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SUMMARY 

Carbohydrates are a major substrate contributing to energy 

transduction during medium to high intensity exercise, and the body's levels 

of this substrate can be manipulated by dietary and exercise behaviours. 

Nutritional strategies employed before and during exercise affect endurance 

exercise performance by altering the metabolism of carbohydrate within the 

body. Carbohydrate feeding during endurance exercise has repeatedly been 

demonstrated to be beneficial to the athlete. Studies investigating pre-

exercise carbohydrate feeding, particularly in the hour before exercise, have 

produced conflicting results and justify further investigation. The study 

reported in this dissertation aimed to further investigate the role of the pre-

exercise meal, in particular, examine the effect of differing glycaemic indices 

of carbohydrate foods on metabolism and exercise performance. 

A total of eight, endurance trained subjects participated in this study 

which involved the ingestion of carbohydrate food with differing glycaemic 

indices 45 min before cycling at a submaximal workload corresponding to 

70% V02maxfor 50 min, followed by a self-paced 15 min performance ride. In 

all trials blood samples were taken from a forearm vein and analysed for 

metabolites and hormones. 



iii 

The results from this study demonstrate that the pre- exercise 

ingestion of carbohydrate foods with different glycaemic indices alter 

metabolism during rest and subsequent submaximal exercise. The data from 

this study demonstrated that pre-exercise ingestion of a high glycaemic index 

(HGI) food resulted in a hyperglycaemic response followed by an insulin-

mediated hypoglycaemia at the onset of exercise. In addition, the elevated 

insulin during the HGI trial resulted in an attenuation in circulating FFA and a 

higher rate of carbohydrate oxidation compared with the ingestion of a low 

glycaemic index food (LGI) or placebo (CON). Despite the changes in 

metabolism associated with pre-exercise CHO feeding, exercise performance 

following 50 min of submaximal exercise was not affected. 
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CHAPTER 1 

INTRODUCTION 

Carbohydrate is a major substrate utilized during prolonged exercise 

and fatigue often coincides with muscle glycogen depletion and/or 

hypoglycaemia during exercise of this nature (Bergstrom and Hultman, 1967; 

Hermansen et al., 1967; Vollestad et al., 1984). Accordingly, increasing body 

CHO stores by dietary manipulation may result in improved exercise 

performance (Christensen and Hansen, 1939; Gordon et al., 1925). It is well 

established that carbohydrate feeding during prolonged exercise enhances 

endurance performance through the maintenance of blood glucose 

concentrations at a time when the body's own glycogen reserves may be 

compromised (Coggan and Coyle, 1989; Coyle et al., 1986). In contrast, the 

value of pre-exercise carbohydrate ingestion is not clear since this practice 

either increases (Gleeson et al., 1986; Thomas et al., 1991), decreases 

(Foster et al., 1979) or does not alter (Chryssanthopoulos et al., 1994; 

Decombaz et al., 1985) endurance performance. The conflict in the literature 

may be related to different methodologies which vary in type, timing and 

quantity of CHO ingested. These studies have yielded equivocal results and, 

therefore, warrant further investigation into this nutritional practice. 
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The majority of studies investigating pre-exercise carbohydrate feeding 

involve subjects ingesting nutrients, such as glucose and fructose, in contrast 

to the ingestion of "real" foods. These nutrients are absorbed at different 

rates and can affect circulating levels of hormones and other blood-borne 

substrates. Pre-exercise glucose (high glycaemic index) ingestion has been 

observed to result in a state of hyperglycaemia followed by a large rise in 

plasma insulin concentration (Costill et al., 1977; Guezennec et al., 1989; 

Koivisto et al., 1985). At the onset of exercise, a state of hyperinsulinaemia 

results in rebound hypoglycaemia (Costill et al., 1977; Decombaz et al., 1985; 

Koivisto et al., 1985), a reduction in lipolysis (Gleeson et al., 1986; Koivisto et 

al., 1985), increased carbohydrate oxidation (Costill et al., 1977) and a 

decrease in exercise performance (Foster et al., 1979). In contrast, the pre-

exercise ingestion of fructose (low glycaemic index) attenuates these 

disturbances in metabolism during exercise (Decombaz et al., 1985; 

Guezennec etal., 1989). 

Carbohydrate foods are also absorbed and oxidised at different rates 

(Horowitz and Coyle, 1993) and thus, it is surprising that very little research 

has examined the influence of pre-exercise ingestion of "real" foods on 

metabolism during exercise and their effect on exercise performance. 

Recently, Thomas et al. (1991) reported that pre-exercise ingestion of a low 

glycaemic index (LGI) food increased endurance performance compared with 

a high glycaemic index food (HGI). They suggested that the LGI food may 

confer an advantage over a HGI food by maintaining blood glucose 
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concentrations at higher levels during prolonged exercise. In contrast to the 

exercise protocol employed by Thomas et al. (1991), many athletic events 

involve exercise of a duration of approximately 60 min with a performance 

criteria as a marker of success. Thus, a study examining the adaptive 

response of the pre-exercise ingestion of "real" foods on a form of exercise 

that is of a duration and intensity common to a competitive situation is 

warranted. 

The purpose of the study reported in this dissertation, therefore, was to 

compare the effects of pre-exercise ingestion of foods with high and low 

glycaemic indices on metabolism and performance during prolonged 

submaximal exercise of approximately 60 min duration. 
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CHAPTER 2 

REVIEW OF LITERATURE 

2.1 CARBOHYDRATE METABOLISM 

Endogenous carbohydrate (CHO) stores, in the form of muscle and 

liver glycogen, are important substrates for contracting muscles. Muscle and 

liver glycogen provide A T P for muscle contractile activity during exercise and 

fatigue has often been demonstrated to coincide with muscle glycogen 

depletion and/or hypoglycaemia (Bergstrom and Hultman, 1967; Christensen 

and Hansen, 1939; Hermansen et al., 1967; Vollestad et al., 1984). 

Furthermore, endurance exercise is enhanced when muscle glycogen levels 

are elevated prior to exercise (Bergstrom and Hultman, 1967). Researchers 

have, therefore, focused on the factors affecting C H O metabolism and 

strategies to maximize C H O levels before, during and after exercise in an 

attempt to maximize athletic performance. 

2.1.1 Glycogen Utilization during Exercise. 

The enzymes which regulate glycogen metabolism are glycogen 

synthetase and phosphorylase, both of which occur in active and inactive 

forms. Phosphorylase is the enzyme responsible for the breakdown of 

glycogen, in a process known as glycogenosis. The b form is active in the 

presence of AMP. In contrast, the a form is active in the absence of A M P 

(Constable et al., 1986). This allosteric control allows the muscle cell to 

regulate its level of phosphorylase activity and therefore its level of 

glycogenosis (Chasiotis, 1988). The degradation of glycogen is largely 

stimulated by hormonal factors, although its utilization is somewhat 
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multifactorial. It has been demonstrated that muscle glycogen utilization is 

enhanced when a greater muscle glycogen concentration is available to be 

metabolized (Gollnick et al., 1981; Sherman et al., 1981; Richter and Galbo, 

1986) and that its degradation is enhanced during the initial stages of 

exercise (Bergstrom and Hultman, 1967). It is also well documented that the 

rate of muscle glycogenosis increases with increasing exercise intensity 

(Vollestad and Blom, 1985). The cascade of glycogenolysis is largely 

affected by hormonal factors; adrenaline (Galbo et al., 1975; Gerich et al., 

1976) and low blood glucose concentrations stimulating glucagon secretion in 

the liver (Gerich et al., 1976) thereby stimulating liver glycogenolysis (Richter 

et al., 1981; Wasserman et al., 1984). Additionally, it has been recently 

suggested that adrenaline-stimulated liver glycogenolysis during exercise 

may be subject to a feed forward mechanism in a workload dependent 

relationship (Kjaer et al., 1986; Kjaer et al., 1987; Sonne and Galbo, 1985). 

Stressful situations or exercise stimulates the secretion of adrenaline in 

muscles which subsequently enhances muscle glycogenolysis (Arnall et al., 

1986; Cheetham et al., 1986; Jansson et al., 1986; Richter et al., 1980; 

Richter, 1984). 

Glycogenolysis in resting rat muscle is sensitive to changes in 

adrenaline in a dose-dependent manner and specific fibres (slow twitch red) 

are more sensitive than others (fast twitch white) (Gorski, 1978). Similarly 

Chesley et al. (1994) recently reported that high levels of adrenaline were not 

important in enhancing muscle glycogenolysis in rat muscles comprised 

predominantly of fast twitch fibres during high intensity stimulation. 

Furthermore type 1 fibres in electrically stimulated human muscle undergo 

greater glycogenolysis when adrenaline is infused (Greenhaff et al., 1991). 

McDermott et al. (1987) reported that levels of muscle glycogenolysis were 

quite similar in normal contracting rat muscle and non-contracting rat muscle 
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that had been injected with adrenaline, demonstrating that contractile activity 

of the muscle is not necessary for glycogen breakdown to occur. This 

function of adrenaline illustrates its importance in providing substrates such 

as lactate for hepatic gluconeogenesis from both contracting and non-

contracting muscle and has been postulated to be the major function of 

adrenaline stimulated muscle glycogenolysis (Arnall et al., 1986). W h e n 

levels of adrenaline are artificially raised during submaximal exercise in man, 

muscle glycogenolysis is enhanced (Jansson et al., 1986). Conversely, when 

the source of this hormone is removed in rats via adrenodemedullation, 

muscle glycogenolysis is impeded (Arnall et al., 1986; McDermott et al., 

1987; Richter et al., 1980; Richter et al., 1981). Interestingly, the effect of 

adrenaline on liver glycogenolysis is somewhat less clear. It has been 

demonstrated that adrenodemedullated animals have a reduced rate of 

hepatic glycogenolysis during exercise compared to exercising S H A M 

controls (Richter, 1980; Richter et al., 1981). In contrast infusion of high 

physiological concentrations of adrenaline does not enhance hepatic 

glycogenolysis any greater than infusion of a control (Arnall et al., 1986; 

Carlson et al., 1985). These discrepancies may be explained by variations in 

methodologies. Other factors, however, have been reported to affect hepatic 

glycogenolysis during exercise and among these include the circulating 

levels of glucagon and stimulation of sympathetic nerves to the liver (Nobin et 

al., 1977), although one study has demonstrated that surgical removal of 

nerves of the liver had no effect on hepatic glucose output (Sonne et al., 

1985). 

In muscle, glycogenolysis can be triggered by other mechanisms that 

function on more localized level. During muscular contraction, calcium is 

released from vesicles of the sarcoplasmic reticulum at levels that have been 

reported to activate phosphorylase b kinase (Chasiotis et al., 1982) and has 
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been suggested to be the primary mechanism for this activation in short-term 

intense tetanic stimulation in rat hindlimb (Chesley et al., 1994). 

Phosphorylase b is then phosphorylated by active phosphorylase kinase to 

the active phosphorylase a form. It is well documented that glycogenolysis is 

increased in skeletal muscle under conditions that also increase 

phosphorylase a (Chasiotis et al., 1983; Chasiotis, 1988). Phosphorylase a 

stimulates the breakdown of glycogen to form glucose-1-phosphate. O n a 

cellular level, muscle glycogenolysis can be stimulated by high levels of 

cyclic A M P which is regulated by adrenaline. Adrenaline induces a 

transformation of phosphorylase from an inactive to an active form. 

Adrenaline triggers the enzyme adenyl cyclase, at the cellular membrane, 

catalyzing the formation of cyclic A M P , which then follows the cascade as 

mentioned above to activate phosphorylase a (Chasiotis et al., 1983; 

Freedland and Briggs, 1978). Evidence of this has been reported by 

Chasiotis et al. (1983) who demonstrated that the proportion of 

phosphorylase in the a form in the basal state was estimated to be 22.5% and 

during adrenaline infusion the proportion of phosphorylase in the a form 

increased to 80-90%. Interestingly, despite nearly all the phosphorylase 

being in the a form during infusion the level of glycogenolysis was extremely 

low. It was suggested by the authors that the availability of the substrate 

inorganic phosphate (Pi) from ATP-PCr splitting limits phosphorylase activity 

in the muscle and thus has a integral role in regulating muscle glycogenolysis 

(Chasiotis, 1988). 

2.1.2 Glucose Metabolism 

Skeletal muscle is the primary site for blood glucose utilization during 

exercise. The utilization of blood glucose is affected by its delivery and its 

uptake, and both these factors are increased during exercise. It has been 
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demonstrated that the rate of blood glucose uptake in human skeletal muscle 

increases in proportion to workload during leg exercise, increasing up to 10-

20 times during moderate to heavy exercise (Wahren et al., 1971). More 

recently, Katz et al. (1986) investigated the effect of skeletal muscle blood 

glucose uptake during submaximal (50% V02max) and maximal exercise (97% 

V02max)- These authors observed that an increased blood glucose uptake by 

the muscle does not necessarily reflect an increased rate of utilization during 

maximal exercise and thus at least part of the glucose taken up at this 

intensity (97% V02m a x) is not metabolized. It was suggested that the build up 

of intracellular glucose 6-phosphate (G-6-P) caused the inhibition of 

hexokinase and, therefore, prevented further glucose utilization. Under these 

circumstances glycogenolysis is enhanced and preferentially used as an 

energy substrate (Katz et al., 1986). Interestingly, these authors suggest that 

this dissociation between blood glucose uptake and subsequent utilization 

occurs at about 7 5 % V02 m a x. During submaximal intensity exercise however, 

blood glucose demand equals supply and thus blood glucose does not 

accumulate in the muscle. At these intensities all of the blood glucose taken 

up by the leg is metabolized (Katz et al., 1986). 

To maintain this augmented muscle glucose uptake, liver 

glycogenolysis is stimulated to meet the demand by increasing glucose 

output. As exercise continues a larger proportion of glucose output by the 

liver is met by gluconeogenesis (Wahren et al., 1971). At the tissue level, 

glucose uptake is regulated by the rate at which glucose can transport across 

the cell membrane and is mediated through a mobile transporter-protein 

mechanism that combines with glucose to gain entry to the cell. Recent work 

has identified two such transporter isoforms: G L U T 1 and the more common 

skeletal muscle glucose transporter G L U T 4 (Klip and Paquet, 1990). 

Glucose uptake has been extensively researched and factors regulating 
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glucose transport have been reported to include an increase in intracellular 

calcium (Holloszy and Narahara, 1967; Holloszy et al., 1986), tissue hypoxia 

(Idstrom et al., 1985) and the energy state of the muscle tissue (Walker et al., 

1982). 

The bulk of literature on glucose transport has focused on the effects 

of insulin, exercise and their interaction. Early work demonstrated that insulin 

and muscle contractile activity increased the glucose transport across the cell 

membrane (Holloszy and Narahara, 1965) however, muscle contractile 

induced glucose transport was dependent upon the presence of insulin 

(Berger, 1975). Recent work has shown that the effects of maximal insulin 

stimulation and exercise are somewhat additive on skeletal muscle 

permeability to glucose (Zorzano et al., 1986) unless, however, there is 

prolonged exposure to unphysiologically high insulin concentrations 

(Constable et al., 1988). Insulin-stimulated glucose uptake has been 

observed to be related to GLUT-4 protein transport content in rats (Kern et 

al., 1993) and in humans (Ebeling et al., 1993). Insulin stimulates an 

increase in the number of glucose transport molecules at the plasma 

membrane by translocation from an intracellular pool (Fushiki et al., 1989; 

James et al., 1989; Wardzala and Jeanrenaud, 1981). Fushiki et al. (1989) 

reported that the addition of insulin resulted in the concentration of plasma 

membrane transporters increasing from 16.8 to 31.6 pmol.mg"1 membrane 

protein and intracellular glucose transporters decreasing from 29.8 to 17.5 

pmol.mg"1. Glucose kinetic studies have reported that insulin increases the 

transport of glucose in skeletal muscles by increasing the maximal rate of 

transport with little or no change in the apparent affinity of the transport 

molecule (Sternlicht et al., 1988; Stemlicht et al., 1989) and has been 

suggested to be the result of an increase in the total number of transport 

molecules, an increased turnover rate for glucose in the existing molecules, 
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or both (Sternlicht et al., 1988). In contrast, work by Wallberg-Henriksson 

and Holloszy, (1984) have reported that large increases in glucose uptake 

occurred in response to muscle contraction in the absence of insulin in both 

diabetic and control rats. The mechanism for glucose transport during 

exercise has been suggested to be the same as that for insulin or use the 

same transport molecule (Fushiki et al., 1989; Holloszy and Narahara, 1965; 

Plougetal. 1987). 

It has been reported in studies using rat models that exercise 

stimulates glucose transporter translocation (Fushiki et al., 1989; Goodyear 

et al., 1990; King et al., 1989; Sternlicht et al., 1989). Fushiki et al. (1989) 

reported that one bout of exercise induced translocation of the glucose 

transporters from the intracellular to the plasma membrane in a similar way 

that insulin does, although it did not increase the number of transporters. 

Interestingly, Koivisto et al. (1993) also reported no change in muscle 

glucose transport protein content (GLUT-4) after one bout of acute exercise 

in human subjects, although using their technique it was not possible for them 

to determine if translocation from the intracellular pool to the plasma 

membrane had occurred. In contrast, cytochalasin binding data reported by 

Sternlicht et al. (1989) demonstrate that insulin stimulation increased the 

number of binding sites compared with controls, however exercise had no 

effect on the number of binding sites. This indicated that exercise and insulin 

glucose transport work by different mechanisms. Finally, endurance training 

has been demonstrated to induce elevations in GLUT-4 concentrations in rats 

(Ploug et al., 1990) and man (Houmard et al., 1991; Koivisto et al., 1992). 

Short term training cessation does not adversely affect GLUT-4 protein levels 

in the skeletal muscles of man (Houmard et al., 1993), however more recently 

McCoy et al. (1994) demonstrated that muscle Glut-4 protein content and 

oxidative capacity decreases in parallel after detraining, suggesting that the 
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discrepancies between these studies may be related to the detraining 

stimulus. 

Muscle glucose uptake has also been reported to be affected by the 

concentration of muscle glycogen (Chesley et al., 1995; Fell et al., 1982; 

Hargreaves et al., 1995; Hespel and Richter, 1990) and the pattern of 

glycogen depletion in skeletal muscle (James et al., 1985). The 

aforementioned authors demonstrated a close relationship between an 

increase in muscle glucose uptake during exercise in specific fibres and the 

amount of glycogen degradation that occurred during exercise in those same 

fibres, namely those that would be more involved in moderate prolonged 

exercise (red gastrocnemius and soleus)(James et al., 1985). Work by Ploug 

et al. (1987) would seem to support this finding as they demonstrated that the 

effects of both contractions and insulin, on increasing glucose transport, are 

greater in red than white muscle fibres. 

The effect of circulating catecholamines have also been reported to 

influence glucose uptake by the muscle and have been suggested to be 

under alpha (Richter et al., 1982) or beta-adrenergic control (Young et al., 

1985). Young et al. (1985) used beta-blockers to demonstrate beta-

adrenergic control. In contrast, others have reported that exercise does not 

stimulate glucose transport via the beta-adrenergic receptor (Sternlicht et al., 

1989). Adrenaline stimulation has been demonstrated to both depress 

(Jansson et al., 1986; Walaas and Walaas, 1950) and enhance glucose 

uptake in skeletal muscle (Richter et al., 1982; Young et al., 1985). The 

inconsistencies in the findings of these studies may be due in part to 

differences in the methodologies employed by these researchers but on the 

whole reflect a need to further elucidate the role of adrenaline on glucose 

transport. 
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Blood glucose uptake in skeletal muscle is affected by the availability 

of blood-borne fuel substrates. The concentration of glucose and FFA in the 

blood affect blood glucose uptake by the muscle and both can be 

manipulated through diet or infusion. The effects of these manipulations will 

be discussed in detail subsequently. 

2.2 FAT METABOLISM 

It is well established that lipids are a major fuel reservoir in the 

mammalian body (Oscai et al., 1990). Adipose tissue, skeletal muscle and to 

a lesser extent, plasma triglycerides, are significant fat depots that generate 

an important energy source for contacting skeletal muscle during prolonged 

submaximal exercise. Their catabolism via lipolysis (breakdown of 

triglycerides into glycerol and non-estehfied fatty acids) and subsequent beta 

oxidation in skeletal muscle mitochondria offer an almost endless supply of 

energy during low intensity exercise (Sahlin, 1992) 

It is well known that lipid is mobilized following the hydrolysis of 

triglycerides in adipose tissue to form a pool of FFA and glycerol in the 

plasma (Freedland and Briggs, 1977). These albumin-bound FFA mobilized 

from adipose tissue are readily oxidized by muscle (Havel, 1974; Kiens et al., 

1993) and have been reported to constitute approximately 5 0 % of the fat 

oxidized during exercise (Havel et al., 1964; Issekutz et al., 1968). FFA can 

also form ketone bodies in the liver and during starvation conditions can 

account for nearly 8 0 % of the fatty acids catabolised (Krebs et al., 1969). 
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The remaining fat oxidized during exercise was first suggested by 

Havel et al, (1967) to come from intramuscular sources, as the uptake of FFA 

from plasma and plasma triglyceride derived fatty acids could account for 

little more than half of the carbon dioxide, which was estimated from 

measurements of respiratory quotient derived from the oxidation of fatty acids 

in the exercising legs. This was supported by a body of research which 

demonstrated a significant reduction in the concentration of triglycerides in 

skeletal muscle during exercise (Carlson et al., 1971; Froberg., 1971; 

Gollnick and Saltin., 1988; Reitman et al., 1973). In addition, it has also been 

reported that triglyceride mobilization can be observed in electrically 

stimulated muscle. These studies demonstrated that when frequency of 

muscular contraction was increased a greater reduction in triglyceride 

concentration was observed (Hopp and Palmer., 1990; Spriet et al., 1986). 

In contrast, Kiens et al. (1993) recently reported data which suggests 

that intramuscular triglycerides provide minimal energy during exercise. It 

was suggested by these authors that the observed increase in lipid oxidation 

was due to an enhanced FFA uptake by the muscle as a decrease in 

intracellular triglyceride level was not observed. Interestingly the mobilization 

of intramuscular triglycerides has been reported to be mainly isolated to red 

muscle fibres which have a greater oxidative capacity (Baldwin et al., 1973; 

Froberg., 1971). It is noteworthy also that the activity of lipoprotein lipase 

(LPL) is higher in muscles containing mainly red fibres as opposed to those 

containing white (Borensztajn et al., 1975; Tan et al., 1975; Tan et al., 1977). 

The observation that intramuscular lipolysis does not occur in fast twitch 

muscle fibres has been suggested to be due to their very low oxidative 

capacity (Okano and Shimojo et al., 1982) or the ability of the fast twitch 

fibres to accumulate high levels of lactate (Gorski, 1992). Lactate 

accumulation increases the re esterification of FFA and reduce lipolysis 
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(Fredholm, 1969; Issekutz and Miller., 1962; Miller et al., 1964). Other 

factors which may affect muscle triglyceride metabolism include muscle 

glycogen concentration (Stankiewicz-Choroszucha and Gorski, 1978b) and 

the plasma F F A concentration (Carlson et al., 1965; Carlson et al., 1971; 

Stankiewicz-Choroszucha and Gorski., 1978b). 

The third pool of lipids for muscular contraction are plasma 

triglycerides. Havel et al. (1967) reported that the contribution of plasma 

triglyceride fatty acids were less than 1 0 % of the fatty acids oxidized in the 

leg during exercise. Prolonged exercise results in a reduction in plasma 

triglyceride stores (Holloszy et al., 1964; Oscai et al., 1972) and an increase 

in the uptake of plasma triglyceride derived fatty acids by the contracting 

muscle (Kiens et al., 1993; Terjung et al., 1982; Terjung et al., 1983). 

Despite this, their contribution to energy production is considered small and it 

has been suggested that plasma triglycerides may be used to replenish the 

decreased fat stores in muscle during exercise (Oscai et al., 1990). 

In mammalian fat cells the hydrolysis of adipose tissue triglyceride is 

catalyzed by the "hormone-sensitive" lipase, or lipoprotein lipase situated on 

the endothelial surface of blood capillaries (Fredrickson et al.; Khoo and 

Steinberg, 1974). Enzyme regulation of muscle triglyceride hydrolysis is not 

well investigated. Muscle appears to contain 2 different fractions of 

lipoprotein lipase (Borensztajn, 1979; Robinson, 1970), although more 

recently it was suggested that 3 different lipoprotein lipase fractions have 

been found all with different rates of activity at particular pH (Gorski, 1992). It 

has been hypothesized by Oscai and Palmer, (1988; 1990) that intracellular 

lipoprotein lipase plays a direct role in muscle triglyceride hydrolysis. This 

hypothesis was based on their observation that during exercise FFA levels 

were elevated in the intracellular component of the muscle at the same time 
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that there was a corresponding increase in intracellular lipoprotein activity. 

According to Gorski, (1992), however, this hypothesis is somewhat debatable 

based on the observations that the optimal pH for lipoprotein lipase is 8.5 and 

the pH inside myocytes is 7.0 at rest, decreasing even further with contraction 

(Sahlin, 1978). The activity of lipoprotein lipase at a pH of 7.0 is negligible 

(Strothfeld and Heugel, 1984). In addition, although lipoprotein lipase is 

manufactured in the myocytes, it is transported to the cell surface in vesicles 

and therefore is without contact with the triglyceride particles (Gorski, 1992) 

Adipose tissue lipolysis is somewhat regulated by hormonal control 

and the cyclic A M P cascade (Gorski, 1992; Shepherd and Bah, 1987). 

Catecholamine injection causes a rapid release of FFA from adipose tissue 

(Shepherd and Bah, 1987), however lipolysis in fat cells is also stimulated by 

glucagon, growth hormone and thyroid hormones (Fain, 1973). In muscle, 

epinephrine and glucagon has been reported to stimulate the activity of 

intracellular LPL in rat skeletal muscle (Miller et al., 1988) and rat heart 

(Borensztajn et al, 1973) respectively. In addition nor-adrenaline infusion 

resulted in a significant reduction in intramuscular triglyceride concentration 

in humans (Froberg et al, 1975). Lipolysis in adipose tissue is under beta-

adrenergic control (Lundborg et al., 1981; Smith, 1983) and recent evidence 

suggests that the hydrolysis of intramuscular triglycerides may also be 

regulated by beta-adrenoceptors (Cleroux et al., 1987). Intramuscular 

triglyceride utilization in slow twitch fibres of rats was impaired with non­

selective beta-blockade (Stankiewicz-Choroszucha and Gorski, 1978) and 

more recently in humans complete impairment of intramuscular triglyceride 

utilization was reported with non-selective beta-blockade (Cleroux et al., 

1987). 
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Lipid metabolism is also influenced by the intensity of exercise 

undertaken. It was suggested by Jones et al., (1980) that light exercise may 

favour the release of FFA from adipose tissue and subsequent uptake by the 

muscle, whereas during heavy exercise may inhibit adipose mobilization and 

stimulate lipolysis in muscle. Further work is needed to confirm this 

conclusion. It is well known however, that total fat combustion is affected by 

exercise intensity. Although the uptake of FFA by the active muscles 

depends upon the plasma concentration of FFA (Ahlborg et al., 1974; Paul., 

1970) respiratory exchange ratio data demonstrate that the importance of 

FFA as a fuel relative to C H O is greater with increasing duration of exercise 

and diminishes as the intensity of exercise increases (Christensen and 

Hansen 1939; Hagenfeldt 1979). 

Lipid mobilization may also be affected by the presence of other 

energy substrates (eg. Glucose) and hormones such as insulin. The 

mechanism by which they affect fat metabolism will discussed subsequently. 

2.3 PROTEIN METABOLISM 

The percentage of energy derived from protein catabolism during 

exercise is equivocal. Both the liver and the skeletal muscles have the ability 

to metabolize protein to produce energy (Miller, 1962; Odessey and 

Goldberg, 1972), however early investigations into protein metabolism 

surmised that energy produced via protein breakdown during exercise was 

either non existent or minimal. Recent evidence, however, suggests that 

some energy is produced from protein catabolism during exercise (Booth and 

Watson, 1985; Lemon and Mullin, 1980; Kasperak et al., 1982; Poortmans, 

1984; Rennie et al., 1981). The energy derived from the breakdown of 
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protein could be considered small but has been estimated to contribute 

between 3 and 1 0 % of the total energy production during prolonged exercise 

(Brooks, 1987; Hood and Terjung, 1990; Poortmans, 1984; Rennie et al., 

1981). 

Historically, many studies investigated protein metabolism by 

measuring urinary urea as an index of protein breakdown (Dohm et al., 1977; 

Lemon and Mullin, 1980). This marker however, may not accurately reflect 

protein degradation or mean that energy was derived from the breakdown of 

protein (Lemon et al., 1984). For example, sweat loss , water intake and 

changes in blood flow to the kidneys during exercise may affect urea 

production and excretion (Lemon and Mullin, 1980; Lemon et al., 1983). 

Additionally 3-methylhistidine urinary excretion has also been used as a 

marker of skeletal muscle protein breakdown during exercise (Dohm et al., 

1982a; Dohm et al., 1987; Rennie et al., 1981). It has been demonstrated in 

rats that increases in 3-methylhistidine urinary excretion can be contributed to 

by protein loss from the gastrointestinal tract (Wassner and Li, 1982) and 

therefore may also not accurately reflect skeletal muscle protein catabolism 

(Dohmetal., 1987). 

There is considerable evidence that amino acids are catabolised by 

skeletal muscle during exercise to produce energy (Goldberg and Odessey, 

1972; Graham and Maclean, 1990; Hood and Terjung, 1990; Lemon and 

Mullin, 1980; Maclean et al., 1991; Maclean et al., 1994; Wagenmakers et al., 

1990). The availability of amino acids for metabolism is limited by their 

presence in the tissue free amino acid pool, which is a function of the rate of 

protein synthesis and protein degradation. During exercise the rate of protein 

synthesis decreases (Booth and Watson, 1985; Dohm et al., 1980; Rennie et 

al., 1981) and as mentioned previously, the rate of protein catabolism 
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increases, thus increasing the tissue free amino acid pool. The main amino 

acids metabolized by skeletal muscle are alanine, glutamate, aspartate and in 

particular the branch chain amino acids (BCAA) leucine, isoleucine and 

valine (Goldberg and Odessey, 1972; Graham and Maclean, 1990). Ahlborg 

et al. (1974) demonstrated that during prolonged light exercise B C A A were 

released from the splanchnic bed and were taken up by the working muscle. 

Additionally amino acid infusion has demonstrated a significant increase 

(70%) in skeletal muscle B C A A uptake (Gelfand et al., 1986) and more 

recently B C A A supplementation has been observed to result in a significant 

uptake of BCAA, as well as a suppression of endogenous protein catabolism 

during exercise (Maclean et al., 1994). 

Although the BCAA are important to skeletal muscle metabolism the 

other amino acids are also functionally significant in potential energy 

production, that being the provision of substrate (carbon skeletons) to the 

liver for gluconeogenesis. Ahlborg et al. (1974) reported that most of the 

other amino acids (other than BCAA) were released from the muscle and 

taken up by the liver during light exercise. Alanine is one amino acid in 

particular that has been reported to have increased efflux from skeletal 

muscle and uptake by the liver during exercise (Felig and Wahren, 1971). 

Additionally alanine and glutamine, the latter which can be converted to 

alanine in the gut (Hood and Terjung, 1990) account for about 5 0 % of the 

amino acid efflux from the muscle during exercise (Ahlborg et al, 1974; Felig 

and Wahren, 1971). 

Ammonia is produced in skeletal muscle during exercise and thus may 

also serve as a marker of protein degradation (Maclean et al., 1991). 

Additionally, plasma ammonia concentrations correlate with both muscle cell 

ammonia production and muscle ammonia release (Graham and Maclean, 
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1990). The two main sources of ammonia production during exercise in 

skeletal muscle evolve from amino acid catabolism and the purine nucleotide 

cycle (PNC) (Graham and Maclean, 1990; Wagenmakers et al., 1990). The 

P N C is a series of reactions involved in the deamination of A M P to IMP and 

ammonia (Graham and Maclean, 1990). During high intensity, short-term 

exercise, ammonia is produced in significant proportions in skeletal muscles 

(Babij et al., 1983; Katz et al., 1986). Under these exercise conditions the 

increase in ammonia accumulation is in a 1:1 stoichiometric relationship with 

the decrease in total adenine nucleotides (TAN) and increase in IMP, 

demonstrating that all of the ammonia produced during high intensity exercise 

comes from A M P deamination (Katz et al., 1986; Meyer and Terjung, 1980; 

Stathisetal., 1994). 

In contrast, plasma ammonia levels rise during prolonged exercise 

(Graham et al., 1987; Maclean et al., 1991; Maclean et al., 1994; Snow et al., 

1995; Wagenmakers, 1990) despite no change in P N C intermediates 

(Maclean et al., 1991; Maclean et al., 1994; Norman et al., 1987; Snow et al., 

1995). In addition administration of BCAA in the pre-exercise period results 

in an enhanced plasma ammonia concentration (Maclean et al., 1994; 

Wagenmakers et al., 1990). These findings suggest that much of the 

ammonia produced during endurance exercise comes from the metabolism of 

amino acids and during short-term high intensity exercise from the 

deamination of AMP. 

Other factors that appear to affect amino acid metabolism include the 

dietary status of the subject and carbohydrate availability. Protein catabolism 

is increased during fasting (Fryburg et al., 1990) and increases in plasma 

ammonia are enhanced following a low carbohydrate diet and low muscle 

glycogen concentrations (Maclean et al., 1989). Recently Snow et al. (1995) 
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demonstrated that plasma ammonia concentrations during exercise were 

lower when a carbohydrate supplement was ingested during exercise, 

suggesting that the availability of carbohydrate influences amino acid 

metabolism. 

2.4 CARBOHYDRATE FEEDING AND EXERCISE. 

2.4.1 CHO Ingestion during Exercise. 

It is well established that CHO feeding during prolonged exercise can 

increase endurance performance (Askew et al., 1986; Coggan and Coyle , 

1987; Coggan and Coyle, 1988; Coggan and Coyle, 1989; Coyle et al., 1983; 

Coyle and Coggan, 1984; Coyle and Coggan, 1986; Hargreaves et al., 1984; 

Ivy et al., 1983; Millard-Stafford et al., 1992; Mitchell et al., 1988; Murray et 

al., 1989). Prior to investigations which utilized the needle biopsy technique it 

was assumed that the improved performance was due to a sparing of muscle 

glycogen (Coyle et al., 1993). Subsequent studies have demonstrated that 

muscle glycogen is not spared when C H O is fed during prolonged steady 

state exercise (Coyle et al., 1986; Fielding et al., 1985; Flynn et al., 1987; 

Hargreaves and Briggs, 1988; Mitchell et al., 1989). Although ingestion of 

glucose during prolonged exercise at 3 0 % V02max results in a significant 

enhancement of muscle glucose uptake (Ahlborg and Felig, 1976), during 

exercise of a higher intensity (70% V02max) the increase in musle glucose 

uptake is relatively small and does not contribute significantly to substrate 
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utilization (McConell et al., 1994). It appears, therefore, that during moderate 

to high intensity endurance exercise glycogen utilization and muscle glucose 

uptake are not affected to a great extent when intramuscular glycogen is not 

depleted. Accordingly, when muscle glycogen stores are adequate to sustain 

2 hr of exercise CHO feeding has no effect on subsequent exercise 

performance (Widrick et al., 1993). The likely mechanism for the increased 

performance as a result of CHO feeding during exercise is an increase in 

glucose delivery and extraction late in exercise when muscle glycogen stores 

are low (Coggan and Coyle, 1987; Coggan et al., 1991). It is probable that 

the increase in muscle glucose uptake results from an increase in glucose 

transport since the skeletal muscle glucose transporter (GLUT 4) is activated 

when glycogen stores are depleted (Hespel and Ricter, 1990J. 

2.4.2. Pre-exercise Feeding of Carbohydrate. 

Unlike the effect of CHO feeding during exercise, the benefits of pre-

exercise CHO feeding are equivocal. Early investigations indicated that pre-

exercise feeding may be detrimental to metabolism and/or endurance 

performance (Ahlborg and Felig., 1977; Costill et al., 1977; Foster et al., 

1979; Keller and Schwarzkopf, 1984). As a result, the American dietetic 

Association cautioned athletes against this practice in 1987 (Alberici et al., 

1993). Subsequent investigations have questioned these initial findings 

suggesting that this practice may either increase (Alberici et al., 1993; 

Gleeson et al., 1986; MacLaren et al., 1994; Neuffer et al., 1987; Okano et 
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al., 1988, Peden et al., 1989; Sherman et al., 1989; Sherman et al., 1991; 

Thomas et al., 1991; Wright et al., 1991; Ventura et al., 1994), or have no 

effect (Chryssanthopoulos et al., 1994; Decombaz et al., 1985; Devlin et al., 

1986; Hargreaves et al., 1987; Snyder et al., 1993; Sharp et al., 1993) on 

exercise performance. The differences in metabolism and performance 

reported by many studies have made the effect of pre-exercise CHO 

ingestion unclear. 

Since fatigue during endurance exercise often coincides with glycogen 

depletion and/or hypoglycaemia (Coggan and Coyle, 1987; Coyle et al., 

1986) one would expect that increasing CHO availability would be of 

subsequent benefit. Unlike CHO feeding during exercise which blunts the 

secretion of insulin (Coyle et al., 1983; Ivy et al., 1979), pre-exercise glucose 

ingestion results in hyperinsulinaemia (Ahlborg and Felig, 1977; Bonen et al., 

1981; Costill et al., 1977; Devlin et al., 1986; Gleeson et al., 1986; 

Guezennec et al., 1989; Hargreaves et al., 1987; Koivisto et al., 1982; 

Koivisto et al., 1985; Sherman et al., 1991; Thomas et al., 1991; Wright et al., 

1991). Elevated insulin subsequently effects metabolism during exercise such 

that blood glucose (Ahlborg and Felig, 1977; Costill et al., 1977; Decombaz et 

al., 1985; Devlin et al., 1986), free fatty acids (Ahlborg and Felig, 1977; 

Gleeson et al., 1986; Koivisto et al., 1985), muscle (Costill et al., 1977; 

Hargreaves et al., 1985) and hepatic glycogenolysis (Felig and Warren, 

1979) are altered. When CHO is administered at rest insulin will be elevated 

for several hours (Heath et al., 1983; Montain et al., 1991) before returning to 
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basal levels. The time at which the pre-exercise CHO meal is ingested is, 

therefore, a critical factor when assessing the potential beneficial or 

detrimental effects of such a practice. 

2.4.2.1 Glucose Ingestion 30 min -2 hr before Exercise 

If glucose is ingested 1-2 hours before exercise, a state of 

hyperinsulinaemia at the onset of exercise results in a rapid decline in blood 

glucose concentration (Ahlborg and Felig, 1977; Bonen et al., 1981; 

Chryssanthopoulos et al., 1994; Costill et al., 1977; Decombaz et al., 1985; 

Devlin et al., 1986; Guezennec et al., 1989; Hargreaves et al., 1987; Koivisto 

et al., 1982; Koivisto et al., 1985; Montain et al., 1991; Sherman et al., 1991; 

Thomas et al., 1991). This decline in blood glucose concentration generally 

occurs during the first 10 to 20 minutes of exercise and falls below the 

concentration defined as being hypoglycaemic (Costill et al., 1977; Montain et 

al., 1991). 

Blood glucose concentration reflects the balance between glucose 

uptake by tissues and glucose output by the liver (Coyle et al., 1985; Montain 

et al., 1991). Blood glucose is determined by the synergistic effect of insulin 

and muscular contraction on muscle glucose uptake (Defronzo et al., 1981; 

Ploug et al., 1987) and the reduction in hepatic glycogenolysis mediated by 

hyperinsulinaemia (Felig and Wahren, 1979), hypergluconaemia (Ahlborg et 

al., 1974; Felig et al., 1972; Felig and Wahren, 1979) and an increase in 
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sympathoadrenal response (Galbo et al., 1975). A suppression in glucagon 

and increase in insulin concentration has been observed during exercise with 

CHO ingestion/infusion prior to and during exercise, which may result in a 

reduction in liver glycogenolysis (Alborg and Felig, 1977; Felig and Wahren, 

1979; Luyckx et al. 1978; Mitchell et al., 1990). The increased peripheral 

uptake of glucose during exercise (Ahlborg and Felig, 1977) mediated by the 

action of insulin may, therefore, be the mechanism which causes this rapid 

decline in blood glucose following pre-exercise CHO ingestion (Ahlborg and 

Felig, 1977). Of note, however, this study examined the effect of pre-exercise 

feeding on glucose kinetics during low intensity exercise. Further 

investigations examining glucose kinetics and pre-exercise CHO ingestion 

during exercise of a higher intensity are warranted. Although muscle glucose 

uptake and subsequent glucose oxidation may be elevated during the decline 

in blood glucose, an enhanced muscle glycogen utilization may occur 

subsequent to this period (Costill et al., 1977; Hargreaves et al., 1985). 

Costill et al. (1977) and Hargreaves et al. (1985) observed an increase 

in muscle glycogen utilization during 30 min of exercise at 70-75% V02max 

when glucose was ingested in the hour before exercise. Of note, blood 

glucose concentrations declined to values lower than 3.5 mmol.l"1 in the 

glucose ingestion trials. In contrast, this has not been reported in other 

studies during short term (30-60min) (Decombaz et al., 1985; Devlin et al., 

1986; Fielding et al., 1987; Hargreaves et al., 1987; Levine et al., 1983) or 

prolonged exercise (Koivisto et al., 1985). Despite increased plasma insulin 
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concentrations resulting from prior CHO ingestion, blood glucose 

concentrations did not decline to values lower than 3.9 mmol.l"1 in these latter 

studies. Furthermore, a subsequent study by Hargreaves et al. (1987) did not 

observe an increase in muscle glycogen utilization following pre-exercise 

glucose ingestion when blood glucose concentrations declined to 4.02 

mmolT1 at 15 min, compared with their previous study (Hargreaves et al., 

1985) in which concentrations declined to an average of 3.18 mmol.l"1. It was 

suggested by these authors that if the blood glucose concentrations do not 

decline to very low concentrations muscle glycogenolysis may not be 

enhanced. Results from these studies demonstrate that if blood glucose is 

reduced to very low levels then the contribution of this substrate to total CHO 

oxidation may be compromized resulting in a greater reliance upon 

endogenous glycogen stores. 

Most studies investigating the effect of pre-exercise CHO ingestion in 

the hour before exercise have not observed an effect on performance, 

despite changes in metabolism as a result of the ingested meal (Alberici et 

al., 1993; Chryssanthopoulos et al., 1994; Decombaz et al., 1985; Devlin et 

al., 1986; Hargreaves et al., 1987; McMurray et al., 1983). Improvement in 

exercise time to exhaustion in fasted subjects has been demonstrated, 

however, when glucose has been ingested 45 min before exercise (Gleeson 

et al., 1986). These authors observed a state of hyperinsulinaemia before 

exercise, however a rapid decline in blood glucose level was not reported 

after the commencement of exercise. It is possible that the subjects 
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(untrained individuals) found the workload (70% V02max) physiologically 

stressful, resulting in the absence of an exercise induced rapid decline in 

blood glucose concentration. The stress of the exercise may augment hepatic 

glycogenolysis, as suggested by Montain et al., (1991). It is likely that this 

phenomenon was mediated by a feed-forward control of adrenaline as 

discussed in Chapter 2.1 

2.4.2.2 Pre-exercise CHO Ingestion 3-4 hours before Exercise. 

Ingestion of relatively large C H O meals 3-4 hours before exercise 

results in improvements in exercise performance (Neuffer et al., 1987; 

Sherman et al., 1989; Wright et al., 1991), likely to result from a considerable 

portion of the pre-event meal being disposed of as muscle or liver glycogen 

(Coyle et al., 1985; Neuffer et al., 1987). Coyle et al. (1985) observed a 42% 

increase in muscle glycogen concentration compared with a 12 hr fast when a 

large CHO meal was ingested 4 hr pre-exercise. Since endurance 

performance is related to pre-exercise muscle glycogen concentration 

(Bergstrom and Hultman, 1967; Sherman et al., 1981), increases in muscle 

glycogen concentration due to pre-exercise CHO ingestion would be a 

significant factor in performance in prolonged exercise (Coyle et al., 1985; 

Neuffer etal., 1987). 

CHO ingestion several hours before exercise may nevertheless result 

in a sudden decline in blood glucose at the onset of (Coyle et al., 1985; 



concentrations immediately prior to exercise (Coyle et al., 1985; Montain et 

al., 1991). A fast of at least 6 hours may be necessary before a normalization 

of these responses is observed and highlights the persistent action of insulin 

(Montain etal., 1991). 

The increase in CHO availability following a large CHO meal several 

hours before exercise appears to offset any disadvantage caused by an 

insulin mediated reduction in blood glucose, plasma FFA and concomitant 

increase in CHO oxidation (Coyle et al., 1985; Sherman et al., 1989; Wright 

et al., 1991). Muscle glycogen utilization is increased when concentrations of 

this metabolite within the muscle are high (Chesley et al., 1995; Gollnick et 

al., 1981; Hargreaves et al., 1995; Sherman et al., 1981) since glycogen 

binds to phosphorylase to increase its activity (Hespel and Richter, 1992; 

Johnson, 1992). Pre-exercise CHO feeding several hours before exercise 

may, therefore, result in increased CHO oxidation via enhanced muscle 

glycogen utilization (Coyle et al., 1985). Alternatively, the improved 

performance may be caused by increased blood glucose availability (Montain 

etal., 1991; Sherman etal., 1989; Wright etal., 1991). 
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since muscle samples were not obtained, feeding rats with fructose during 

exercise results in liver glycogen synthesis, and increased liver glucose 

output during exercise (Sonne and Galbo., 1986). 

In contrast to the study by Okano et al. (1988), most of the literature 

indicates that the pre-exercise ingestion of fructose offers no ergogenic 

benefit, despite reducing the disturbance of some metabolic parameters 

(Decombaz et al., 1985; Hargreaves et al., 1987; McMurray et al., 1983; 

Ventura et al., 1994). Of note, in the aforementioned studies, subjects 

exercised in a fasted state, in contrast with the study of Okano et al. (1988). 

2.5 GASTRIC EMPTYING AND CHO OXIDATION. 

2.5.1 Gastric Emptying 

The rate at which fluids and nutrients are made available to the 

intestine can place restraints on their absorption and subsequent 

incorporation into the blood stream (Rehrer, 1994). Hence, the rate of gastric 

emptying is significant when CHO is administered orally before and during 

exercise. Gastric emptying is influenced by the effects of exercise (Costill and 

Saltin, 1974; Neuffer et al., 1986), CHO concentration/osmolality (Costill and 

Saltin, 1974; Foster et al., 1980; Hunt and Pathak, 1960; Mitchell et al., 1989; 

Naveri et al., 1989) and volume of the meal/fluid (Costill and Saltin, 1974; 
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Hunt et al., 1985; Mitchell and Voss, 1991; Noakes et al., 1991b; Ryan et al., 

1989). 

The effect of exercise on the rate of gastric emptying is equivocal 

since it either stimulates (Neuffer et al., 1986), impairs (Mitchell et al., 1989) 

and does not alter (Costill and Saltin, 1974; Feldman and Nixon, 1982) 

gastric emptying. Gastic emptying may be stimulated at lower exercise 

intensities (Neuffer et al., 1986) and reduced during intermittent (Mitchell et 

al., 1989) or higher exercise intensities (>70% V02max) (Cole et al., 1993; 

Neuffer et al., 1986; Sole and Noakes, 1989). Increasing the CHO 

concentration of a beverage above 5-8% CHO reduces the the rate of gastric 

emptying (Foster et al., 1980; Mitchell et al., 1989) but enhances the the 

delivery of CHO (Mitchell et al.1989). Gastric emptying can further be 

enhanced by ingesting CHO polymers compared with the ingestion of simple 

sugars (Coyle et al., 1978; Foster et al., 1980; Nueffer et al., 1986; Sole and 

Noakes, 1989). This may be due, in part, to polymerised glucose having a 

molecular weight five times that of free glucose and only one fifth the 

osmolality, thereby reducing the effect on the osmoreceptor vesicles as 

postulated by Hunt and Knox, (1968). Despite a greater rate of gastric 

emptying with the ingestion of polymers, there would appear to be no benefit 

with respect to the oxidation rate of glucose in contrast with glucose polymers 

during exercise (Hawley et al., 1991; Massicotte et al., 1989). Gastric volume 

may be a more important factor than CHO content or osmolality in affecting 

gastric emptying rate (Noakes et al., 1991b). Several studies employing 



35 

repetitive feedings during exercise with differing CHO concentrations have 

demonstrated the rates of gastric emptying to be quite similar during exercise 

(Rehrer et al., 1990; Ryan et al., 1989; Sole and Noakes, 1989). When high 

volumes are regularly administered during exercise, compared with low 

volumes, gastric emptying rate is enhanced (Mitchell and Voss, 1991). The 

mechanism for improved gastric emptying may be the influence of larger 

volumes affecting intragastric pressure (Ryan et al., 1989). At rest, solids 

empty from the stomach more slowly than liquids (Fink et al., 1983; 

Malagelada, 1977). and would appear to be related to particle size (Meyer et 

al., 1981). 

2.5.2 CHO Oxidation 

CHO ingestion in the hours before, can be readily oxidized during, 

exercise (Decombaz et al., 1985; Guezennec et al., 1989; Jandrain et al., 

1984). Decombaz et al. (1985) reported that the ingestion of 70g of glucose 

or fructose 60 min before exercise at 61% V02max for 60 min resulted in 

similar rates of oxidation for the respective nutrients. In contrast, Massicotte 

et al. (1986) reported a significantly lower oxidation of fructose compared with 

glucose during exercise. Subsequent investigations have confirmed this 

(Guezennec et al., 1989; Jandrain et al., 1993; Massicotte et al., 1989) which 

may be due to a slow conversion of fructose into glucose by the liver and 

subsequent oxidation by the muscles (Chen and Whistler, 1977). If the 

fructose is administered before exercise then it is most likely to be stored as 
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liver glycogen and used preferentially when exercise begins (Massicotte et 

al., 1992). 

2.6 THE GLYCAEMIC INDEX. 

Ingested CHO foods elicit different glycaemic responses and different 

rates of absorption with or without stimulating insulin secretion (Behall et al., 

1988; Crapo et al., 1976; Crapo et al., 1977; Horowitz and Coyle., 1993; 

O'Dea et al., 1980; Thomas et al., 1991). The glycaemic index (Gl) is a 

method of quantifying the glycaemic response of CHO foods ingested in 

human subjects (Brand and Collier, 1991; Jenkins et al., 1981). The Gl is a 

ratio of the blood glucose area of 50g of a test food (CHO) to the blood 

glucose area of 50g of a reference food (bread or glucose) multiplied by 100 

(Jenkins et al., 1983; Jenkins et al., 1984; Trout et al., 1993). The glycaemic 

response to ingested complex carbohydrates can differ (Crapo et al., 1976; 

Crapo et al., 1977; Horowitz and Coyle, 1993; Jenkins et al., 1981; Jenkins et 

al., 1983; Jenkins et al., 1984) hence, the Gl is a more accurate way of 

describing the blood glucose response to a CHO than from the chemical 

composition (Jenkins et al., 1984). For example, potato and sugars such as 

glucose and sucrose elicit a similar glycaemic response following ingestion 

(Crapo et al., 1977; Horowitz and Coyle, 1993). Several food factors may be 

responsible for differences in the glycaemic response. These factors may be 

chemical or physical, affecting the access of intestinal hydrolytic enzymes to 

the ingested CHO, therefore, affecting the rate of digestion and subsequent 
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absorption (O'Dea et al., 1980). Such factors include; the disruption of the 

botanical structure (Golay et al., 1986; Haber et al., 1977; O'Dea et al., 

1980), particle size (Jenkins et al., 1986), gelatinisation (Holm et al., 1988), 

amylose-amylopectin ratio (Behall et al., 1988; Goddard et al., 1984; 

Granfeldt and Bjorck, 1991), differences in preparation (Jenkins et al., 1981; 

O'Dea et al., 1980; Reaven et al., 1979; Wolever, 1990), the degree of 

ripeness (Wolever, 1990) and the presence of anti-nutrients (Brand and 

Collier, 1991; Yoon et al., 1983). The glycaemic response of starchy foods is 

negatively correlated with the rate of gastric emptying (Mourot et al., 1988) 

and can also be affected by the ingestion of other nutrients (Burke et al., 

1995; Horowitz and Coyle, 1993). The addition of fat to a potato and rice 

meal results in a lower glycaemic response than when compared with a 

potato and rice meal (Horowitz and Coyle, 1993). This may be related to the 

effect that fat has on delaying gastric emptying (Thomas, 1957) and 

interfering with the enzymes responsible for CHO digestion (Collier and 

O'Dea, 1983). 

The glycaemic response of CHO foods are generally classed as 

having a low, moderate or high glycaemic index. HGI foods (>70) may include 

potato, glucose, bread, rice. In contrast, LGI foods (<50) include legumes 

such as beans, peas and lentils (Jenkins et al., 1981). LGI foods stimulate a 

lower insulin secretion following ingestion (Jenkins et al., 1983; Thomas et 

al., 1991), a more stable blood glucose response (Jenkins et al., 1981; 

Jenkins et al., 1983; Thomas et al., 1991) and increased plasma FFA 
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concentrations during subsequent exercise (Thomas et al., 1991). In contrast, 

pre-exercise ingestion of HGI foods result in increased insulin secretion, 

decreased FFA concentrations and an augmented rate of CHO oxidation 

(Horowitz and Coyle, 1993). 

2.6.1 Glycaemic Index and Exercise 

A paucity of research has investigated the effect of the glycaemic 

index of "real life" foods on exercise metabolism and performance. Exercise 

time to exhaustion is increased with the pre-exercise ingestion of a LGI food 

(lentils) compared with a HGI food (potato) (Thomas et al., 1991). The 

performance enhancement reported in this study was suggested by the 

authors to be due to the LGI food slowly releasing glucose from the gut into 

the blood over an extended period of time, hence, providing a continuous 

source of glucose in a similiar way that CHO feeding during exercise is 

reported to do. In this study, glucose and potato (both HGI foods), lentils and 

a placebo were ingested 60 min before exercise to exhaustion at 65-70% 

V02max- Plasma glucose and insulin concentrations were higher in the hour 

after ingestion in the HGI trials compared with the LGI and control trials. 

Furthermore, the LGI trial resulted in a lower insulin response, decreased 

CHO oxidation and maintained blood glucose and FFA at higher 

concentrations later in exercise compared with the HGI meals. The LGI meal 

resulted in improved exercise time to exhaustion compared with the potato 

trial. The authors, however, did not address the finding that the glucose, 
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having an identical glycaemic response to the potato, did not also result in 

decreased performance. The mechanism for this latter observation is unclear. 

Hence, further investigations which examine the effect of ingesting CHO food 

with different glycaemic responses on exercise metabolism and performance 

is required. 

No studies have examined the effect of pre-exercise ingestion of "real life" 

CHO meals with differing glycaemic responses on metabolism and 

performance during exercise lasting approximately 1 hr. Many athletic events 

are of this duration and it is more practical for athletes to ingest food rather 

than nutrients as a pre-event meal. Hence, the study reported in this 

dissertation aimed to examine this phenomenon. 
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CHAPTER 3 

METHODS 

3.1 SUBJECTS 

Eight males (22.7 ± 1.4 yrs; 180.6 ± 1.5 cm; 73.7 ± 0.9 kg; V02max = 

67.9 ± 2.8 ml.kg"1.min"1, mean ± SD) were recruited for this study, having 

satisfied the criterion as endurance trained (V02max > 60 ml.kg"
1.min'1). All 

subjects were fully informed of the experimental procedures and signed a 

letter of informed consent prior to commencement (see Appendix A). This 

experiment was approved by the Human Experimentation Ethics Committee 

of Victoria University Of Technology. 

3.1.1 MEASUREMENT OF MAXIMAL OXYGEN CONSUMPTION (V02max) 

Prior to commencing the experimental trials, each subject underwent a 

maximal exercise test to calculate their maximal oxygen consumption (V02max) 

Maximal oxygen uptake (V02max) was conducted on a friction braked bicycle 

ergometer (Monark Ergomedic 814E). An electrocardiograph was used to 

record heart rate. V02max was determined using open circuit spirometry. 

Expired air was directed by a Hans-Rudolf valve and plastic tubing, into a 

mixing chamber and through a ventilometer (Pneumoscan 830). Aliquots of 

the expired air were directed from the mixing chamber through an oxygen 
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(Applied Electrochemistry S-3A) and carbon dioxide (Applied 

Electrochemistry CD-3A) analyser. V02max and the respiratory exchange 

ratio (RER) was calculated using standard equations (Consolazio et al., 

1963). During all V02max tests the subject had their nasal airway occluded by 

a nose clip and wore running shoes, socks and shorts. 

The exercise protocol consisted of an incremental test to volitional 

exhaustion. Subjects began cycling at 100 watts (W), with the resistance 

increased by 50 W every two min until volitional exhaustion. The V02maxwas 

the maximal value achieved during exercise. The criteria that was used to 

justify the success of a V02max test was as follows; 1) a plateau in oxygen 

consumption with an increase in work, 2) an RER greater than 1.1, 3) 

volitional exhaustion. All subjects satisfied these criteria. The steady state 

submaximal V02 (ml.kg"
1.min"1) values and the corresponding workloads were 

plotted against each other using a linear regression equation. Using these 

equations a workload which will elicit 70% V02max was calculated. The 

criterion for a successful correlation was set at R> 0.98 (workload vs. V02). 

3.1.2 SUBJECT INSTRUCTIONS 

During the two days preceding the trials, the subjects were instructed 

to refrain from strenuous physical activity and consume their normal diet. 

Subjects reported to the laboratory having refrained from tobacco, alcohol 

and caffeine for the 24 hours prior to the tests. Since the trials would be 
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taking place over a period of three weeks the subjects would attempt to 

maintain their training program with due consideration to the two days prior to 

experimental trials. Subjects and the experimenter kept a written record to 

assist replication of similar dietary and exercise behaviours for all trials. 

3.2 EXERCISE TESTING PROTOCOL 

Each subject performed three trials in random order with at least 7 

days separating trials in which one of the test foods was ingested before 

exercise. Each subject arrived at the laboratory 4 hours post- prandial after 

ingesting a standardised breakfast. After resting for 30 min a catheter was 

introduced into the cephalic vein for blood sampling. After resting for 15 min 

the subject had 10 min to ingest the test meal. The subject then remained 

seated for 45 min when exercise on the bicycle ergometer commenced. 

Exercise on the cycling ergometer was conducted at approximately 

70% V02max for 50 min. This period of cycling was performed on a Monark 

friction braked cycling ergometer (Monark Ergomedic 814E). Following the 

submaximal cycle the subject had 60-s to switch to an air braked cycle 

ergometer (series A Repco) integrated into a Daos Data Acquisition System, 

where they completed a 15 min performance cycle. The subject was 

instructed to perform as much work as possible during this time to simulate 

the higher intensity demands characteristically reflected in some endurance 

sports towards the completion of the event. 
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3.2.1 FAMILIARISATION TRIAL 

Prior to the experimental trials a familiarisation trial was undertaken 

in order to minimise any learning effects. It also enabled confirmation of the 

subject's submaximal workload and ability to maintain the submaximal 

workload for 50 min. All subjects were able to tolerate the required workload 

for 50 min. Blood sampling did not occur during this trial. 

3.2.2 MEASUREMENT OF PHYSIOLOGICAL PARAMETERS DURING 

SUBMAXIMAL AND PERFORMANCE RIDE. 

Heart rate was recorded at 15 min intervals during exercise and at the 

completion of the performance ride using a heart rate monitor (Sports Tester 

PE3000). During rest and exercise, timed (1 min) expired air collections were 

made to monitor V02 and calculate substrate oxidation. Expired air samples 

were collected into Douglas bags and the 02 and C02 contents of these 

expired air samples were measured on the previously mentioned analysers 

and the volumes determined using a gas meter (Parkison-Cowan), calibrated 

against a Tissot spirometer. CHO oxidation was calculated based on V02 

and respiratory exchange ratio (RER) measurements (Frayn, 1983). Thermal 

stress was minimised by oral administration of 400 ml of cool water at 15 min 
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intervals during exercise. The laboratory was maintained at 21° C and air 

was circulated with the use of an electric fan. Body weight was determined 

pre and post experimental trials. To safeguard against the possibility of 

thermal stress, core temperature was monitored through the use of rectal 

thermometry. A thermistor probe (YSI 401) was inserted 10cm beyond the 

anal sphincter. The output of the probe was monitored by a temperature unit 

(YSI 46TUC). Ratings of perceived exertion were obtained at 15 min intervals 

during exercise (Borg, 1973). 

3.2.3 FOODS 

The three test meals were lentils (glycaemic index :29) (Brand and 

Collier. 1991) soaked overnight then boiled in excess water for 30 min, instant 

mashed potato (glycaemic index :80) (Jenkins et al.,1981) and a sweetened 

placebo (non-carbonated Schweppes Diet Solo). The amount of CHO 

ingested was equal to 1.0 g per kilogram of each subjects body mass and 

each test meal provided 1486 kJ, 1575 kJ and 0 kJ respectively (based on 70 

kg body mass). Each test meal consisted of a volume of 600 ml. Water was 

added to the lentils and potato to make a volume of 600 ml and the placebo 

trial consisted of 600 ml of the non-carbonated diet soft drink. The 

standardised meal on the morning of the trials consisted of 100 g of CHO in 

the form of 430 ml (25% CHO, 20 mmol. I"1 Na+) of a commercially available 

glucose polymer (Exceed-Ross Laboratories) and was consumed 4 hours 

before attending the laboratory. This standardised meal contained 1694 kJ of 
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energy. Forty-five min after attending the laboratory the subjects had 10 min 

in which to ingest the test meal. Following the ingestion of the test meal the 

subjects rested quietly before commencing exercise. 

3.3 BLOOD SAMPLING, TREATMENT AND ANALYSIS. 

Blood samples were obtained from a 20 gauge indwelling teflon 

catheter (Jelco) kept patent by flushing with a small amount of saline 

containing heparin (10 lU.ml"1 ) following each sample collection. Blood 

sampling occurred at rest, before the test meal was ingested and at 15 min 

intervals until exercise commenced. During exercise, blood was sampled 

every 10 min for the 50 min submaximal ride and at the conclusion of the 

performance ride. 

Ten ml of blood was collected at each sampling time. Two ml of this 

blood was placed in a tube containing fluoride heparin and immediately 

stored on ice before being spun in a centrifuge. The plasma was then 

transferred and stored at -80°C until analysis for glucose. Blood glucose 

was measured using an automated glucose analyser (YSI model 23AM). A 

preservative was prepared by dissolving 2.25g of ethyleneglycol-bis-

(betaaminoethylether)N, N'- tetraacetic acid (EGTA) and 1.5g reduced 

glutathione (GSH) in 25ml of normal saline (0.9% sodium chloride w/v) and 

adjusted to 6-7.4 pH with 5-10 M NaoH. 30u1 of this preservative were placed 

into tubes and stored on ice. A small amount of blood (approximately 1ml) 
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was transferred into these tubes containing the preservative (EGTA / GSH) 

and left on ice. This was later gently spun at 1500rpm for 15 min at 4° C. 

The supernatant was transferred to another tube and stored at -80° C until 

analysis of free fatty acids (FFA). Plasma FFA concentration was analysed 

by a modification of the enzymatic colormetric method for determination of 

non-esterified fatty acids (NEFAC) of Miles et al.(1983) as described in the 

Wako NEFAC kit (code no.279-75409). The remaining 6-8 ml of sampled 

blood was mixed in a tube lined with Lithium Heparin. A 500 pi aliquot of this 

blood was transferred into a tube containing 1ml of ice cold 3M perchloric 

acid (PCA) and spun in a centrifuge for 2 min at 2000 rpm. The supernatant 

was transferred to another tube and stored at -80° C for plasma lactate 

analysis at a later date. Plasma lactate was analysed in duplicate on a 

spectrophotometer (Shimadzu UV-120) using an enzymatic 

spectrophotometric technique (Lowry and Passonneau, 1972). The 

remaining blood was spun in a centrifuge for 2 min at 2000 rpm and the 

plasma transferred to tubes, stored in liquid nitrogen or at -80°C until analysis 

for ammonia and insulin. Analysis of ammonia was performed using flow 

injection analysis (FIA) (Tecator FIAstar 5020 analyser) connected to a 

spectrophotometer (Tecator FIAstar 5023) according to the method of 

Cardwelletal.(1987). 

Plasma insulin concentration was determined by radioimmunoassay 

(RIA) as described in the Incstar Insulin I125 RIA kit (Cat. No.06130). Each 

sample was counted for one min on a gamma counter (LKB Wallac 1277 
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Gamma Master). All blood metabolites and hormone samples were assayed 

in duplicate. Chemical assays were rejected and thus repeated if standard 

concentrations were ± 5% of expected standard concentrations. 

3.4 STATISTICAL ANALYSIS 

The resting and submaximal data was analysed by a two way (time vs 

treatment) analysis of variance with repeated measures (ANOVA). The 

performance trial data was analysed using a one way analysis of variance 

with repeated measures (ANOVA). When ANOVA revealed a significant 

interaction, simple main effects and Newman-Keuls post-hoc tests were used 

to locate differences. An alpha level of 0.05 was used to reject the null 

hypothesis. A biomedical data processing computer software program was 

used to complete these analyses. All data are reported as means ± the 

standard error of the mean (SE). 
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CHAPTER 4 

RESULTS 

4.1 REST AND SUBMAXIMAL EXERCISE 

4.1.1 Blood and Plasma Metabolites 

Blood glucose concentrations were not different prior to ingestion of the 

meals. Concentrations of this metabolite were higher (P<0.01) in HGI 

compared with both LGI and CON 30 min and 15 min prior to exercise. In 

addition, blood glucose concentrations were higher (P<0.01) at these time 

points in LGI compared with CON. Blood glucose levels were not different 

when comparing the three trials at the onset of exercise. In contrast, 

concentrations of this metabolite were lower in HGI at 10 min (P<0.05) and 

20 min (P<0.01) of exercise compared with LGI and CON. Blood glucose 

concentrations were not different during exercise when comparing LGI and 

CON. Furthermore, there were no differences in blood glucose when 

comparing HGI with other trials subsequent to 20 min during submaximal 

exercise (Fig.4.1). 
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Plasma insulin concentrations were not different between trials prior to 

the ingestion of the test meals. Concentrations of plasma insulin were higher 

(PO.01) in HGI compared with LGI and CON at 30 min and 15 min prior to 

exercise and at the onset of exercise. In contrast, insulin concentrations were 

not different when comparing LGI and CON during rest. Insulin 

concentrations during exercise were lower (P<0.01) than at rest. During 

exercise plasma insulin concentrations were higher (PO.01) in HGI 

compared with CON and higher in HGI at 10 min (PO.01) and 20 min 

(PO.05) compared with LGI. Plasma insulin concentrations were not different 

during exercise when comparing LGI and CON with the exception of 30 min 

which was higher (PO.05) in LGI compared with CON (Fig.4.2). 

Plasma FFA concentrations were not different prior to ingestion 

between the three trials and were higher (PO.01) than plasma FFA levels at 

the onset of and during exercise. At the commencement of exercise plasma 

FFA concentrations in both HGI and LGI were lower (PO.01) compared with 

CON. During exercise, concentrations of this metabolite were higher in CON 

compared with HGI and LGI at 10 min (PO.01) and 20 min (PO.05). 

Furthermore, plasma FFA concentrations were higher in CON compared with 

HGI (PO.01) and LGI (PO.05) for the remainder of exercise with the 

exception of 40 min. Of note, plasma FFA were higher (PO.05) in LGI 

compared with HGI at 20 min and 50 min (Fig.4.2). 
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There were no differences between any of the three trials for plasma 

lactate or plasma NH3 concentrations before ingestion of the test meals, 

during rest and exercise. There was an increase (PO.01) in plasma lactate 

levels during exercise compared with rest. Plasma NH3 levels were higher 

(PO.01) during exercise compared with rest. Additionally, plasma NH3 

concentrations were higher (PO.01) at 40 min and 50 min compared with 10 

min during exercise (Fig.4.3). 

4.1.2 Physiological and Ventilatory data 

There were no differences in relative work intensity between the trials 

during exercise (66.65 + 8.1% of V02max, mean + S.D). There were no 

differences in oxygen consumption (V02) or heart rate between any of the 

three trials during rest or exercise. There was an increase (PO.01) in mean 

V02 during exercise compared with rest (Table 4.1). A main treatment effect 

(PO.01) was observed for both RER (Table 4.1) and rate of CHO oxidation 

(Fig 1). Post hoc analyses revealed that values for these parameters were 

higher (PO.01) in HGI compared with the other trials. Core temperature 

increased (PO.01) with time during exercise. Furthermore, ratings of 

perceived exertion increased (PO.01) with time. There were no differences 

between any of the three trials with respect to these two parameters. (Table 

4.1). There were no differences in the change in body weight between any of 

the trials at the conclusion of exercise 
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4.2 P E R F O R M A N C E TRIAL 

4.2.1 Blood and Plasma Metabolites 

At the conclusion of the performance trial, plasma lactate and NH3 

levels were higher (PO.01) and plasma FFA lower (PO.01) than 

concentrations at the end of submaximal exercise. There was no change in 

concentrations for blood glucose and plasma insulin during this time. In 

addition, there were no differences between any of the three food trials with 

respect to these metabolites (Table 4.2). 

4.2.2 Physiological and Ventilatory data 

There was no difference in total work produced during the performance 

ride in the three trials (Fig. 4.4). 

Mean V02, CHO oxidation, RER, heart rate and core temperature were 

higher (PO.01), as was the rate of perceived exertion (PO.05) during the 

performance trial compared with submaximal exercise. During the 

performance trial there was an increase in RER and CHO oxidation (PO.05) 

and in heart rate (PO.01), however, there was no differences between trials 

with respect to these parameters at any time (Table 4.1). 
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Fig. 4.1 Plasma glucose concentration and estimated carbohydrate oxidation 

during rest and submaximal exercise in CON, HGI and LGI. • denotes 

feeding, D denotes exercise. Values are means ± SE (n=8). a indicates 

difference (PO.01) from CON, b indicated difference (PO.01) from LGI, d 

indicated difference (PO.05) from LGI. ** indicates main treatment effect 

(PO.01) compared with LGI & CON. 
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RER 

V02 

ml.kg-'.min*1) 

HR 
(b.min-1) 

rec 

(°C) 

PE 

SUBMAXIMAL 

CON 

0.85 ± 0.01 

45.5 + 2.2 

150 + 5 

37.6 ± 0.3 

13.5 + 0.8 

HGI 

** 

0.90 ± 0.01 

44.5 ± 2.7 

152 + 7 

37.5 + 0.3 

12.8 ± 0.6 

LGI 

0.86 + 0.01 

45.8 + 2.5 

149 ± 5 

37.6 + 0.2 

12.6 ± 0.8 

PERFORMANCE 

CON 

0.93 + 0.01 

57.8 ± 2.0 

175 + 3 

38.3 + 0.2 

17.8 + 0.7 

HGI 

0.94 + 0.02 

57.6 + 2.8 

173 ± 4 

38.3 + 0.2 

17.4 + 0.*5 

LGI 

0.92 + 0.01 

56.1 + 2.8 

175 + 4 

38.4 + 0.2 

17.0 + 0.8 

Table 4.1 Physiological and Ventilatory data during rest, submaximal exercise 

(15, 30, 45 min) and performance trial (5, 10 min) in CON, HGI, and LGI. 

Values are means + SE (n=8). 

** indicates main treatment effect (PO.01) compared with LGI & CON. 
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PERFORMANCE 

Glu 
(mmol.l1) 

La 
(mmol.l1) 

FFA 
(mmol.l1) 

N H 3 

(umol.r1) 

Ins 

(mU.ml1) 

CON 

5.8 + 0.3 

9.3 ±1.0 

0.22 ±0.02 

126.5 ±19.5 

3.0 ±0.8 

HGI 

5.3 ±0.5 

9.3 ±1.1 

0.17 ±0.03 

124.0 ±16.7 

5.6 ±1.9 

LGI 

6.3 ±0.4 

9.2 ±1.1 

0.17 ±0.03 

122.2 ±18.5 

5.0 ±1.3 

Table 4.2 Blood glucose, plasma NH3) plasma lactate (n=8), plasma insulin, 

plasma FFA concentrations (n=7) at the end of the performance trial. Values 

are means ±S.E. 
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CHAPTER 5 

5.1 DISCUSSION 

The results from this study demonstrated that pre-exercise ingestion of 

a high glycaemic index food resulted in a hyperglycaemic response prior to 

exercise followed by an insulin-mediated hypoglycaemia at the onset of 

exercise (Fig.4.1). In addition, the elevated insulin during HGI resulted in an 

attenuation in circulating FFA (Fig.4.2) and a higher rate of CHO oxidation 

(Fig.4.1). Despite these metabolic changes, performance during the all-out 

cycle was unaffected. 

Previous investigations have demonstrated that "complex" 

carbohydrates differing in chemical structure can have very different 

glycaemic responses (Crapo et al., 1977; Horowitz and Coyle, 1993; Jenkins 

et al., 1984). Data from this study support these earlier findings. Plasma 

glucose and insulin concentrations were higher in HGI compared with LGI 

and CON following ingestion of the meal. During exercise plasma glucose in 

HGI dropped rapidly during the first 10 min of submaximal exercise and was 

lower compared with both LGI and CON during this time. Furthermore, 

plasma glucose was lower throughout almost half of the submaximal period in 

HGI compared with LGI and CON. The rapid decline in blood glucose 

following ingestion of the HGI meal is in support of previous findings (Bonen 
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et al., 1981; Chryssanthopoulos et al., 1994; Decombaz et al., 1985; Foster et 

al., 1979; Hargreaves et al., 1985; Hargreaves et al., 1987; Koivisto et al., 

1981; Seifert et al., 1994; Thomas et al., 1991). The functional significance of 

this decline has not, however, been well investigated. It has been suggested 

(Costill et al., 1977; Hargreaves et al., 1987) that this decline may result in an 

enhanced rate of muscle glycogenolysis via a reduced glucose supply to the 

active muscle. Insulin facilitates the cellular uptake of glucose (Fushiki et al., 

1989; Holloszy and Narahara, 1965), reduces hepatic glucose output (Felig 

and Warren, 1979; Galbo, 1983) and thus may account for the rapid decline 

in blood glucose widely observed in similar studies (Chryssanthopoulos et al., 

1994; Decombaz et al., 1985; Hargreaves et al., 1987; Koivisto et al., 1981; 

Seifert etal., 1994). 

Costill et al. (1977) and Hargreaves et al. (1985) observed an 

enhanced rate of glycogen utilization following glucose ingestion before 

exercise compared with a control when blood glucose concentrations 

declined early in exercise to values lower than 3.5 mmol.l"1. In contrast, 

during exercise where blood glucose has not fallen to concentrations below 

3.9 mmol.l"1, no differences were observed in rates of muscle glycogen 

utilization (Decombaz et al., 1985; Devlin et al., 1986; Koivisto et al., 1985; 

Levineetal., 1983). 

Despite blood glucose concentrations during exercise in HGI falling to 

only 4.03 mmol.l"1, a higher RER and carbohydrate oxidation was observed 
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during this trial, confirming earlier results (Costill et al., 1977; Coyle et al., 

1985; Horowitz and Coyle, 1993; Thomas et al., 1991). Data from this study 

may indicate that muscle glycogen utilization was augmented during exercise 

in this trial although muscle samples were not collected to confirm this. 

Although muscle glucose uptake is increased when plasma glucose is 

elevated by carbohydrate feeding, RER and carbohydrate oxidation are 

unchanged (McConell et al., 1994). These data indicate that the increase in 

muscle glucose uptake is relatively small and does not influence substrate 

utilization to a significant extent. 

As previously discussed , muscle glucose uptake is stimulated by 

elevations in insulin, but may be inhibited by high muscle glycogen 

concentration (Hargreaves et al., 1995). Immediately prior to and during the 

first 10 min of exercise insulin was elevated and blood glucose concentration 

declined rapidly, suggesting that muscle glucose uptake was augmented in 

HGI. Subsequent to the first 10 min of submaximal exercise, however, blood 

glucose concentration was depressed in HGI. In contrast, the main treatment 

effect for CHO oxidation (Fig 4.1) suggests that the contribution to energy 

demand from this substrate remained elevated. It is possible that the increase 

in CHO oxidation in HGI may have been due, in part, to an increase in the 

utilization of blood borne glucose during the initial period of exercise. 

Paradoxically, the higher rate of CHO oxidation in this trial may be a result of 

increased muscle glycogen utilization subsequent to the first 15 min. Further 
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research examining glucose kinetics and muscle glycogenolysis during 

exercise preceded by CHO ingestion warrants further investigation. 

Of note, subjects in the present study had a higher V02max compared 

with those studies which report no difference in muscle glycogenolysis 

following pre-exercise carbohydrate feeding (Decombaz et al., 1985; Devlin 

et al., 1986; Koivisto et al., 1985; Levine et al., 1983). Since insulin sensitivity 

is increased with aerobic training (Heath et al., 1983) it is possible that the 

effect of elevated insulin had a greater inhibitory effect on lipolysis in the 

present study compared with those previously reported. 

Insulin reduces the lipolytic rate and thus limits the availability of FFA 

in the circulation (Gleeson et al., 1986; Wolfe et al., 1986). A reduced FFA 

concentration during exercise enhances muscle glycogenolysis (Bergstrom et 

al., 1969). Conversely, elevated FFA concentrations spares muscle glycogen 

(Costill et al., 1977; Hickson et al., 1977; Stankiewicz-Choroszuchna and 

Gorski, 1978). Plasma insulin was higher in HGI during the first 20 min of 

exercise compared with LGI and was higher compared with CON during the 

entire submaximal period. FFA concentrations were lower in HGI compared 

with CON during exercise and lower compared with LGI at the start and end 

of submaximal exercise, suggesting a decreased availability of this substrate. 

The present results confirm earlier findings (Horowitz and Coyle, 1993; 

Thomas et al., 1991) which observed a decrease in plasma FFA during 
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exercise after the ingestion of a high or moderate glycaemic index meal. In 

contrast, plasma insulin concentrations were far more stable following the 

ingestion of the LGI meal and were not different from CON, with the exception 

of 30 min which was unexpectedly higher. Insulin has a persistent effect on 

adipocyte hydrolysis (Solomon and Duckworth, 1976), even after 

concentrations return to basal levels (Coyle et al., 1985). Despite there being 

no significant difference in insulin concentrations when comparing LGI with 

CON, the mean concentrations were approximately 2-fold higher in LGI 

immediately prior to exercise (Fig.4.2). This may have been responsible for 

lower FFA values in LGI compared with CON. The large increase in plasma 

insulin concentration associated with HGI may be functionally more important 

during exercise of a longer duration, than that employed in the present study, 

since it has lasting effects on adipocytes. 

Although possible, it is unlikely that the increase in carbohydrate 

oxidation observed in HGI was related to an elevated muscle glycogen 

concentration prior to exercise. Coyle et al. (1985) observed an increase in 

muscle glycogen storage prior to, and carbohydrate oxidation during, 

exercise following a carbohydrate meal 4 hours before exercise. It has been 

well documented (Chesley et al., 1995; Gollnick et al., 1981; Hargreaves et 

al., 1995; Sherman et al., 1981) that elevated glycogen concentrations prior 

to exercise results in enhanced glycogenolysis during exercise. This is likely 

to occur since glycogen can bind to phosphorylase to increase its activity 

(Hespel and Richter, 1992; Johnson, 1992). The ingestion of CHO, in the 
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present study took place 45 min prior to exercise. Since the maximal rate of 

glycogen resynthesis is 5-6 mmol.kg"1.h"1 wet weight. (Blom et al., 1987; Reed 

et al., 1989) the amount of glycogen which may have been stored during the 

period between ingestion and exercise is unlikely to affect rates of glycogen 

utilization. In addition, since subjects were fed CHO 6 hours before exercise 

and were well rested, it is likely that the glycogen stores within skeletal 

muscle were high prior to ingestion of the test meals. Hence, the ingestion of 

CHO prior to exercise would have less of an influence on muscle glycogen 

storage. 

Plasma lactate concentrations were not different when comparing the 

trials suggesting that the energy contribution from anaerobic metabolism was 

similar (Fig.4.3). Likewise, there were no differences in plasma NH3 

concentration in the three trials during exercise (Fig 4.3) which may suggest 

a similar degree of protein catabolism. No previous studies have examined 

the effect of pre-exercise carbohydrate feeding on plasma NH3 concentration, 

however, when carbohydrate is fed during exercise plasma NH3 concentration 

is attenuated during exercise (Febbraio et al., 1994; Snow et al., 1995). Of 

note, however, concentrations of this metabolite were only affected by 

carbohydrate feeding subsequent to the first hour of exercise. Further 

research examining the effect of pre-exercise carbohydrate feeding and NH3 

metabolism during exercise of a longer duration is warranted. 
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There was an increase in NH3 production in all trials during the 

performance ride which is in agreement with other studies incorporating high 

intensity work (Babij et al., 1983; Katz et al., 1986). There was an observed 

increase in mean exercise intensity during the performance trial compared 

with the submaximal period. It is likely that the majority of the NH3 produced 

during the performance ride originated from AMP deamination (Katz et al., 

1986; Meyer and Terjung, 1980). The decrease in plasma FFA 

concentrations during the performance trial (Table 4.2) compared with those 

in the submaximal cycle is likely to be the result of an increase in anaerobic 

glycolysis reflected in the higher plasma lactate concentrations observed 

during this period (Table 4.2). Lactate has been reported to increase the re-

esterification of FFA and reduce lipolysis (Issekutz and Miller, 1962). 

Despite an increase in CHO oxidation during submaximal exercise in 

HGI compared with CON and LGI, no differences in performance were 

observed (Fig.4.4). In addition, no differences in the rate of perceived 

exertion was observed during this period (Table 4.1). The similar exercise 

performance reported in this study are in support of previous observations 

(Chryssanthopoulos et al., 1994; Decombaz et al., 1985; Devlin et al., 1986; 

Hargreaves et al., 1987; McMurray et al., 1983; Sharp et al., 1993). These 

previous studies did not observe an effect of pre-exercise carbohydrate 

ingestion in the hour before exercise on performance, despite alterations in 

metabolism as a result of the ingested carbohydrate. The results from this 

study demonstrate that carbohydrate supplementation before exercise of this 
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nature is neither beneficial nor detrimental to exercise performance compared 

with placebo ingestion. There are two possibilities which may explain such a 

phenomenon. Firstly, whilst the rate of glycogenolysis was potentially 

elevated in HGI compared with LGI and CON, muscle glycogen at the onset 

of the performance cycle was likely to be of sufficient concentration in all 

trials to have no effect on performance. Power output during high intensity 

exercise is unaffected by pre-exercise dietary manipulation which results in 

different pre-exercise muscle glycogen concentrations (Hargreaves et al., 

1994). These authors postulated that this was due to the glycogen being of 

significant concentration in the low glycogen state to have no influence on 

performance. Secondly, it is possible that the standardized meal ingested 6 

hours prior to exercise may have lessened any likely effect of the pre-

exercise carbohydrate ingestion. 

Several studies (Gleeson et al., 1986; Neuffer et al., 1987; MacLaren 

et al., 1994; Okano et al., 1988; Sherman et al., 1991; Snyder et al., 1983; 

Thomas et al., 1991) have reported an improvement in exercise performance 

following carbohydrate ingestion in the hour before exercise. The 

discrepancies between these results and those of the present study may be 

explained, in part, by the differences in experimental methodologies, the 

fitness level of the subjects recruited to participate, and/or the foods chosen 

to ingest before exercise. As previously discussed, if the carbohydrate is 

ingested just prior to exercise (Neuffer et al., 1987; MacLaren et al., 1994; 

Snyder et al., 1983) in contrast to ingestion 30-60 min before exercise 
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(Gleeson et al., 1986) the alterations in metabolism, similar to those observed 

in this study, are attenuated. Only Gleeson et al. (1986) have observed an 

improvement in endurance exercise following the ingestion of a HGI food 

(glucose) compared with the ingestion of a placebo 45 min before exercise. 

These authors observed blood glucose to decline to not less than 4 mmol.l"1 

in any subject in spite of hyperinsulinaemia in the pre-exercise period. 

Montain et al. (1991) hypothesized that if the exercise intensity was 

"metabolically stressful", hepatic glucose production will match glucose 

utilization, preventing, therefore, the rapid decline in blood glucose during the 

initial stages of exercise. Feed-forward control of hepatic glucose production 

has been suggested to be activated by higher motor centre activity-stimulated 

neuroendocrine activity, particularly during exercise at higher workloads 

(Kjaer et al., 1986; Kjaer et al., 1987; Sonne and Galbo, 1985). Kjaer et al. 

(1987) reported that a greater voluntary effort was necessary to produce a 

certain work output during neuromuscular blockade compared with a control. 

The circulating catecholamines were higher with neuromuscular blockade 

which acted to enhance hepatic glucose output. It is likely that the subjects in 

the study of Gleeson et al. (1986) (V02max = 46.7 + 2.7 ml.kg"
1.min"1) found 

the workload (73% V02max) stressful, as indicated by the relatively high RER 

(0.96) observed in the absence of pre-exercise carbohydrate ingestion. This 

may have inhibited the hypoglycaemia observed in other studies, by a similar 

feed-forward mechanism to that suggested by Kjaer et al. (1987). In the 

present study, the fitness levels of the subjects were much higher (67.9 + 2.8 

ml.kg"1.min"1) and the intensity of exercise was lower (67% V02max)- The RER 
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during the control trial (0.87) indicates that exercise may not have been 

stressful enough to prevent a rapid decline in blood glucose. It is possible 

that this phenomenon coupled with other differences in methodology may 

account for the discrepancy in the results. 

In a recent study by Thomas et al. (1991) an increase in exercise time 

to exhaustion following the pre-exercise ingestion of LGI food (lentils) 

compared with ingestion of a HGI food (potato) was observed. Of note, 

however, no difference was observed in exercise performance when the LGI 

food was compared with ingestion of a HGI food (glucose) administered in 

liquid form, a finding the authors failed to address. Perhaps the alterations in 

metabolism associated with the ingestion of LGI foods, observed by Thomas 

et al. (1991) and in this study, are of greater significance during exercise of a 

longer duration. Thomas et al. (1991) suggested that the ingestion of a LGI 

may provide a sustained release of glucose into the blood stream and thus 

aid performance in a way that carbohydrate feeding during exercise has been 

reported to do. As previously discussed, the maintenance of blood glucose by 

carbohydrate feeding during endurance exercise prevents hypoglycaemia 

and increases endurance capacity. 

In conclusion, the data from this study indicate that pre-exercise 

ingestion of a HGI food results in hyperglycaemia and subsequent 

hyperinsulinaemia prior to exercise. As a consequence, an insulin mediated 

hypoglycaemia and reduced FFA availability was accompanied by an 
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increased CHO oxidation in this trial. In contrast, ingestion of a LGI food 

resulted in a lower glycaemic response, reduced insulin secretion, an 

attenuated fall in FFA and subsequently, a lower rate of CHO oxidation, such 

that the rate of CHO oxidation was not different compared with CON. Despite 

these changes work output during a 15 min performance trial was not 

different when comparing the three trials. Further research examining the 

effect of pre-exercise ingestion of CHO with differing glycaemic indices during 

prolonged exercise of greater than 60 min duration may shed further light on 

the relationship between CHO oxidation and exercise performance. 
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Appendix A 

Subject Correspondence 



INFORMATION FOR SUBJECTS 

This study aims to examine the effect of eating particular types of 
food containing carbohydrate before exercise, on metabolism and 
exercise performance. You will be asked to attend the laboratory on 
five separate occasions to participate in exercise tnals on a cycling 
ergometer. The tests will include an incremental exercise test, a 
familiarisation trial and three experimental trials. These tests are 
described below. It is essential that you arrive at the laboratory well 
rested and in a fasted state. In order to ensure this you will need to 
refrain from strenuous exercise for 24 hours prior to each trial and 
should not smoke on the day of the trial nor consume alcohol or 
caffeine. 

In the incremental test trial you will exercise on a cycling 
ergometer. During this test you will wear a mouthpiece with a valve 
attached (similar to a snorkel) to collect the air you have expired. 
This will enable us to measure your oxygen consumption during 
exercise. Your heart rate will also be monitored using a device 
strapped to your chest The exercise intensity will be increased at 
regular intervals until you can no longer maintain the required 
workload. 

The.familiarisation trial will attempt to duplicate the experimental 
trials to make you aware of the experimental protocol, with the 
exception that blood sampling will not take place. You will be 
required to cycle for 50 minutes at a set workload with expired gas 
collection occurring at regular intervals and therefore the 
mouthpiece will not be used for the majority of the exercise trial 
For your well being, core temperature will be monitored through 
rectal thermometry. This is a very simple procedure and requires the 
insertion of a very small probe in the anus. After 50 minutes you will 
swap to another cycling ergometer and cycle for a further 15 
minutes. During this ride you will be asked to produce as much work 
as possible. 

The next three trials are the experimental trials. They will take 
place over three consecutive weeks. You therefore will be tested on 
the same day of the week and at the same time of the day. It is very 
important that a similar diet and exercise pattern are followed 
before these trials. Therefore subjects must refrain from strenuous 
exercise for the two (2) days prior to each trial and maintain their 
normal diet You will be asked to report to the laboratory having 
refrained from tobacco, alcohol and caffeine for the 24 hours prior 
to the tests. Each subject upon coming to the laboratory for the first 
experimental trial will be asked to present a documented diary of 
the preceding 72 hours in which all exercise and dietary patterns will 
be recorded. This will be copied and returned with the instructions 
to follow the same patterns for subsequent trials. Thus you will be 



able to continue normal training up to two days before each 
experimental trial. 

On the night before an experimental trial you will be asked to 
commence fasting at either 8 or 10 P.M. O n the morning of the trial 
you will ingest a normalised breakfast (provided) at either 6 or 8 
A . M ( These times depend upon your specific laboratory time). 
After ingesting the normalised breakfast you will rest until arriving 
at the laboratory 4 hours later. 

During the experimental trials you will be asked to ingest a food 
substance 45 minutes before exercising. The exercise protocol will 
be the same as for the familiarisation trial, however blood sampling 
will take place at set intervals before and during exercise. Small 
blood samples will be obtained using an indwelling catheter in a 
forearm vein. The volume of blood collected is approximately one-
sixth of that collected during a standard blood donation The 
catheter consists of a needle and Teflon tubing. The tubing is fed 
over the top of the needle (which has punctured the vein) and into 
the vein. A tap (stopcock) is placed into the tubing so the flow of 
blood along the tubing can be altered at will This procedure allows 
the taking of multiple blood samples without the need for multiple 
venepunctures (puncturing of the vein). Each time a blood sample 
is taken a small volume of sterile hepranised saline will be injected 
to clear the catheter and keep it patent Catherterisation of subjects 
is slightly discomforting and can lead to the possibility of bruising 
and infection. In our experience this occurs very rarely. 
Catheterisation will be performed by Dr.Steve Selig w h o is qualified 

in this technique. 

Do not hesitate to ask any questions and remember you are free to 
withdraw from the study at any time. 



108 

VICTORIA UNIVERSITY OF TECHNOLOGY 

STANDARD CONSENT FORM FOR SUBJECTS 
INVOLVED IN EXPERIMENTS 

CERTIFICATION BY SUBJECT 

I, 
of 
certify that I have the legal ability to give valid consent and that I am voluntarily giving 
m y consent to participate in the experiment entitled : 

Pre-exercise carbohydrate ingestion and exercise performance : effect of glycemic 
index. 

being conducted at Victoria University of Technology by : 

Dr. Steve Selig 
Dr. John Carlson 
Mr. Matthew Sparks 
Mr. Mark Febbraio 

I certify that the objectives of the experiment, together with any risks to me associated 
with the procedures listed hereunder to be carried out in the experiment, have been 
fully explained to m e by : 

Mr. Matthew Sparks 

and that I freely consent to participation involving the use on me of these procedures. 

Procedures 

1) Catherterisation 
2) Incremental V 0 2 test 
3) Submaximal exercise test / performance trial 
4) Monitoring of core temperature by rectal thermometry. 

I certify that I have had the opportunity to have my questions answered and that I 
understand that I can withdraw from the experiment at any time and that this 
withdrawal will not jeopardise me in any way. 

I have been informed that the confidentiality of the information I provide will be 
safeguarded. 

Signed : ) 

) 
Witness other than the experimenter: ) Date : 

) 

) 
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CATHETERISATTON 

At specific intervals throughout the trials a small blood sample will be taken via a 

catheter placed into a forearm vein. The catheter consists of a needle and teflon 

tubing. The tubing is fed over the top of the needle (which has punctured the vein) 

and into the vein. The needle is then immediately withdrawn, leaving only the teflon 

tubing in your vein for the remainder of the experiment. A tap (stopcock) is placed 

into the tubing so the flow of blood along the tubing can be altered at will. This 

procedure allows the taking of multiple blood samples without the need for multiple 

venepunctures (puncturing of the vein). Each time a blood sample is taken, a small 

volume of sterile heparinised saline will be injected to clear the catheter and keep it 

patent. Catheterisation of subjects is slightly discomforting and can lead to the 

possibility of bruising and infection. The use of sterile, disposable catheters, syringes, 

swabs etc. will markedly reduce the possibility of infection caused by the 

catheterisation procedure. The use of qualified and experienced staff will reduce the 

likelihood of bruising as this is primarily caused by poor venepuncture techniques. 

Although the possibility of infection and significant bruising is quite small, if by chance 

it does eventuate, inform us immediately and then consult your doctor. 
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CARDIOVASCULAR RISK FACTOR QUESTIONNAIRE 

In order to be eligible to participate in the experiment investigating 

"Pre-exercise carbohydrate feeding: effect of Glycaemic Index" 

you are required to complete the following questionnaire which is designed to assess 

the risk of you having a cardiovascular event occurring during an exhaustive exercise 

bout. 

Name: Date: 

Age: years 

Weight: kg Height: cms 

Give a brief description of your average activity pattern in the past 2 months: 

Circle the appropriate response to the following questions. 

1. Are you overweight? Yes No Don't know 

2. D o you smoke? Yes N o Social 

3. Does your family have a history of premature cardiovascular problems 
(eg. heart attack, stroke)? Yes N o Don't know 

4. Are you an asthmatic? Yes 

5. Are you a diabetic? Yes 

6. D o you have a high blood cholesterol level? Yes 

7. D o you have high blood pressure? Yes 

8. Are you on any medication? Yes 

If so, what is the medication? 

9. D o you think you have any medical complaint or any other reason which you know 

of which you think may prevent you from participating in strenuous exercise? N o 

Yes, please elaborate ; . 

L ; , believe that the answers to 

these questions are true and correct. 

No 

No 

No 

No 

No 

Don't know 

Don't know 

Don't know 

Don't know 

Signed: 

Date: 
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CATHETERISATION QUESTIONNAIRE 

NAME: 

AGE: years 

1. Have you or your family suffered from any tendency to excessively bleed? (eg. 

haemophilia) 

Yes N o Don't know 

If yes, please elaborate.... 

2. Are you allergic to local anaesthetic? 

Yes N o Don't know 

If yes, please elaborate.... 

D o you have any skin allergies? 

Yes N o Don't know 

If yes, please elaborate.... 

4. Have you any allergies that should be made known? 

Yes N o Don't know 

If yes, please elaborate.... 

5. Are you currently on any medication? 

Yes N o Don't know 

If yes, what is the medication? 

6. D o you have any other medical problem that should be made known? 

Yes N o 

If yes, please elaborate.... 

7. Have you ever fainted when you have had an injection or blood sample taken? 

Yes N o '. Never had it done 

If yes, please elaborate.... 

To the best of m y knowledge, the above questionnaire has been completed accurately 

and truthfully. 

Signature 

Date 



FOOD AND EXERCISE DIARY 

112 

NAME: 

TRIAL DATE: 

Day: 
Date: 

2 DAYS BEFORE TRIAL 

FOOD/FLUID EXERCISE 

7am 

8am 

9am 

10am 

11am 

12noon 

lpm 

2pm 

3pm 

4pm 

5pm 

6pm 

7pm 

8pm 

9pm 

10pm 

11pm 

midnight 

NO 
^TR.eNUOUS 
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DAY BEFORR TRIAL 

NO CAFFEINE 
NO ALCOHOL CONSUMPTION 
NO CIGARETTE SMOKING 

Day: 
Date: 

7am 

8am 

9am 

10am 

11am 

12noon 

lpm 

2pm 

3pm 

4pm 

5pm 

6pm 

7pm 

8pm 

9pm 

10pm 

11pm 

FOOD/FLUID EXERCISE 

(rxeRcise 

8.15PM DO NOT EAT AFTER THIS TIME 



DAY OF THE TRIAL 

NO CAFFEINE 
NO ALCOHOL CONSUMPTION 
NO CIGARETTE SMOKING 

DRINK YOUR STANDARDISED BREAKFAST AT 6.15AM 

REST UNTIL ARRIVING AT LABORATORY AT 10.55AM 

You will be required at the laboratory until 1.30pm. 

N.B For each experimental trial wear the same shoes and bike pants 

Any problems on the day of the trial should be directed to me as 
early as possible. Before 7.30am for a morning trial or at the 
laboratory after 8.30am. 

sincerely 
Matt Sparks 
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Appendix B 

Data from study 
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time 
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52.8 
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66.9 
65.5 

70.1 

127.2 
39.3 
38.3 
32.7 
34.1 
67.3 

78.5 
72.0 
92.6 
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145.9 
37.4 
39.7 
24.3 
15.0 
60.3 
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91.6 
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14.0 
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50.5 
43.0 

Ins 
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4.3 
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2.9 
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5.6 
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0.4 

FFA 
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0.3 
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0.6 
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0.5 

0.1 
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48.43 

57.63 
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49.46 
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52.04 
53.16 

V02 

5.94 

32.84 

36.63 

RER 

0.78 

0.86 

0.85 

0.84 

0.96 
0.88 
0.88 

0.97 

0.94 

0.92 

0.92 

0.96 
0.94 
1.02 

0.77 

0.89 

0.83 

0.93 

0.93 
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0.91 

RER 

0.68 

0.87 

0.76 
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