i = 1,2) such that

(1.1) 0<mi<a; <My <oo and 0<mg <b; <My < oo,

for each i € {1,...,n}.
The following reverses of the Cauchy-Bunyakovsky-Schwarz (CBS) inequality are
well known in the literature:

(1) Pélya-Szegd’s inequality [§]

o ()

(2) Shisha-Mond’s inequality [9]

n n 2
(13) Zk:l a’lgc _ Zk:l a’kbk < % _ ﬂ
> k=1 axby Yo bi T\ Vme VM,

(3) Ozeki’s inequality [7]

(14) Zak sz (Z akbk>

k=1 k=1

(M1M2 - m1m2)2 ;

»lk\H

(4) Diaz-Metcalf’s inequality [1]

(1.5) zn:b ;niﬁ2 Z aj, < <ml + ) Zakbk

k=1

If the weight W = (w1, ..., w,) is a positive n—tuple, then we have the following
inequalities, which are also well known.
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2 S.S. DRAGOMIR

5. Cassels’ inequality [10]
If the positive n—tuples a = (a1,...,a,) and b = (by,...,b,) satisfy the

condition
(1.6) 0<m§2—k§M<ooforeach ke{l,....,n},
k
where m, M are given, then
n n 2
(1.7) Zk:l wka% Zk:l wkbi < (M + m)
(Cr_ weagby)®  — 4AmM

6. Greub-Reinboldt’s inequality [4]
If a and b satisfy the condition (1.1), then
D ey W] Doy Wb} < (My M; +mymy)®
0y wkakbk)z T dmima MM,

(1.8)

7. Generalised Diaz-Metcalf inequality [1] (see also [6, p. 123])
If u,v € [0,1] and v < u, u +v = 1 and (1.6) holds, then one has the
inequality

(1.9) uZwkbi —l—vaZwkaz < (vm+uM)Zwkakbk.
k=1 k=1 k=1

8. Klamkin-McLenaghan’s inequality [5]
If a and b satisfy (1.6), then we have the inequality

n n n 2 n n
2
(1.10) Z wyay Z wybi — (Z wkakbk> < (\/M — \/m> Z waby, Z wya;.
k=1 k=1 k=1 k=1 k=1

For other reverse results of the (CBS)-inequality, see the recent survey online [3].

The main aim of this paper is to point out some new reverse inequalities of the
classical Cauchy-Bunyakovsky-Schwarz result for both real and complex n—tuples.

2. SOME REVERSES OF THE CAUCHY-BUNYAKOVSKY-SCHWARZ INEQUALITY

The following result holds.

Theorem 1. Let a = (ay,...,a,), b = (by,...,b,) € K", where K = R,C and
p=(p1,...,pn) €ERY with 3" 1 p; =1. If by # 0, i € {1,...,n} and there exists
the constant « € K and r > 0 such that for any k € {1,...,n}

(2.1) %éD(a,r) ={zeK||z—a| <r},

k
n
a (Z pkakbk> ]
k=1
> prarby
k=1

The constant ¢ = 2 is best possible in the sense that it cannot be replaced by a
smaller constant.

then we have the inequality

n n
22) > pelan + (Jaf = 72) D pelbel’
k=1 k=1

IN

2Re

IN

2lal -
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Proof. From (2.1) we have |a;, — aEk‘Z < 7 |bp|? for each k € {1,...,n}, which is
clearly equivalent to

(2.3) lax|? + (|a|2 . 7"2) Ibi]? < 2Re [a (axb)]

for each k € {1,...,n}.

Multiplying (2.3) with px, > 0 and summing over k from 1 to n, we deduce the
first inequality in (1.2). The second inequality is obvious.

To prove the sharpness of the constant 2, assume that under the hypothesis of

the theorem there exists a constant ¢ > 0 such that
n n n
24) > pelal+ (|a|2 - 7«2) 3 i lbel? < cRe |a (Zpkakbkﬂ :
k=1 k=1 k=1

provided :::‘ € D(a,r), ke{l,....,n}.

Assumethatan,plngzé, by=by=1,a=r>0and ay = 2r, a;p = 0.
Then - a‘ = r showing that the condition (2.1) holds. For these
choices, the inequality (2.4) becomes 212 < cr?, giving ¢ > 2. |

a2 —
by Ck‘—’f’,

The case where the disk D («, ) does not contain the origin, i.e., |a| > r, provides
the following interesting reverse of the Cauchy-Bunyakovsky-Schwarz inequality.

Theorem 2. Let a, b, p as in Theorem 1 and assume that |a| > r > 0. Then we

have the inequality
2
(2.5) Zpk |ak| Zpk |bk‘ | {Re a (ZPW}J%)] }
k=1
Zpkakbk

\al
The constant ¢ = 1 in the first and second inequality is best possible in the sense
that it cannot be replaced by a smaller constant.

Proof. Since |a| > r, we may divide (2.2) by /|a|* — 2 > 0 to obtain

Zpk Jaxl” + \/laf* — 72 Zpk |bi|?
el = r2 k=1

(2.6)

2
< ———=Re
off =12

(o)

On the other hand, by the use of the following elementary inequality

1
—p+Bq>2ypg for >0 and p,q >0,

(2.7) 3
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we may state that

1 1
2 (Zpk ak|2> : (Zm Ibkl2>
k=1

Zpk lak|* +y/]af® - rQZpk e .
which is clearly equivalent to the first inequality in (2.6).

la)® — 72 k=1
n
a (ZPW}J&)] ;
k=1
The second inequality is obvious.

To prove the sharpness of the constant, assume that (2.5) holds with a constant
c>0,ie.,
29 Ymlal Y plnl € —— {Re § (Zpkakb’“ﬂ }
k=1 k=1 o = k=1
provided £ € D (a,r) and |a| > 7.
k
For n = 2, bg:blzl,plngzé,ag,al €R, a,7 >0 and o > r, we get from
(2.9) that

2 2 2 2
(2.10) il B
2 a?—r 2

Utilising (2.6) and (2.8) we deduce

(Zpkau) (Zm ] ) sw{f{e

—r2

If we choose ag = a+ 1, a; = @ —r, then |a; — | < 7, i = 1,2 and by (2.10) we
deduce

0044

of 1 < i
ac —T

which is clearly equivalent to
(c—1)a*+7r*>0 for a>r>0.

If in this inequality we choose @« = 1, = ¢ € (0, 1) and let ¢ — 0+, then we deduce
c>1.1

The following corollary is a natural consequence of the above theorem.

Corollary 1. Under the assumptions of Theorem 2, we have the following additive
reverse of the Cauchy-Bunyakovsky-Schwarz inequality

(2.11) 0< Zpk |ax|® Zpk |be|* Zpkakbk

kakbk

The constant ¢ = 1 1is best possible in the sense mentioned above.



REVERSES OF THE CAUCHY-BUNYAKOVSKY-SCHWARZ INEQUALITY 5

Remark 1. If in Theorem 1, we assume that |«| = r, then we obtain the inequality:

)

n
Zpkakbk .

k=1

(2.12) > pelax’ < 2Re

<2|a]

The constant 2 is sharp in both inequalities.
We also remark that, if r > ||, then (2.2) may be written as

(2.13) Zpk lag|? < (r2 - |a|2) Zpk bk)® + 2Re |a (Zpkakbk>1
k=1 k=1 k=1

n n
< (2 = 1a*) Do il + 21l | prawb|
k=1 k=1

The following reverse of the Cauchy-Bunyakovsky-Schwarz inequality also holds.

Theorem 3. Let a, b, p be as in Theorem 1 and assume that o € K, o # 0 and
r > 0. Then we have the mequalz'ties

(2.14) 0< <Zpkak ) <Zpk|bk| )

k=1
n %
(Zpkak> (Zpk|bk|2> — Re
k=1
1
2

N

IN

2 n

a n

— praxby

o (S|
d Zpk|bk|

The constant % is best possible in the sense mentioned above.

Proof. From Theorem 1, we have

(2.15) Zpk|ak| +|af? Zpk\bk < 2Re

a (Z pkakbk>

Since a # 0, we can divide (2.15) by |a|, getting

(2.16) Zpk|ak| + |a|2pk|bk
@ n
— b

Utilising the inequality (2.7), we may state that

n
+7? Zpk ||
k=1

< 2Re

2 n
r
+ al E i o)
k=1

1 1
n 2 n 2 n n
1
(2.17) 2 <§ Dk |ak|2> . < > i Ibk2> < Tl > i lar|® + | > pr bk
k=1 k=1 k=1 k=1

Making use of (2.16) and (2.17), we deduce the second inequality in (2.14).
The first inequality in (2.14) is obvious.
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To prove the sharpness of the constant %, assume that there exists a ¢ > 0 such

that
n 2 n 2 a n
(218) (Zpk ak|2> . (Zpk |bk|2> — Re ﬁ (Zpkakbk>]
k=1 k=1 @ k=1
2
T

W=

Z |bk )
k=

‘Z::—a‘gr,a;«éo,r>0.

If we choose n =2, > 0,b; =by=1,a1 =a+r, ag = a —r, then from (2.18)
we deduce
2

(2.19) ViZta?—a<ce—.
a
If we multiply (2.19) with v/r2 + @? +a > 0 and then divide it by » > 0, we deduce
Vr2+ao?+a
1<{— ¢

«

(2.20)

for any » > 0, a > 0.
If in (2.20) we let r — O+, then we get ¢ > 1, and the sharpness of the constant
is proved. 1

3. A CASSELS TYPE INEQUALITY FOR COMPLEX NUMBERS
The following result holds.

Theorem 4. Let a = (a1,...,a,), b = (b1,...,b,) € K", where K = R,C and
P=(p1,....pn) € RY with >0 p; =1. Ifb; #0, i € {1,...,n} and there exist
the constants v, T € K with Re (T'y) > 0 and T # v, so that either

ag v+ T

1
B §§|1"—*y| for each ke{l,...,n},

(3.1) =-5

or, equivalently,

(3.2) Re[(r—z:) (Z:—aﬂ >0 for each ke {l,...,n}

holds, then we have the inequalities

(3.3) Zpk jax|” Zpk ol <

(y+7) ipkakbk] }2

k=1

2Re(F'y) {Re
T
it Zpkakbk

~ 4Re(I'y)
The constants 3 and % are best possible in (3.3).

Proof. The fact that the relations (3.1) and (3.2) are equivalent follows by the
simple fact that for z,u,U € C, the following inequalities are equivalent

‘Zu+U‘<1

_§\U*U|
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and
Re[(u—2)(z —1a)] > 0.
Define a = % and r = 3 | — 7|. Then

22 L+ D=
4 4
Consequently, we may apply Theorem 2, and the inequalities (3.3) are proved.
The sharpness of the constants may be proven in a similar way to that in the
proof of Theorem 2, and we omit the details. i

fe =Re(I'y) > 0.

The following additive version also holds.

Corollary 2. With the assumptions in Theorem 4, we have

(3.4) Zpk|ak| Zpk\bk Zpkakbk < Pl 7'

~ 4Re(T
The constant * 7 18 also best possible.

Remark 2. With the above assumptions and if Re (I'y) = 0, then by the use of
Remark 1, we may deduce the inequality

> prarby|.

(3.5) Zpk lax|*> <Re [ (7 +T) Zpkakbk] < T+
k=1

k=1 k=1
If Re (T'y) < 0, then, by Remark 1, we also have

n

(3.6) Zpk|ak|2 < —Re(FV)ZPk|bk|2+Re

S

(0 +4) ipkakbk]

k=1 k=1 k=1
< —Re(T9) > prbel” + [T+ 71D prawbe] -
k=1 k=1

Remark 3. If ag, b > 0 and there exist the constants m, M > 0 (M > m) with

(3.7) m<b—<M for each ke {1,...,n},
k

then, obuviously (3.1) holds with v = m, I' = M, also T4 = Mm > 0 and by (3.5)
we deduce

(3.8) Zpkak Zpkbz < M+m <Zpkakbk> )

that is, Cassels’ mequalzty.

4. A SHISHA-MOND TYPE INEQUALITY FOR COMPLEX NUMBERS
The following result holds.

Theorem 5. Let a = (a,...,a,), b = (by,...,b,) € K", where K = R,C and
Pp=(p1,....pn) €ERY with > p; =1. Ifb; #0, i € {1,...,n} and there exist
the constants v,I" € K such that T' # v, —v and either

ap ~v+7T

1
Sk T2 §§|I‘—7| for each ke {l,...,n},

(4.1) =-5
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or, equivalently,

(4.2) Re [(F—?) (?—’y)} >0 foreach ke{l,...,n},
k k

holds, then we have the inequalities

(4.3) 0< (ipk Iak|2> ~ <ipkbk|2> -
k=1 k=1

1 1
n 2
. ( Dk bk|2> —Re
k=1

T— 2 n
S 2
k=1

)
[N

IA
N ?r/\
i

3

ol

=

-

T
N—————

T+~

The constant i 1s best possible in the sense that it cannot be replaced by a smaller
constant.

Proof. Follows by Theorem 3 on choosing o = % #0andr =4 |T'—~|>0.
The proof for the best constant follows in a similar way to that in the proof of
Theorem 3 and we omit the details. I

Remark 4. If ax, b, > 0 and there exists the constants m, M > 0 (M > m) with

(4.4) m§Z—k§M for each ke{l,...,n},
k

then we have the inequality

1
2

1
(4.5) 0< (ZPW%) (ZP/J%) - Zpkakbk
k=1 k=1 k=1
1 (M—m)P’ <,
<. = b2
4 (M+m) ;pkbk

The constant i 18 best possible. For p, = %, k e {1,...,n}, we recapture the

result from [2, Theorem 5.21] that has been obtained from a reverse inequality due
to Shisha and Mond [8].

5. FURTHER REVERSES OF THE (CBS)-INEQUALITY

The following result holds.

Theorem 6. Let a = (a1,...,a,), b= (b1,...,b,) € K® and r > 0 such that for
p; > 0 with 211:1 p;=1

n n
(5.1) D opilbi— @ <r? <> pilail®.
i=1 i=1
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Then we have the inequality
2 2
(5:2) 0< > pilail®d pilbil” -
i=1 i=1

n
> piaib;
i=1
n n n 2
<Y pilai* Y pilbil® = |Re (Zm%@)]
i—1 i=1 =1
n
<r? Zpi b .
i=1

The constant ¢ = 1 in front of r? is best possible in the sense that it cannot be
replaced by a smaller constant.

2

Proof. From the first condition in (5.1), we have
Di ‘bl| —2Re(biai)+|ai| <r s
i=1
giving
(5.3) Zp¢|bi\2+2pi la;” =% < 2Re (ZPi(h’bi) .
i=1 i=1 i=1
Since, by the second condition in (5.1) we have

n
Zpi la;|> —r? >0,
i=1

we may divide (5.3) by \/E?:1pi la;|* = 72 > 0, getting

>y pilbil”
i pilail® -2

Utilising the elementary inequality

2 Re (Z?:l pzalbl)

Sy i lail” — 2

(5.4) + 0> pilai® =% <
i=1

(5.5) §+qa22\/17q for p,g >0 and a >0,

we may write that

i pi bl -

S Zz:lp ‘ 2| + Zpi|a/i‘2_r2.
VIl - NS

Combining (5.5) with (5.6) we deduce

"~ Re :L plazbz
Zpi |b2|2 S (Z =1 = ) )
= VI pilaf? — 2

Taking the square in (5.7), we obtain
n 2
Re (Zpiaibz)] :
i=1

n n
> pi b (sz la;|” — 7“2> <
i=1 i=1

(5.7)
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giving the third inequality in (5.2).

The other inequalities are obvious.

To prove the sharpness of the constant, assume, under the hypothesis of the
theorem, that there exists a constant ¢ > 0 such that

n n n 2 n
(58) Zpi|ai‘2zpi|bi|2 — [Re (Zpiaibl)] S C’I“Zzpi|bi|2,
i=1 i=1 =1 =1

provided

n n
> opilbi =@l <r? <Y pilail
i=1 i=1

Letr =z e € (0,1),a;,¢, € Ci€ {1,...,n}with 30 p; |a;]> = S0 pileil” =
1 and Z?:l pia;e; = 0. Put b; = @; + v/ee;. Then, obviously

n n
Zpi b — @il” =1, Zpi jail* =1>r
i=1 i=1

and
n n n
sz‘ |bi|* = Zpi Jai|? +€Zpi lei]” =1+,
i=1 i=1 i=1
n n
Re (Zpiaibz) = Zpi |ai‘2 =1
i=1 i=1
and thus

n n
sz' \ai|2 sz' \bi|2 -
i=1 i=1

n 2
Re <Zp7a,bl>‘| =E.
i=1
Using (5.8), we may write

e<ce(l+e) for e€(0,1),
giving 1 < ¢ (1 +¢) for € € (0,1). Making € — 0+, we deduce ¢ > 1. 1

The following result also holds.

Theorem 7. Let x = (21,...,2,), Yy = (Y1,---,yn) € K", p= (p1,...,pn) € R}
with >+, p; =1 and 7,T € K such that Re (’yf) > 0 and either

(5.9) > piRe (T — 2;) (77 — 7y:)] > 0,
i=1
or, equivalently,

(5.10) Zpi

Then we have the inequalities

" Yi

2 n
v+ T 1 2 2
o < Z|F*7| Zpi |yil” .

i=1

Xr; —

En 2 En 2 < L {Re [(T+7) X0y pil’i%}}z
(511) - Di |xz| — DPi ‘yz| < Z . Re (Fﬁ/)
1 T+ | ?
,y - . .
<1 Re(y |20
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The constant % is best possible in both inequalities.

[N

Proof. Define b; = x; and a; = +“’ ~y; and r = \F — 9 (Z:‘L:1 i |y1|2> . Then,
by (5.10)

y+T

9 " Yi

sz|b Zpi T —

=1
n
2 2
§Z|F—W| > pilyil* =17
i=1

showing that the first condition in (5.1) is fulfilled.
We also have

n

n
Zpi |ai|2 —r’= Zpi
i=1 i=1

= Re(I'}) Zpi lyi)* > 0

i=1

F-l—’YQ 2 1 e 2
— A i |Yi
5 ‘Iyl 4\ ol E_plyl

since Re (yI') > 0, and thus the condition in (5.1) is also satisfied.
Using the second inequality in (5.2), one may write

_ 2
n F+’}/ 2 ) n ) n F+’_Y
va: 2‘ iyz| ;pv |177| - RGZ;ZH 5 YiZi

i=1

1 9 n 9 n 9
< 0=l > pilyil® Y pilal®,
i=1 i=1

giving

D+ - \F 72 r
< =
§ pi |yZ| § Di ixl > 4

" 2
e [(T+7) szxzyz‘| )

=1

which is clearly equivalent to the first inequality in (5.11).

The second inequality in (5.11) is obvious

To prove the sharpness of the constant % , assume that the first inequality in
(5.11) holds with a constant C > 0, i.e.,

- - Re [(f‘—&—ﬁ) > pil'iyi]}z
5.12 |zl ; i2<c-{ =1 :
(5.12) ;p |4] ;p lys|* < Re (T9)

provided Re (7I') > 0 and either (5.9) or (5.10) holds.
Assume that I,y > 0 and let z; = 7g;. Then (5.9) holds true and by (5.12) we
deduce

2
2 2 9 n 2
n T+ (E)-flpi Iyz-\)
2 Z 2 =
(i—lpl |yZi ) =¢ Iy '

giving
(5.13) Iy < C(C+~)* forany T',v>0.
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Let € € (0,1) and choose in (5.13) T =1+¢,y=1—¢ >0 to get 1 — &2 < 4C for
any € € (0,1). Letting ¢ — 0+, we deduce C' > % and the sharpness of the constant
is proved.

Finally, we note that the conditions (5.9) and (5.10) are equivalent since in an in-
ner product space (H, (-,-)) for any vectors x, 2, Z € H one has Re (Z — z,z — z) >
0iff ||z — 22| < L1 Z — 2|| [1]. We omit the details. I

6. MORE REVERSES OF THE (CBS)-INEQUALITY
The following result holds.

Theorem 8. Let a = (a1,...,a,), b = (b1,...,b,) € K® and p = (p1,...,Pn) €
R% with Z?zlpi = 1. If r > 0 and the following condition is satisfied

(6.1) > opilbi—@ml* <02,
i=1

then we have the inequalities

n n

(6.2) 0< <Zpi |bi|22pi|ai|2> _
=1 =1

< (sz |bi|22pi|ai|2> -
=1 =1

n
> piaib;
i=1

N

ipi Re (azbl)
i=1

1
n n 2 n
< (Zpi |b;]? Zpi |ai|2> - Zpi Re (a;b;)
i=1 i=1 i=1
1
S 57‘2.

The constant % is best possible in (6.2) in the sense that it cannot be replaced by a
smaller constant.

Proof. The condition (6.1) is clearly equivalent to
n n n
(6.3) Zpi|bi|2+2pi Ja|* < 2> " piRe (bia;) + 1.
i=1 i=1 i=1
Using the elementary inequality
1
n n 2 n n
(6.4) 2 (sz |bi]? Zpi ai|2> < Zpi i + Zpi |ai]?
i=1 i=1 i=1 i=1
and (6.3), we deduce

(65) 2 (Zpl |bi|2 Zpi ai|2>
i=1 i=1

giving the last inequality in (6.2). The other inequalities are obvious.
To prove the sharpness of the constant %, assume that

1
n n 2 n
(6.6) 0< <Zpi ;|2 Zpi |ai2> — Zpi Re (b;a;) < cr?
i=1 i=1

=1

2

< 22]% Re (b;a;) + r2,
i=1
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for any a, b € K™ and r > 0 satisfying (6.1).

Assume that a, € € H, & = (e1,...,e,) with > " p; la;]* = S pi lei|” =1
and Y. piae; = 0. If r = /£, € > 0, and if we define b = @ + /e where
a=(a,...,a,) € K", then Y I p; |b; — @|> = £ = 12, showing that the condition
(6.1) is fulfilled.

On the other hand,

(sz‘ b Zpi |ai|2> — Y piRe(bia;)
=1 =1 =1

N

SIS

<sz|az+xfez ) szRe (@ + Vees) ai
n n E n
= <Zpi |ai|2+52|€i|2> = > pilail?
=1 =1 =1

14+e—-1.
Utilizing (6.6), we conclude that
(6.7) V1d4e—1<ce forany &> 0.
Multiplying (6.7) by v/1 + &+ 1 > 0 and thus dividing by € > 0, we get
(6.8) (Vi+e—1)c>1 forany > 0.

Letting € — 0+ in (6.8), we deduce ¢ > %, and the theorem is proved. i
Finally, the following result also holds.

Theorem 9. Let x = (21,...,2,), Yy = (Y1,---,yn) € K", p= (p1,...,pn) € R}
with Y p; =1, and v,T € K with T’ # v, —, so that either

(6.9) > piRe[(TT — 2:) (T — 7yi)] > 0,

i=1
or, equivalently,

(6.10) sz

holds. Then we have the inequalities
n n
(6.11) 0< (Zpi 2> " pi in2>
i=1 i=1
< (ZP: £ sz' yz|2>  Re [ fﬂzyz}
i=1 i=1
1 _
2 2
pi |l pi |yl — ) _piRe |:xiyi:|
polip> 2 iy

i=1
1 |1—‘—”Y|2 - 2
< - pi lyil” -
4 T ++] ;

y+I
Ti— 5 i

_1
<7IF= vl Zn lyil®

N

'—Jw
\2\

IN
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The constant % in the last inequality is best possible.

F+" “yi, 1€ {1,...,n} and

—) (Zpi Iyz-2>

I 1.2 A
K3 2 Z

Proof. Consider b; = x;, a; =

Then, by (6.10), we have

n n
> pilbi—@l = p;
=1 1=1

showing that (6.1) is valid.
By the use of the last inequality in (6.2), we have

1
< g 0= szlyz =7’

1
n n F+’Y 2 2 n f+’7
2 2
0< (ZPZ‘ || sz‘ 2‘ il _ZPiRe T3y
i=1 i=1 i=1
1 2\ :
<z IM=1 Zpi |yl
i=1
Dividing by % [T+ ~| > 0, we deduce
1
n n 2 n = _
r'+x
0< <Zpi |$i|22pi |yi|2> - Zpi Re LP +7|xiyi:|
j i i=1

1T =
<1 T sz\yz,

which is the last inequality in (6.11).

The other inequalities are obvious.

To prove the sharpness of the constant + 7> assume that there exists a constant
¢ > 0, such that

(6.12) (Zpi ;) Zpi in2>

o = 72
|1—1+ Zpl |yl )

provided either (6.9) or (6.10) holds.
Let n =2y =(1,1),x = (z1,22) € R?, p = (%,%) and ',y > 0 with T" > ~.
Then by (6.12) we deduce

/ - Y)
6.13 V24/22 + 22 (1 + 22) < 2¢ ( .
( ) 1 27 W 2 T

If 21 =T, 3 =, then (T' — 21) (z1 — ) + (T’ — 22) (z2 — ) = 0, showing that the
condition (6.9) is valid for n = 2 and p, x, y as above. Replacing 1 and x5 in
(6.13), we deduce

(6.14) V2/T2 442 — (T +17) < 20(211)'

N

n — _

r+5 }

- piRe[ TiYi
; I + 7|
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If in (6.14) we choose ' =1+¢,7y=1—¢ with € € (0,1), we deduce

(6.15) V1462 —1< 2

Finally, multiplying (6.15) with v/1 +2+1 > 0 and then dividing by €2, we deduce
(6.16) 1< 2¢ (\/ 1+e2+4 1) for any & > 0.

Letting ¢ — 0+ in (6.16), we get ¢ >
proved. NI

i, and the sharpness of the constant is

Remark 5. The integral version may be stated in a canonical way. The correspond-
ing inequalities for integrals will be considered in another work devoted to positive
linear functionals with complex values that is in preparation.
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