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ABSTRACT

Minimum toe clearance (MTC) data has been used to quantify the probability of tripping
(PT) during gait (Best, Begg and James, 1999). MTC data collection is very time
consuming and there has been no research conducted to devise a methodology that has
the potential to predict long-term histogram characteristics of MTC data (e.g. mean,
standard deviation, skewness and kurtosis), based on the characteristics of MTC data
collected from fewer gait trials. The aim of this study is to apply a novel technology,
artificial neural network (ANN), to predict stabilized MTC characteristics (mean, M,
standard deviation, SD; skewness, S; kurtosis, K) from relatively fewer gait trials. MTC
data of 24 subjects (age range: 19-79 years) were collected during normal walking on a

treadmill for 30 minutes.

Thirty-one back-propagation neural networks (BPNs) were developed using various
combinations of input variables to predict 30-minute MTC characteristics. The network
performance was evaluated using the percentage of error (POE) of the test results (i.e.
difference between desired and predicted results divided by the desired result). BPN
using 9 statistical inputs from 2-minute data showed better prediction accuracies
(POEM=22%, POEgsp=14.6%, POEs=84% and POEx=304.1%) than other BPNs (Fast
Fourier Transform (FFT) coefficients, real data and also combinations of these).
Furthermore, its predictions for three statistics (M, SD and S) (POEy=14.2%,

POEsp=15.2% and POEs=28.9%) were better than a multiple linear regression (MLR)
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model (POEy=19.0%, POEsp=18.3% and POEs=150.6%). Nine BPNs were subsequently
developéd using inputs obtained from 9 different data segment lengths (from 5 trials to
25-minute trials of MTC data). The results indicated that performance of the BPNs
improved as the length of input data was increased. Specifically, predicted M and SD
showed clear improvements (POEy dropped from 20.4% to 14.6% and POEgp decreased
from 20.5% to 6.5%). Also, adding more input variables derived from input data further
improved the performance of BPNs. BPN using 14 inputs (nine statistical data and five
additional cumulative mean taken from 15-minutes data) performed better (overall
POEM=12.4%, POEsp=10%, POEs=66.6% and POEx=136.7%) than a BPN using nine
inputs taken from 15-minutes data (overall POEy=16.3%, POEgp=10.7%, POEs=79.2%
and POEx=148.2%). These results indicate that BPN is very sensitive to the input
variables. Proper selection of input variables appears to be vital in order to improve
performance of BPNs. Finally, the performance of BPN in separately predicting four
statistics was investigated. The results showed that using separate BPNs to predict four
statistics generated better results than using a single BPN to predict all four statistics at
the same time. BPN using fourteen inputs obtained from 15-minutes data to separately
predict four statistics produced improved results (POEn=10.6%, POEgp=9.4%,
POEs=65.6% and POEx=117.3%) compared to BPNs using nine inputs (POEy=12.4%,
POEsp=10%, POEs=66.6% and POEx=136.7%). These results indicate that the
predicting ability of BPNs is not only related to input variables, but also related to the

complexity in mapping relationship between inputs and outputs.

In conclusion, pre-processing raw data, MTC data length, and the number of predicting

outputs were found to be important in the performance of the BPNs. Although the
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predicting power of BPNs in gait data analysis has been highlighted by other researchers
(Chau, 2001b), this research promotes further development of BPN technology in the

area of tripping probability research.
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ABBREVIATIONS AND TERMINOLOGIES

ANN:

MTC:

SD:

FFT:

MLR:

AAE:

POE:

Trial:

Artificial Neural Network; computer algorithm, related to artificial
intelligence, to simulate human brain’s nervous systems (Dayhoff, 1990;
Hubick, 1992).

minimum toe clearance; the lowest point the toe reaches during mid-swing
phase.

Mean, refers to the average of a group of MTC values.

standard deviation, used for describing the spread of a MTC distribution.
Skewness, refers to the degree to which the non-symmetric distribution
differs from a normal curve.

Kurtosis, refers to the degree to which the shape of a distribution differs
from a normal curve in terms of the ‘peakedness’ relative to the normal
curve.

Fast Fourier Transformation, the frequency distribution of the MTC time
series. In this study, it can be regarded as a feature extracting function,
which reduces the number of coefficients to represent a curve. However,
the features of the curves will be still preserved.

Multiple linear regression is a statistical model used for predicting
dependent variables based on a (some) predictor(s).

Absolute actual error between desired MTC data and predicted /non-
stabilized MTC data.

Percentage of error between desired MTC data and predicted /non-
stabilized MTC data

Refer to one gait cycle. There is one MTC value in each trial.
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CHAPTER ONE

INTRODUCTION

Human gait is regarded as the most common of all human movements. It is also one of
the most complex movements. Many factors (e.g. muscle contraction, motor
coordination, energy flows, etc) are involved to complete a single gait cycle.
Researchers have used gait méasurements for various applications including
management of patients with walking disorders and identification of individuals with

altered lower limb motion (Winter, 1991; Oatis, 1995).

Since human gait is variable, it is quite common to use a mean value from multiple
trials to represent an individual subject’s gait characteristics instead of using a single
trial (Winter, 1984; Hamill and McNiven, 1990), with the assumption that these trials
form a normal distribution and represent typical gait characteristics. But Winter (1991)
highlighted the complex nature of gait variability and that intra-subject variability is
higher for trials collected days apart compared with trials collected minutes apart.
Giakas and Baltzopoulos (1997) showed that the mean of ground reaction forces during
gait parameters became stable (with variability limits <10%) after 10 trials. It is
important to determine how many trials are required to obtain a stabilized gait
parameter for an individual to ensure the reliability of the data used for analysis and

drawing statistical conclusion.
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The number of trials used to calculate mean values is seen to vary widely in the gait
literature (commonly ranging from 4 to 25 trials), and there is usually no valid reason
given why a certain number of trials are used in these studies. Recently, Best, Begg,
Ball and James (2000) have shown that it takes far more trials (about 2000 trials) to
stabilize minimum foot clearance statistics such as mean, standard deviation, skewness
and kurtosis values. Increasing the number of gait trials would certainly help to find
more stabilized descriptive statistics. But, there are many other constraints such as time,
cost and disability that will affect the sample size. As a result, it is important to devise
methodologies that would predict stabilized gait parameters from relatively fewer trials.
Since human gait is a complex, chaotic activity with non-linear dynamic features
(Winter, 1991), it is difficult to develop mathematical algorithms to model relationships

between stabilized gait parameters and that derived from fewer gait trials.

Tripping over obstacles is regarded as one of the most commonly stated causes of falls
in elderly people (Overstall, Exton-Smith, Imms, and Johson, 1997). During the swing
phase of gait, minimum toe clearance (MTC) is used to quantify the probability of
tripping (PT) during gait (Best, Begg and James, 1999). PT calculation requires a large
amount of MFC data (up to 2000 gait trails). This requires lengthy time for MTC data
collection and digitizing. Therefore, a methodology that has the potential to predict
long-term histogram characteristics of MTC data, based on the characteristics of MTC
data collected from fewer gait trials would reduce data collection and analysis time

significantly.

Artificial Neural Network (ANN) technologies have been applied to solve numerous

practical problems in many areas with extraordinary benefits (Dayhoff, 1990). In recent



years, ANNs have been gradually used in predicting various parameters with high
success rates (Chau, 2001b). ANN has been named as such because of similarities with
the network of nerve cells in the brain and ANN architectures are motivated by models
of our own brains and nerve cells (Dayhoff, 1990). ANNs ‘learn’ to associate inputs
with known outputs and do not require an expert to provide it with a set of 'rules' or a
knowledge base. An ANN is able to simulate the performance of the human expert to

learn, recognize and forecast similarities and patterns (Vaughan, 1997).

One of the main characteristics of an ANN is that it can approximate any continuous
function, regardless of its complexity. In the context of gait analysis, this property
allows one to model relationships among gait variables, provided adequate data are
available and requisite network complexity is computationally feasible. Sepulveda,
Wells and Vaughan (1993) used this property of ANNs to study modeling of muscle
activity and kinematic interactions, which with a traditional analytical approach would
result in unmanageable relationships. Furthermore, ANNs can handle vast amounts of
gait data at the same time, as demonstrated by the large study conducted by Holzreiter
and KOhle (1993). The other important characteristic of an ANN is its inherent non-

linear mapping ability between inputs and outputs (Savelberg and Herzog, 1997).

The main focus of this research is to apply the predictive power of ANN to predict
stabilized gait characteristics from relatively fewer gait trials. There is no previous
research reporting any such technique. It explores ANN technology for its suitability for
predicting gait data. The results of this research would not only improve the efficiency

of trip probability research by requiring fewer gait trials per subject, but also help to



obtain reliable data for those subjects (elderly, pathological and children) who are not

able to walk for a long time in order to provide stable gait parameters.



CHAPTER TWO

LITERATURE REVIEW

2.1 AN OVERVIEW OF GAIT ANALYSIS
2.1.1 What is Gait?

Walking is the most common form of locomotion and makes up a very large proportion
of our normal activities of daily living. Gait describes the manner or style of walking
rather than the walking process itself (Whittle, 1991). Although it looks like a simple
motion, gait is regarded as one of the most complex and totally integrated movements,
and has been described and analysed more than any other human movement (Winter,

1991).

A human gait cycle is defined as the time interval between two successive occurrences
of one of the repetitive events of walking. Generally, a gait cyc1é is the time from one
heel contact to the following heel contact of the same foot. Whittle (1991) has described
the sequential components of a gait cycle as shown in Figure 2.1. It shows that the gait
cycle begins at right heel contact and finishes at right heel contact. There are two
periods of double support and two periods of single support in a gait cycle. The swing
phase contributes approximately 40 per cent to the gait cycle, and is concurrent with the
single support phase of the contra-lateral limb. The stance phase lasts for approximately

60 per cent of the gait cycle.
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Figure 2.1 Timing of single and double support during a single gait cycle from right heel contact

to next right heel contact (adapted from Whittle, 1991).

2.1.2 Goals and Techniques of Gait Analysis
Gait analysis has advanced considerably over the past century. It includes the systematic
study of human walking. During the past decade, doctors, therapists, and many other
researchers applied numerous approaches and methods to investigate the characteristics
of gait. Accompanying an increase of research quality, gait analysis is being used to
determine the outcome of various clinical procedures rather than simply monitoring the
visible changes in gait. Oatis (1995) emphasized that the goals of gait analysis fall into
five large categories to:
1. Describe the difference between a patient's performance and non-disabled
subject's performance. Comparisons between the performance of disabled and
normal performance are the most common use of gait analysis. The detailed

description of normal locomotion is expected to provide an understanding of



the mechanisms of locomotion, so that deviations from normal characteristics
can be quantified (e.g. White, Agouris, Selbie and Kirkpatrik, 1999;
Steinwender, Saraph, Scheiber, Zwick, Uitz and Hackl, 2000).

Classify the severity of a disability (e.g. Selby-Silverstein, 1995; Dingwell,
Ulbrecht, Boch, Becker, O’Gorman and Cavanagh, 1999; Lord and Hosein,
2000). Disability results in functional loss. Measures of disability have been
used successfully in the evaluation of chronic disorders such as arthritis and
low back pain.

Determine the efficacy of intervention. Treatment is often provided to improve
functional performance, not to restore normal function. Clinicians and
therapists often use pre-intervention status or functional abilities of comparable
subjects to assess the effects of a treatment approach (Smidt and Mommens,
1980; Reisman, Burdett, Simon, and Norkin, 1985; Opara, Levangie, and
Nelson, 1985).

Enhance performance. Gait analysis can provide important information to
explain the mechanism of performance. Athletes have followed the
advancement of motion analysis with anticipation and have utilized the
technological advances in order to enhance their performance (Cavanagh and
Lafortune, 1980).

Determine the mechanics of gait abnormality. Few studies have attempted to
explain the abnormal phenomena in pathological gait pattern (Tardieu,
Lespargot, Tabary and Bret, 1989). The comparison of the normal gait pattern
with the abnormal gait pattern may yield sufficiently meaningful information

to explain the abnormal performance.



Different investigators use different gait parameters for analysis. For example, clinical
investigators tend to look at output measures such as stride length, cadence, and joint
angles, so these researchers tend to focus on kinematics. Neurologic;ll researchers focus
on EMG measures, whereas biomechanical investigators analyze all aspects of gait
(Winter, 1991). Sagittal plane kinematics is probably the most commonly studied, best
understood and most accurately reproduced in numerous studies of gait analysis
(Sutherland, Kaufman, and Moitoza, 1994). Different techniques of gait analysis
provide different outcome measures, such as kinematics analysis tells us the
measurement of movement or geometric description of motion, but it does not provide
any force related information. Thus, the various dependent measures are chosen
depending on the research question that investigators are interested to look into. Whittle
(1991) summarized the major techniques of gait analysis into the following:
1. Kinematics
Kinematics involves assessing the motion pattern of the human and often of each
segment (foot, ankle, knee, hip, pelvis, and trunk). It is the measurement of
movement, or geometric description of motion, in terms of displacements,
velocity and accelerations (Gronley and Perry, 1984). Observation as a primary
data-gathering method also is widely used in biomechanical functional study.
Video-based data acquisition is used to determine the two- or three-dimensional
trajectories, velocities and accelerations of the body segments (translational and
angular) (Koff, 1995; Wu, 1995). Both reflective markers and light-emitting
diodes are used in kinematic system to acquire body segment/joint positions
(Whittle, 1991). It has been commonly used to obtain accurate kinematic gait
parameters by biomechanical researchers. For example, Winter (1991) used

reflective markers to acquire lower limb kinematic variables describing the



trajectory of the foot during the swing phase, while Karst, Hageman, Jones and
Bunner (1999) used light-emitting diodes to obtain both foot trajectory and

temporal/distance measures.

2. Kinetics

Kinetics is a part of mechanics that deals with the study of forces, moments
(internal and external) and the way they affect motion of objects and systems. It is
often studied by solving the direct dynamic problem (e.g. measuring the forces
and substituting them in the “equations of motion” to obtain the resulting motion).
It is also studied by solving the inverse dynamic problem to obtain the forces
responsible for the motion (Seliktar and Bo, 1995; Barnes and Berme, 1995). One
of commonly used kinetic instrument in gait analysis is the force platform. It is
frequently used to obtain a full three-dimensional description of the average
ground reaction forces (Whittle, 1991). For example, Begg, Sparrow and Lythgo
(1998) obtained vertical, medio-lateral and anterior-posterior forces during both
unobstructed walking and walking over obstacles using force platform to

investigate the process of gait control.

3. Muscle Activity or Electromyography (EMG)

EMG shows which muscles are active during different intervals of the gait cycle.
EMG is the electrical record of the activation of muscle, and has been used in
many applications (Soderberg and Knutson, 1995). It has been used to describe
non-disabled adult gait, disabled and maturing childhood gait. Clinicians have
often used dynamic EMG to guide decisions about type of orthopaedic surgery to

be performed (Knutson and Soderberg, 1995).



4. Mechanical Energy Analysis

Human locomotion is the result of a complex energy interaction between the
activation muscles of the different segments in motion. The energy consumption,
and in particular energy transfers between the body segments in walking has been
investigated by some investigators (Nielsen, Harris, Minton, Motley, Rowley and
Wadsworth, 1990; Cobly, Kirkendall and Bruzga, 1999). Mechanical energy
encompasses information relating mass, moment of inertia, linear velocity,
angular velocity, and force. Many useful parameters have been obtained for the
mechanical power, work and energy developed during able-bodied walking and
running (Williams and Cavanagh, 1983). Such as Robertson and Winter (1980)
discussed energy absorption and generation in gait, and found that the joint power
was as important as the muscle power in causing energy changes in adjacent

segments.

5. Metabolic Cost

Metabolic energy has been used during the past decades to estimate the
mechanical efficiency of walking by looking at the difference in oxygen
consumption between the basal states and walking at a given speed. The
measurement of the metabolic energy expenditure provides global information on
overall gait performance and a means of quantifying the overall physiologic
penalty resulting from pathological gait (Blessey, 1976). The volume of oxygen
consumed and the amount of oxygen consumed per minute during
walking/running are often used to determine individual’s gait efficiency (Winter,

Quanbury, and Reimer, 1978).
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2.1.3 Tripping and Falling in the Elderly

Falls are a leading cause of death and hospitalisation due to injuries in the elderly. The
cost of falls to the health sector has been estimated to be larger than that of road trauma
in Australia (NIPAC, 1999a). Falls among older individuals are the seventh leading
cause of death and account for billions of dollars per year in hospitalisation costs (Ryan
and Spellbring, 1996; Wolf and Gregor, 1999). Numerous researchers have reported that
falls in the elderly is a serious health concern and the incidence of falls is expected to
rise with the ageing of the population (NIPAC, 1999b). Oreskovich, Howard, Copass,
and Carrico (1984) reported that almost 90% of older persons admitted to hospital due
to a fall would not return to their previous level of independence. Prince, Corriveau,
Hébert, and Winter (1997) also reported that 50% of those who sustain fractures to the
hip are subsequently admitted to a long-term facility. Naturally, many researchers have
focused on falls-related factors (Martin and Grabiner, 1999) such as age-related decline
in gait performance (Whittle, 1991). Neurologic and cognitive impairment, and use of
medications (e.g. sedatives and anti-depressants) are also important factors related to

falls (Tinetti and Speechley, 1998).

2.1.3.1 Age-Related Changes in Walking Performance

Age-related changes in walking performance have been widely investigated by
biomechanical investigators as possible factors leading to falls in the elderly (Winter,
Palta, Frank and Walt, 1990). It becomes increasingly important to understand the
effects of aging on movement and function because of longer average life and a growing

elderly population. Many researchers have investigated gait patterns in healthy young
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and elderly individuals during normal unobstructed level walking with a view to
documenting age-related declines in lower limb control that might be likely to lead to a

fall (Hageman and Blanke, 1986; Blanke and Hageman, 1988).

Some studies have concentrated on straightforward outcome measures (temporal and
spatial) of the gait cycle and consistently reported that elderly persons demonstrate
shorter step and stride lengths, lower average velocities (Finley, Cody, and Finizie,
1969; Murray, Kory, and Sepic, 1970; Winter, 1991) and smaller stride width (Gabell
and Nayak, 1984; Blanke and Hageman, 1989). Reduced walking speed and stride

length have been proposed to reflect safer walking patterns adopted by the elderly.

The effect of age on joint angular range of motion (ROM) has been investigated by
many researchers. Most investigators have found little difference in the joint ROM of
the hip and knee between the young and elderly (Murray, Kory and Clarkson, 1969;
Murray, Kory and Sepic, 1970). Blanke and Hageman (1989) also reported that there
was little difference in ROM between young and elderly individuals at the ankle joint.
Conversely, Ostrosky and VanSwearingen (1994) examined maximum flexion and
extension angles during gait and reported significantly reduced maximum knee
extension angle in the elderly group. Also, Begg and Sparrow (2000) found that the
elderly participants had reduced knee and ankle angles at toe-off, reduced knee flexion
during push-off and reduced ankle dorsiflexion during the swing phase. All of these
findings suggest that these biomechanical characteristics of gait provide a useful

indication of age-related degeneration in the control of gait.
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2.1.3.2 Tripping Falls

Tripping is defined as an event whereby the lowest part of foot or shoe contacts the
ground or a solid obstacle unintentionally, leading to a loss of balance and even a fall.
People of all ages may trip at some stage while walking. It has been shown that older
people who are more likely to fall due to a trip have a decline in reaction time, strength
and balance (Prince, Corriveau, Hébert and Winter, 1997). Numerous researchers have
reported that tripping over obstacles is one of the frequently stated causes of falls in
elderly populations (Overstall, Exton-Smith, Imms, and Johson, 1997; Tinetti and
Speechley, 1989; Cambell, Borrie and Spears, 1989; Pavol, Owings, Foley, and
Grabiner, 1999). Blake, Morgan, Bendall, Dallosso, Ebrahim, Arie, Fentem, and Bassey
(1988) have reported that tripping is responsible for up to 53% of falls in older adults.
As a large proportion of falls occur due to trips, there is a need to identify factors that
increase an individual’s risk of a trip so that the occurrence of these trip-related falls
may be reduced. For these reasons, a better understanding of the mechanisms for

tripping is essential.
2.13.2.1 Swing Phase of Gait and Minimum Toe Clearance (MTC)

Since walking is one of the most common and necessary activities humans undertake, it
is important that considerable effort has been dedicated to understanding the process
further. To understand tripping and develop methods for avoiding tripping, it is
importanf to identify those variables that are responsible for tripping. In order to have a
better undersfanding of the timing of potential trip occurrence, a gait cycle is generally

described as the time interval between two successive heel contact events of one foot
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(See Figure 2.2). It consists of a stance phase (~60% of the total gait cycle) that starts
from heel contact to toe off and a swing phase (~40% of the total gait cycle) that starts
from toe off to next heel contact (Whittle, 1991). Figure 2.2 also shows six major events
used to further divide the gait cycle. The stance phase consist of heel contact, foot flat,
mid stance and heel off events, while the swing phase begins at toe off, and goes

through mid swing, then finishes at next heel contact.

Stance Swing
‘ phase | phase |
/ < ' 74
Heel Foot Mid Heel Toe Mid Heel
contact flat stance off off swing contact

Figure 2.2 Six major events are used to divide the gait cycle into convenient periods
(adapted from Whittle, 1991)

During the swing phase the following foot contact is prepared requiring a
biomechanical balance. To complete a safe and normal movement of the body, the
supporting limb should be stable showing appropriate muscle activity and allowing the
advancement of the opposite limb in swing phase (Whittle 1991). Muscle activity and
positioning of the swinging leg have to be appropriate in all the joints to allow a clear
swing. Also the swing limb has to be pre-positioned before the initial contact. This
requires a stable supporting limb and appropriate joint movement and muscle activity in
the swing limb. Furthermore, the heel velocity has to be adjusted to gain a controlled

heel contact (Winter, 1992).

Winter (1991) described swing phase characteristics of the gait cycle and the occurrence

of minimum toe clearance (MTC) at mid swing phase (see second vertical line at about
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80% of the gait cycle, Figure 2.3). At about 80% of the gait cycle toe reaches its
minimum clearance (Line L2 in Figure 2.3), and then the toe rises to its maximum, up to
15 cm, prior to the next heel contact. In normal gait, the magnitude of MTC is quite low
and is reported to be 1.29cm (Winter, 1992), the exact value that was also later reported
by Karst Hageman, Jones and Bunner (1999). Dingwell, Ulbrecht, Boch, Becker,
O’Gorman and Cavanagh (1999) reported that it was 0.9 cm. In these studies a
reflective marker/light emitting-diode placed on the shoe has been used to estimate
MTC, hence the values may not represent the real MTC. To estimate the real MTC,

foot/shoe models need to be developed.
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Figure 2.3 The displacement and velocity for the toe during normal walking. L1=toe off, and L2=MTC

(adapted from Winter 1991, page 21)

Startzell and Cavanagh (1999) presented a model for three-dimensional measurements
of foot motion using three virtual markers based in the middle of the foot. These authors
described the outshoe shape of the shoe with respect to the ground and found accuracy
to a conservative £2mm. But their findings are limited to simulated trials and there was
no data presented from subject’s walking task. Best, Begg and James (1999) and Best,

Begg, Ball and James (2000) presented a two-dimensional geometric model to predict
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MTC, based on two markers placed on the forefoot. With these models, it is possible to
accurately estimate the actual lowest point reached with the toe during the swing phase
of the gait cycle. The predicted MTC was reported to be 1.035c¢m for a young subject
walking on a treadmill for 1 hour (Best, Begg, Ball and James, 2000). Due to different
subject groups and different laboratory procedures used to calculate MTC, there are

some variations in reported MTC values across studies.

The variability in MTC data has the potential of causing irregular tripping (Best, Begg,
Ball and James, 2000). Also, at MTC, the horizontal velocity of the toe has been
estimated to be at its maximum. During this time the centre of gravity (COG) of the
body is forward of the stance foot (see figure 2.4). The combination of COG and body’s
forward momentum means that the supporting limb cannot help in recovery from a
possible trip at this instant. Hence, if a trip occurs at MTC, there is increased probability

of falling.

Although some strategies have been identified to help people recover from a trip such as
taking a forward step (Pavol, Owings, Foley and Grabiner, 1999). Tripping is more
likely to lead to falling in elderly people because of their slower reaction time (Prince,

Corriveau, Hébert and Winter, 1997).

16



Figure 2.4 Position of body at MTC. (adapted from Winter, 1992)

Karst, Hageman, Jones, and Bunner (1999) highlighted that impaired control of MTC
could cause tripping, and the conditions causing decreased MTC would increase the risk
of tripping. MTC during walking has been recognised as a very important parameter of
gait and this has given fresh impetus to researchers to study this parameter to investigate
causes of falls due to tripping (Patla and Rietdyk, 1993; Best, Begg, Ball and James,
2000). The research conducted by Best, Begg and James (1999) models the variability
in MTC data during 30-minute treadmill walking. They used Gaussian curve to model
MTC data with skewness modelled by transforming MTC to MTC®?' ( MTC data
transformed by a power of 0.21). The probability of tripping was worked out via
obtaining the relative area/integral of the Gaussian curve from a Z-score. This method to
predict an individual’s probability of tripping needs a large amount of MTC data. As
MTC data collection is quite time consuming, some techniques are necessary to predict
the characteristics (e.g. Mean, SD, skewness and kurtosis) of large MTC data sets from

data collected from shorter time periods.
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2.1.4 Variability of Gait Parameters and Accuracy of Mean Values

Without knowledge of variability of gait parameters, accurate assessment of human
locomotion is difficult and may lead to incorrect conclusions. Hence, many
investigators have studied variability of gait parameters (Wall and Crosbie, 1996;
Mickelborough, Linden, Richards and Ennos, 2000). Winter (1984) investigated within-
subject variability and found that the average cadence for 9 trials was 110 steps/min
with a standard deviation of 2 steps/min. The variability in vertical and horizontal forces
measured by coefficients of variation (CV, refers to root mean square of standard
deviation of the moment over stride period /mean of absolute moment of force over
stride period) were 7% and 20% respectively. Joint moment patterns at the hip and knee
were highly variable (for hip, CV= 72%, knee CV= 67%). These results indicate that
variability depends on the gait parameter and an adequate number of trials should be

used to represent a subject’s typical gait characteristics.

There are conflicting reports in the literature about the number of gait trials needed to
appropriately describe reliable gait characteristics. Smith (1991) investigated within-
subject variability in selected lower limb gait kinematics and kinetics and reported that
only four trials would be enough for some gait variables (e.g. time-normalized joint
angﬁlar displacements, moments of force powers and overall support moment force).
Giakas and Baltzopoulos (1997) showed that the mean of ground reaction force
parameters became stable during gait after 10 trials. Hamill and McNiven (1990) also
investigated the number of trials required to establish a stable mean from 20 ground

reaction force trials. The result showed that the cumulative mean of a subject’s first
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maximum vertical force after 15 trials produced a stable mean value that fell within the
bandwidth of the 20-trial mean +0.25SD, and stayed in this range for the remaining
trials. Vita and Bates (1988), on the other hand, reported that 25 trials were necessary to

provide accurate ground reaction force data.

Karst, Hageman, Jones, and Bunner (1999) investigated within- and between-session
reliability of foot trajectory measures and the traditional temporal-distance measures
during gait in healthy elderly women using statistical techniques. Six sets of five trials
each of natural and fast cadence gaits were collected and the MTC during swing phase,
vertical and horizontal heel contact velocities and temporal-distance measures (step
width, cadence, velocity, stride length, and time) were analysed. Pearson correlation
coefficients were used to represent the reliability of variables within-session (test-retest)
and between-session (test-retest). The results showed that intraclass correlation
coefficients were greater than 0.87 for all, suggesting that the within-session test-retest

reliability of all variables in natural and fast cadence was good.

The research on reliability and variability of gait parameters to date indicates that these
are parameter-specific, and the investigators used varying number of gait trials (4 to 25)
to calculate the mean value. Recently, Best, Begg, Ball and James (2000) investigated
MTC variability while a subject walked on a treadmill for an hour. MTC values of
every stride were collected and the stability of the Mean, SD, Skewness, and Kurtosis at
different intervals were analysed (See Figure 2.5). The stabilized (1-hour, up to 2764
gait trials) mean value was seen to differ by 10% at ten-minute intervals down to 4% at
30-minute intervals. Also, all four statistics became relatively stable and repeatable at

30-minute interval. According to this study, longer gait trials (about 30 minutes of gait
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data, approximately 1382 gait trials), than have been traditionally used, are required to
obtain stable descriptive statistics, especially for the purpose of tripping probability
calculations which require extremely good accuracy of the four descriptive statistics

(mean, standard deviation, skewness and kurtosis).

To obtain such stabilized descriptive statistics one would need to spend a lot of time
digitising makers and calculating parameters. Furthermore, such a requirement (30
minutes) would create difficulties in certain populations eg., children, frail elderly,
pathologic subjects. Consequently, it is important to devise a methodology that would

predict stabilized gait parameters from relatively fewer gait trials.
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Figure 2.5 Stability of M, SD, S and K for 1-hour MTC data. These are derived by plotting the M of data
(or SD, S, K) as it changes with the addition of each new data point. All graphs show one
series (raw) containing all MTC data and a second series with an unusual block of 12 data
points removed. These 12 extreme data points were generated when the subject might have

been distracted in this brief period (adapted from Best, Begg, Ball and James, 2000).
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2.2 AN OVERVIEW OF ARTIFICIAL NEURAL NETWORK

ANNs have been broadly used in industry with applications such as knowledge
processing, robotic control, pattern recognition, speech recognition, speech
understanding, speech synthesis and computer vision (Hubick, 1992). Applications of
ANNSs to study biological systems have appeared mostly within the past decade. In
recent years, the non-linear modelling ability of ANN has facilitated the study of
complicated relationships between gait variables, which have traditionally been difficult
to model analytically, such as temporal dependence, curve correlations and high-
directionality. ANN methods used to analyse gait data is unlike any previous

technology. It has a highly flexible inductive, non-linear modelling ability.

2.2.1 What are Artificial Neural Networks (ANNs)?

An ANN is a computer algorithm designed to emulate the process of the brain. ANN
took its name from the network of nerve cells in the brain (Dayhoff, 1990). Its
architectures are motivated by models of our own brains and nerve cells. The field goes
by many names, such as connectionism; parallel distributed processing, neuron-
computing, natural intelligent systems, machine learning algorithms, and artificial
neural networks (NeuralWare, 1991). ANNs learn by example. Figure 2.6 shows the

ANN approach to a pattern classification problem.
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Figure 2.6 ANN approach to a pattern classification problem (adapted from Dayhoff, 1990)

During the learning phase, a set of input values (eg. animal shape parameters; see Figure
2.6 ) and known output values (eg. cat, dog and rabbit) are used for training an ANN.
The connection strength that is associated with each interconnection is adjusted based
on the prediction error of the network, and the expected output. During the testing
phase, the ANN predicts an output, based on the inputs fed to it, using the knowledge it
leamnt during the training phase (Hubick, 1992; e.g. in Figure 2.6 it predicts shape input
data whether it is a dog, cat or a rabbit). It ‘learns’ to associate inputs with known
outputs during learning phase. Then, it is able to simulate the performance of a human
expert to recognize similarities and patterns by the knowledge it learnt during testing
phase (Vaughan, 1997). It does not require an expert to provide it with a set of 'rules’ or
a knowledge base. Well-developed ANNs can generalize on the tasks for which it is
trained, enabling the network to provide the correct answer when presented with a new

input pattern that has never been presented to the ANN during the training phase.
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2.2.1.1 The Biological Neuron

Human brain consists of biological neural networks (NeuralWare, 1991). The most
basic element of human brain is a specific type of cell, which provides us the abilities to
think, remember and apply previous experiences. Human brain is a highly complex,
non-linear, and parallel information-processing system (Vaughan, 1997). Human brain
consists of tens of billions of neurons densely interconnected. Dendrites, soma (cell
body), axon and synapses are the four basic components of all natural neurons. Figure
2.7 shows a simplified biological neuron and the relationship of its four components.
Generally, a biological neuron receives inputs from other sources, combines them in
some way, performs a nonlinear operation on the result, and then outputs the final
result. Dayhoff (1990) described the axon as the output path of a neuron (see Figure
2.7). It connects to other neuron’s dendrites, which are the input paths of a neuron,
through a junction (synapses). The transmission of a pulse across this junction is
chemical in nature and the amount of signal transferred depends on the amount of
chemical released by the axon and received by the dendrites. When the brain learns, the
synaptic efficiency is what is adjusted. The synapse combined with the processing of
information in the neuron form the memory mechanism of the brain (NeuralWare,

1991).
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Figure 2.7 The basic structure of a biological neuron (adapted from NeuralWare, 1991)

2.2.1.2 The Artificial Neuron

The development of ANNs was inspired by the complexity of the brain, the way in
which intelligence is coded by interconnections among the neurons or cells in the brain.
It is an attempt to simulate, within specialized hardware or sophisticated software, the
multiple layers of simple processing elements called neurons. The computer programs

have similar structures to biological neural networks (see Figure 2.8).
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Figure 2.8 Schematic of processing unit (PE) from an artificial neural network (adapted from Sepulveda,

Wells and Vaughan, 1993).
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The artificial neuron, which is also called processing element (PE), is the basic unit of
neural networks. It simulates the four basic functions of natural neurons. On the left are
the multiple input paths (dendrites) to the PE, each arriving from another PE, which is
connected to the PE shown at the centre. The different inputs to the network are
represented by mathematical symbol (x,). Each of the inputs is multiplied by a
connection weight (w,). The output from each neuron is determined by the nuclear
processing, utilizing the transfer function, and the excitatory level of the connection of
the incoming excitatory and inhibitory stimuli. The excitatory level of a connection site
is also known as the connection weight and is thought to be the variable that determines

the actual behaviour of a group of neurons.

Based on this simplified model of a PE, many PEs join together in above manner to
make up an ANN. The interesting part of ANN is not the simplified model of a PE but
the effects that result from the ways neurons are interconnected. PEs are often arranged
into groups called layers. There are typically two layers with connections to the outside

world: An input layer and an output layer.
2.2.2  Structure of an ANN

The basic structure of an ANN is shown in Figure 2.9. As mentioned before, neural
networks are built of PEs that are usually arranged in layers, and the PEs in a layer are
often connected to many PEs in other layers. The bottom layer is the input layer, which
consists of PEs that receives input from the external environment. The top layer is the
output layer, which consists of PEs that communicates the output of the system to the

external environment. The layers between these two layers are called middle hidden
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layers. Figure 2.9 shows five elementary layers in a network; the input layer, output

layer and the three hidden layers.

e ® ® <] Output layer
- o o
— i —~ .
= T \\\\:_\.
> & @ - - Middle hidden layers
PEs e T - —\— :-:
" ———— Tt~
e 2 Tt
- - - - - -
‘=——-‘\—T —— ‘\- - T - — -
. == - - . .- - . . = 4—— Input layer

Figure 2.9 The basic architecture of ANNs

The ANN in Figure 2.9 is said to be fully connected in the sense that every PE in each
layer of the network is connected to every other PE in the adjacent forward layer. Each
hidden layer acts as a layer of “feature detectors” units that respond to specific features
in the input pattern. Most ANNs have at least one hidden layer to extract higher-order
statistics to create an internal representation from the input signals. Some ANNs use
only two layers, directly mapping input patterns to a set of output patterns. This is
sufficient when the input and output is similar and the encoding provided by the

external environment alone can perform the mapping (Haykin, 1994).

The number of PEs required for the input and output layers depend on the number of
input and output variables. Nevertheless, there appears to be no fixed rule to decide how
many PEs should be in each hidden layer. Only a rule of thumb, for example, provided
by NeuralWare (1991), can be used to set up the upper bound for the number of PEs in

the hidden layer. Generally it should be no more than 50 PEs in the hidden layer. It is
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clear that larger numbers of PEs in the hidden layer has higher capability of capturing
more features in the case of complex input pattern. If the number of the hidden PEs is
greater than the essential minimum number, there is no enhancement in the performance
of the ANN. On the contrary, there is increased tendency for the network to memorise
the training patterns to give correct response instead of generalization. Hence, no fixed
rules can be used to work out the correct number of PEs in the hidden layer. Instead,

guidelines based on previous experiences in training the network in similar problems

should be followed (Chau, 2000b).
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2.2.3 Network Operation

The operation of an ANN can be divided into two phases (learning or training phase and
testing phase). During the learning phase, the connection strength that is associated with
each interconnection is adjusted based on the information offered to the ANN. Thus, the
ANN becomes more knowledgeable about its inputs and outputs after the learning
process. During the testing phase, the ANN predicts an output, based on what it has

learnt previously during the learning phase (Hubick, 1992).

2.2.3.1 Learning

The definition of learning in the context of ANN is that a process by which the free
parameters of an ANN are adapted through a continuing process of stimulation by the
environment in which the ANN is embedded. The type of learning is determined by the
manner in which the parameter changes take place (Haykin, 1994). Since all knowledge
in ANNs are represented by weight, hence, learning is performed by change in
connection weight. The change in connection weights mainly relates to the following
two factors:
e Operation of PEs and

e [Leaming rules used for adjusting weight.

2.2.3.1.1 Operation of a Single PE

A PE is fundamental to the operation of an ANN. Figure 2.10 shows the basic structure

of a PE in mathematical model. A PE in middle hidden layer generally has a number of
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input signals and a single output. In mathematical terms, a PE k in middle hidden layer

can be described by following a pair of equations:
14
u, = Z(Wk,.X,.) Equation 2.1
i=]

Vi =0, —6,) Equation 2.2

Each input signal (X;) is linked to a relative weight (Wy;), the effective input to the PE is
the weighted total input (uy) for all inputs signals. ¢(-), the transfer function, defines the
output of a PE in terms of the activity level at its input. yy is the output signal of the PE.
Ok is the threshold, and has the effect of lowering the net input of the activation
function. The linear combined input (uy) is sent to the transfer function ¢(-), which

specifies the output (yx) from the particular PE.
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Figure 2.10 Operation of a PE (adapted from Haykin, 1994).

In summary, three basic elements of neuron model are described here:
e Fach interconnection has an associated connection weight, given as wy,
Wi2. .. Wkp.

e The PE performs a weighted sum on the inputs
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e Using a non-linear threshold function generates a result and which it passes

directly to the output path of the PE.

The transfer functions are used to limit the amplitude of the output of a PE. They are
non-linear mathematical functions in the hidden layer(s). Normally, although not
always, the transfer function for a given PE is fixed at the time a network is constructed.

Figure 2.11 shows four commonly used transfer functions.
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Figure 2.11 Four commonly used transfer functions.
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2.2.3.1.2 The Learning Rules

The processing of a single PE is very simple, despite the learning process of an entire
ANN being quite complicated. Whatever kind of learning is used, an essential
characteristic of any ANN is its learning rule. It implies the following three events
(Hassoun, 1995):

1. The ANN is stimulated by an environment.

2. The ANN undergoes changes as a result of this stimulation.

3. The ANN responds in a new way to the environment, because of the changes

that have occurred in its internal structure.

Unlike traditional expert systems where knowledge is made explicit in the form of rules,
neural networks generate their own rules by learning from examples shown to them.
When a pair of inputs and desired outputs are presented to an ANN, it tries to map the
relationship between them. As the PE has no control over what input patterns are
presented to it, the only way to correctly map the relationship is to modify the values of
the connection weights on individual inputs. Hence, ANN learns by changing the
weights on the inputs. The learning rule for a given network defines precisely how to
change the weights in response to a given input and output pair. The following learning

rules are commonly used.
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2.2.3.1.2.1 Unsupervised Learning Rule

There is no external teacher or critic to oversee the learning process (see Figure 2.12).
Generally, it does not give the ANN a desired output. In the other words, there are no

specific examples of the function to be learned by the ANN (Hassoun, 1995).

Inputs describing
state of the
environment Learning

Environment =1 system

Figure 2.12 Diagram of unsupervised learning

1. Hebbian Learning Rule

It is the first and best known unsupervised learning rule named after in honour of the
neuropsychologist Donald Hebb (1949). Hebb described it as, “When an axon of
cell A is near enough to excite a cell B and repeatedly or persistently takes part in
firing it, some growth process or metabolic changes take place in one or both cells
such that A’s efficiency as one of the cell firing B, is increased”. Haykin (1994)
rephrased this learning rule into two parts:

» If two neurons on either side of a connection are activated
simultaneously (e.g. synchronously), then the strength of that connection
is selectively increased.

» If two PEs on either side of a connection are activated asynchronously,

then that connection is selectively weakened or eliminated.
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2. Competitive Learning Rule

It is used only in unsupervised learning network applications. There are three basic
elements of a competitive learning rule (Hassoun, 1995):

» A set of PEs that are all the same except for some randomly distributed
connection weights, and which respond differently to a given set of input
patterns.

» A limit imposed in the “strength” of each PE.

> A mechanism that permits the PE to compete for the right to respond to a
given subset of inputs, such that only one input PE, or only one PE per
group is active at a time. The PE that wins the competitions is called a

winner-takes-all PE.
3. Self-Organizing Feature Maps: Topology-Preserving Competitive Learning
It is a process of unsupervised learning whereby significant patterns or features in
the input data are discovered. Kohonen feature map, which is commonly referred to
as the self-organizing feature map, captures the topology and probability
distribution of input data (Hassoun, 1995).
4. Reinforcement Learning Rule
It is the on-line learning of an input-output mapping through a process of trial and

error designed to maximize a scalar performance index called a reinforcement

signal. Haykin (1994) rephrases this rule as follow:
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“If an action taken by learning system is followed by a satisfactory state of affairs
then the tendency of the system to produce that particular action is strengthened or
reinforced. Otherwise, the tendency of the system to produce that action is

weakened”.

2.2.3.1.2.2 Supervised Learning Rule

For each input stimulus, a desired output stimulus is presented to the system and the

network gradually configures itself to achieve that desired input and output

mapping.

1. Widrow-Hoff Learning Rule

Widrow-Hoff learning rule is one of commonly used supervised learning rules
(NeuralWare, 1991). It is based on reducing the error between the actual output of a
PE and its desired output by continuously modifying incoming connection weights.
This rule is originally used to train the linear unit, also known as the adaptive linear
combiner element. It performs a gradient descent algorithm in weight space, and is
guaranteed to converge to the unique set of weights that give the minimum mean

square error between the desired and actual outputs for the example set.

2. Back Propagation Learning Rule

It is the most popularly used generalization of the Widrow-Hoff rule and is applied

to three layers of ANNSs. Back-propagation is one of the easiest networks to
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understand. Its learning update procedure is intuitively appealing because it is based
on a relatively simple concept: if an ANN gives the wrong answer, then connection
weights are corrected so that the error is lessened and, as a result, future responses
of the ANN are more likely to be correct (Dayhoff, 1990). The back-propagation
learning algorithm involves a forward-propagating step followed by a back-
propagating step. Both of these steps are done for each pattern presentation during

training (NeualWare, 1991).

a) Forward-Propagating step

It begins when the input is presented and propagated forward through the ANN to
compute an output value for each PE. In each successive layer, every PE sums its
inputs and then applies to a transfer function (e.g. sigmoid function) to compute its
output. All current outputs from each PE are compared with the desired output, and
the difference between the actual output of the ANN and desired output, which is
also called ‘error’, is computed.

b) The back-propagation step

It begins when an ‘error’ is generated. Then the ANN calculates error values for
hidden PEs and changes for their incoming weights, starting with the output layer
moving backward through the successive hidden layers. The ANN corrects its

weights in such a way as to decrease the observed error in this step (Figure 2.13).

The process of adjusting incoming weights during back-propagation is shown in Figure

2.13. Back-propagation is widely used in ANN development and has been applied

successfully in many applications such as character recognition, sonar target
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recognition, image classification, signal encoding, knowledge processing, and a variety

of other pattern-analysis problems (Dayhoff, 1990).
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Figure 2.13 A flowchart showing the operation of Back-propagation algorithm
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2.2.3.2 Testing

During the learning phase, an ANN stores knowledge (connection weights). During the
testing phase, a set of testing data (data that has never been shown to the ANN during
learning) is presented to the ANN to measure its performance. The inputs of the testing
data are presented to the ANN. Then, they flow through all the fixed connection weights

and generate a set of predicting outputs (see Figure 2.14).

Predicted
outputs

calculate output layer
response

|

using trained PEs'
weights, run neural net
model

input unknown
variables

start

Figure 2.14 Flow diagram to represent the testing phase of an ANN
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2.2.4 Characteristics of ANNs

A neural network is a massively parallel-distributed processor that has a natural
propensity for storing experiential knowledge and making it available for use. It exhibits
a surprising number of characteristics of the brain (Dayhoff, 1990). It simulates the
processing of brain in two respects:

1. The network through a learning process acquires knowledge.

2. Interneuron connection strengths known as synaptic weights are used to store the

knowledge.

Haykin (1994) summarized that the major features and benefits of a neural network
which make it different from traditional computing and artificial intelligence. These are

described as.

1. Non-linearity

A neuron is a non-linear device. Hence, an ANN made up of an interconnection

of neurons is non-linear as well. It is a very important property of ANNs that is

often used for mapping the non-linear relationship between inputs and outputs

(Chau, 2001b).

2. Parallelism

ANNSs utilize a parallel processing structure that has large number of processors

and many interconnections between them. The massively parallel nature of
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ANNs make them potentially fast for the computation of certain task. During
both training and testing phase, the PEs in one layer all operate at the same time.
Computation is distributed over more than one PE and is done simultaneously.
Decisions are very quickly made. Furthermore, this feature of ANNs makes
them suitable for implementation using very-large-scale-integrated technology.
Thus, it is possible to use ANN as a tool for real-time applications involving

pattern recognition, signal processing, and control (Barton and Lees, 1997).

. Input-Output Mapping

The most common training scenarios utilize supervised learning, which involves
the modification of the connection weights of ANNs by applying a set labelled
training samples and task samples. Each example consists of a unique input
signal and the corresponding desired response (outputs). During the training
phase, the network is presented an example randomly selected from the training
set, and then it produces an actual response that can be compared with the
desired response. Initially, the network will probably produce the wrong answer.
The connection weights of the network are modified so as to minimize the
difference between desired response and the actual response. The training
network is repeated for many examples in the training set until the network
reaches a steady state, where there are no further significant changes in the

connection weights (Savelberg and Lange, 1999).

ANNs learn the rules for processing the knowledge. Neither the knowledge nor

the explicit rules for processing the knowledge are coded by the programmer. It
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does not require an expert in the relevant knowledge domain to develop an
ANN. This reflects a radically different approach to computing compared to

traditional methods (Lapham and Bartlett, 1995).

. Storage of Knowledge

The connection weights are the memory units of an ANN. The values of the
weights represent the current state of knowledge of the network. After training is
completed, the connection weights are fixed. These final values of each
connection weight are then used during testing phase. The knowledge within an
ANN is not stored in particular memory locations but is distributed throughout

the whole system (NeuralWare, 1991).

Knowledge an ANN learns is related to network structure (how the PEs in

output layer connect to the PEs in the other layer(s)) and the relative weighting

of each input to a PE (Dayhoff, 1990).

. Evidential Response

An ANN can discover the distinguishing features needed to perform a
classification task. In the context of pattern classification, an ANN can be
designed to provide information not only about which particular pattern to
select, but also about the confidence in the decision made. If the ambiguous
patterns arise, this latter information may be used to reject it, and thereby

improve the classification performance of the ANN (Barton and Lees, 1997).
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6. Mathematical Basis

The programming of ANNs is based on mathematical methods. Although it
broadly uses behavioural terms, such as learn, generalize and adapt etc., the
ANN’s behaviour is simple and quantifiable at each node. The computations
performed in the neural network may be specified mathematically, and typically
are similar to other mathematical methods already in use. Summing, weights,
transfer function, learning rules all rely on mathematics (Hassoun, 1995;

Haykin, 1994).

7. Contextual information

Every neuron in the network is potentially affected by the global activity of all
others in the network. Knowledge is presented by the very structure and
activation state of an ANN. Contextual information is dealt with naturally by the

ANN (NeuralWare, 1991; Vaughan, 1997).

8. Fault Tolerance

ANN has the potential to be extremely fault tolerant in the sense that its
performance is degraded slightly under adverse operating conditions
(NeuralWare, 1991). When a neural or its connections are damaged, recall of a
stored pattern impairs overall performance. However, owing to the distributed

nature of information in the ANN, the damage has to be extensive before the
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overall response of the ANN is degraded seriously. Thus, performance is merely

degraded rather than precipitating catastrophic failure (NeuralWare, 1991).

9. Adaptability

ANNSs have built-in capability to adapt their connection weights to changes in
the surrounding environment and thus can be easily retrained. Chau (2001b) has
concluded that adaptability of ANNs mainly present in the aspects of learning,
self-organizing and generalization. It often occurs when the connection weights
are adjusted during learning. ANNs could develop their own algorithm by
adjusting the weighted connections between the PEs. Generalization is the
ability of ANN to respond to a new input pattern that is different from the inputs
in the training set. It takes the ability to learn and self-adjust a step further

(Dayhoff, 1990; Hassoun, 1995).

10. Neurobiological Analogy

ANNSs can guide the research of biologists and engineers for new ideas to solve
complex problems. For example, in functional electrical stimulation control
systems, ANNs have been employed for feedback or adaptive control to assist

paraplegic walking (Tong and Granat, 1998).
Since ANNs are driven by input and output data, this data-driven approach of ANN is

also seen as its major limitations. ANN is based on an inductive modelling approach. It

learns by examples presented to it. There is no causal knowledge presented to it. ANN
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is only capable of relating inputs to outputs. Learning rules used in ANN are implicit
and not easily comprehensible. Specially, it is not based on biomechanical structures.
Thus, it is unable to provide insight into the decisions that are made (Lapham and

Bartlett, 1995).
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2.2.5 Types of ANNs

Generally there are two characteristics that divide ANNS into different categories:
o Whether the network is given the correct answer during training, or whether the
ANN is left to figure this out for itself.
o Whether the data flows through a ANN in the forward direction only, as
opposed to both forward and backward (Neuralware, 1991).
The ANNs are subdivided into two types of ANN (supervised learning ANN and
unsupervised learning ANN) according to the first characteristic. These two types of
ANNs have been mentioned before (see section 2.2.3.1.2). The networks mainly fall

into the following two categories according to the direction of data flow.

1. Feed-forward Neural Networks

It is a network where data flows only in the forward direction. It is faster than feedback
ANNs and they are guaranteed to reach stability. Feed-forward networks are very
popular due to their relative simplicity and stability. Back-propagation network (BPN)
is an example of a feed-forward network and used for a variety of applications
(NeuralWare, 1991). It is trained by supervised learning and has been broadly applied to
character recognition, sonar target recognition, image classification, signal encoding,
knowledge processing, and a variety of other pattern-analysis problems (Dayhoff,
1990). This learning rule has been widely used in gait analysis (Barton and Lee, 1997)
The back-propagation learning algorithm involves a forward-propagating step followed
by a backward-propagating step. Both steps are done for each pattern presentation

during training.
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II. Feedback Neural Network

Networks with connections that allow data flow both forward and backward are called
Feedback networks (NeuralWare, 1991). Feedback loops permit trainability and
adaptability. In some clinical studies, ANNs have been used for feedback or adaptive
control to assist paraplegic walking (Tong and Granat, 1998). Recurrent Neural
Networks is an example of feedback networks. It is a network with closed loops. It can

perform functions like gait control or energy normalisation and choosing a maximum in

complex system.
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2.3  Applications of ANNs in Gait Analysis

Recent literature show that the applications of ANNs in gait analysis fall into two major
categories: (1) Classification of gait patterns. (2) Prediction of gait parameters and

variables.

2.3.1 Classification of Gait Patterns

The knowledge processing ability and pattern recognition ability of ANNs have been
applied in gait research. Investigators have developed several ANNs to automatically
classify a person’s gait or diagnose a walking condition with neural networks. The most
common application in gait analysis is to identify normal/abnormal gait patterns (Wu
and Su, 2000). In a study undertaken by Hastings, Vannah, Gorton, and Masso (1995)
the gait parameters of 52 spastic hemiplegia children were used to train an ANN for
recognizing hemiplegia gait type. During testing, the network correctly recognised 33
out of 45 trials providing only moderate success (73%). The authors identified lack of
data pre-processing as the main reason for limited success.

Lafuente, Belda, Sanchez-Lacuesta, Soler, and Prat (1997) developed a multilayer
processing elements ANN to classify 97 subjects into four categories (control, ankle
arthrosis, knee arthrosis and hip arthrosis). A feed forward network (one hidden layer)
was trained using 77 subjects with ankle, knee or hip arthrosis and 62 control subjects
without limb pathology. The inputs consisted of cadence, velocity and parameterisations
of five kinetic magnitudes. Based on these inputs, a trained three-layered neural network

distinguished the four gait categories with an accuracy of 80%, a statistically significant
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improvement over a traditional bayesian quadratic classifier. This study established the

potential for multi-category classification of complicated pathological gait using ANNs.

Cai, Begg and Best (2000) successfully developed and trained a number of ANNSs to
differentiate between the gait characteristics of young and elderly people using walking
velocity and four statistics of the MTC distribution (mean, standard deviation,
skewness, kurtosis) as inputs. The output layer included two taps (young and elderly
subject). An overall success rate of 83% in identifying the four subjects was found in
this research. The influences of gait variable(s) in the identification process were also
investigated by training and testing ANNs with different combinations of input
variables. The results showed walking speed to be the significant parameter (recognition
rate dropped to 58% without it), but kurtosis did not affect the results significantly.
Skewness affected the results moderately (75% recognition rate without it). This study
indicates that selection of input variables are important and can affect the performance

of ANN in classification.

Barton and Lees (1997) applied ANNs to diagnose gait patterns under three conditions:
normal gait, a simulation of leg length difference (20mm thick sole attached to the left
shoe of subjects) and a simulation of leg mass difference (3.5 kg mass attached to left
lower leg of subjects). The hip-knee joint angle diagrams were pre-processed using time
normalization and also Fast Fourier Transformation (FFT) and acted as inputs. FFT is
an approach to reflect the frequency distribution of temporal signal, which is used in
pre-processing waveforms. ANNs were trained and tested four times with different data
assigned as training and testing sets. The ANNs showed a success rate of 83% in

identifying gait conditions.
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Holzreiter and Kéhle (1993) also successfully trained an ANN to distinguish ‘healthy
from pathological’ gait using FFT coefficients computed from vertical components of
two ground reaction forces as inputs. The data set comprised of 8173 pairs of footstrikes
from 94 healthy and 131 pathological gait patterns. The data were randomly split into

training and test sets. The results showed correct assignment (success) of about 95%.
A well-trained ANN appears to have good performance in knowledge processing. A

large number of training data and also an appropriate data pre-processing technique are

important to improve an ANN’s performance.
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2.3.2 Prediction of Gait Parameters

The highly non-linear modelling ability of ANN has encouraged researchers to use
ANN techniques to map the elusive relationships, which have traditionally been
difficult to model analytically, such as the relationship between EMG signal and muscle
force. To date it is well accepted in the scientific community that the EMG signal is
qualitatively related to the force produced by muscle. Past research has investigated the
quantitative nature of the EMG-force relationship in skeletal muscles (Nussbaum,

Martin, and Chaffin, 1997), but with limited success for dynamic contractions.

Savelberg and Herzog (1997) used a back-propagation neural network approach to
predict cat gastrocnemius muscle force from EMG. Tendon forces and EMG signals
were recorded from three cats when they walked at four different speeds. The ANN was
trained with input consisting of averaged and rectified EMG values from current and
previous 29 steps. The desired output consisted of the tendon force at current time.
Intra-session, intra-subject and inter-subject generalization abilities were investigated.
The neural network predicted the tendon force accurately from EMG in all three levels
of generalization with cross-correlation coefficients ranging from 0.72 to 0.98. Based on
the study of Savelberg and Herzog (1997), Liu, Herzog and Savelberg (1999) further
investigated the ANN prediction of time—varying tendon force from EMG signals and
10 kinematic parameters with better prediction, in which the cross-correlation
coefficients exceeded 0.91 in all cases. These results showed that the addition of

kinematics improved the prediction of tendon force.
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Sepulveda, Wells and Vaughan (1993) used an ANN to model the relationship between
lower limb joint dynamics and muscle activity. They developed two sets of ANNs to
map two different transformations: a) EMG data onto joint angles, and b) EMG data
onto joint moments. Data for 16 lower limb muscles and three joint moments and angles
(hip, knee and ankle) were obtained from the literature (Winter, 1987) to train and test

the ANNs. Test results showed a difference of less than +4.3° for the knee joint angle
and +7.7Nm for the ankle joint moment. These differences translated to less than 7%,

highlighting the ANN’s good predicting ability.

Savelberg and de Lange (1999) successfully trained an ANN to predict horizontal fore-
aft component of the ground reaction force from insole foot pressure patterns. Five
subjects participated in this study. The input variables were obtained from six gait trials
from each subject. The pressure values for the eight selected regions of each trial were
used to represent the characteristics of insole pressure. Hence, there were 48 input
variables, and the output layer was the corresponding fore-aft component of the ground
reaction force (Fy). The cross-correlation coefficients for intra-subjects showed that the
amplitudes of both predicted deceleration and acceleration peaks of the F, pattern
differed by less than 10% from the desired ones. Also, the error in the timing of the
signal (instant of reaching peak values and instant of zero crossing between deceleration

and acceleration phases on the F, time series) was estimated to be less than 25ms.

Prentice, Patla and Stacey (2001) developed an ANN to predict EMG activity of an
individual walking to represent the general activation pattern of a particular gait
condition. A three layer ANN was trained with 21 inputs (kinematic representation of

the actual limb movement) and 8 outputs (the muscle activations of 8 muscles of the
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lower limb and trunk). The tested results showed that the predicted EMG patterns
closely matched those recorded experimentally. Most muscle/gait conditions (94 out of
96) had root mean square error less than 0.10, exhibiting the appropriate magnitude and
temporal phasing required for each modification. The highly non-linear mapping ability
between inputs and outputs of ANN facilitates the prediction of gait parameters, which

are difficult to be predicted using traditional methods.

24  Data Pre-processing

Generally, proper pre-processing of input variables and post-processing of output
variables are necessary for good generalization performance of ANNs (Chau, 2001b).
Sometimes, direct use of raw gait data causes saturation of PEs when the input values
are too large (NeuralWare, 1991; Vaughan, 1997). ANN software usually uses a
MinMax table, which is a pre-processing facility, to compute the 'lows' and 'highs' of
each data field. Then, ANN computes proper scale and offset for each data field to
avoid saturation of PEs (NeuralWare, 1991). Savelberg and Lange (1999) developed an
ANN without pre-processing facility, and used a normalization technique to normalize
the output signals (the fore-aft component of the ground reaction force) to values
between —1 and 1. This range corresponded to the output range of the sigmoid transfer
function used in the output layer of the ANN. Shi and Eberhart (1998) developed an
ANN to differentiate sleep from wakefulness. Actigraph data were pre-processed by

dividing by the maximum value.

In fact, pre-processing the raw data is a judicious way to select input variables (Chau,

2001b). Using all available variables would result in a very large ANN that would be
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difficult to train with the available computing resources. Proper pre-processing of raw
data, therefore, is necessary to improve the efficiency and performance of ANNs

(Dayhoft, 1990).

FFT is an approach to reflect the frequency distribution of temporal signal, which is
used in pre-processing waveforms. It is usually regarded as a feature extracting
function, which reduces the size of the pattern but still preserves the features of the
curves. Barton and Lees (1997) used FFT to pre-process raw joint angle data during gait
(hip and knee angles against time). 128 values in constant time intervals were obtained
by normalization in time. FFT resulted 64 real coefficients and 64 imaginary
coefficients. The coefficients of the lower frequencies were used, and resulted in 30
input variables. Holzreiter, and KOhle (1993) used similar techniques (FFT) to pre-
process the raw data (the vertical force components of the measured gait patterns) as
well. Previous research more or less used some form of data pre-processing techniques
to pre-process raw data to generate effective inputs for ANNs such as FFT, scaling,

normalization, rectification and averaging (Chau, 2001b).
2.5  Multiple Linear Regression Model vs ANN Model

Multiple linear regression (MLR) model, a powerful prediction tool, is commonly used
in various research areas (Aron and Aron, 1999). The general purpose of MLR is to
learn more about the relationship between several independent or predictor variables
and a dependent or criterion variable (Hair, Anderson, Tatham and Black, 1992). In
general, MLR procedurés estimate a linear equation of the form (Aron and Aron, 1999;

Hair, Anderson, Tatham and Black, 1992).
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Y=a+b*X; +by*Xs + ... + b,*X,
Where,

Y: the dependent variable

Xj, X,... Xp: the predictor variables

by, ba..bp: raw score regression cofficients

a: the regression constant

MLR model has been widely used in biomechanical field (Chau, 2001a, Marras,
Jorgensen, Granata and Wiand, 2001; Jorgensen, Marras, Granata and Wiand, 2001).
Some researchers have compared the performances of MLR and ANN model. Herren,
Sparti, Aminian and Schutz (1999) used both MLR and ANN methods to predict
running speed and incline. Three parameters (e.g. parameters for speed were variance of
frontal acceleration of the heel, variance of the frontal acceleration and median of the
frontal acceleration of heel) that showed the best correlation with speed (or incline) by
stepwise regression were used as independent variables for developing MLR. Ten
similar parameters were used to develop ANN. The results showed that ANN allowed
better prediction for speed and incline: the square root of mean square error (RMSE) of
speed was 0.12ms™!, which was 0.5% lower than that obtained with MLR
(RMSE=0.14ms™). For incline, the prediction error of MLR (RMSE=0.0263 rad, 2.63%
slope) in incline was higher than that with the ANN (RMSE was 0.0142 rad, 1.42%

slope).

During the last decade, the excellent relationship mapping ability of ANN has solved

many complex problems in gait analysis. Furthermore, its flexible modelling ability

facilitates the prediction of gait parameters, which are usually difficult to measure
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(Chau, 2001b). Best, Begg and James (1999) reported that the long-term MTC data
(about 1500-3000 gait trials) could be used to evaluate the probability of irregular
tripping during locomotion. Nonetheless, it involves extremely time consuming MTC
data collection and analysis procedures. Also, it is restricted by the walking ability of
subjects eg. children and frail elderly are not able to walk on a treadmill for half an
hour. For that reason, a methodology needs to be developed that is able to predict long-
term histogram characteristics of MTC data based on the characteristics of MTC

collected from fewer gait trials, so that probability of tripping can be estimated.

Based on the literature described in the literature review section, the non-linear
modelling and knowledge processing abilities of ANN provide encouragement for the
development of ANN system for predicting the characteristics of steady-state stabilized
MTC data. Particularly, the ANN system is required to be developed to predict MTC
characteristics relating to 30-minute gait recording from MTC data characteristics
relating to fewer gait cycles e.g., 2-minute gait data. If this could be successfully done,
then, it would enable tripping probability to be calculated from fewer gait trials, e.g.,

using 2-minutes gait data.
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CHAPTER THREE

IMPORTANCE OF THIS RESEARCH

Gait analysis involves collection of a number of gait trials. Gait parameters,
nevertheless, are variable. Traditionally, people use trials (5-25) to record gait
parameters. Increasing the number of gait trials would help researchers to obtain
stabilized gait parameters. There are many constraints including time, cost and disability
of the subject that affect the sample size and research efficiency. There is a
demonstrated need for research into modelling the relationship between gait
characteristics derived from fewer gait trials and that derived from steady-state gait
trials. The non-linear modelling ability of artificial neural network is demonstrated in

this study.

The importance of this research is that this is the first study that investigates the
possibility of using ANNSs to predict stable characteristics of gait parameters, based on
the characteristics of those parameters during the initial gait trials. The ANN technology
has been widely used for classifyingr the characteristics of gait and modelling the
relationship between the muscle forces and EMG signals during gait. There is no

previous study to use the non-linear modelling ability of ANN to predict the stabilized

gait parameters.

This research would improve the efficiency of research in collecting reliable gait data

by requiring fewer gait trials per subject, specifically for trip probability testing (e.g.



Best, Begg and James, 1999). Furthermore, it would help researchers to obtain reliable
data for those subjects who are not able to walk for a long time (e.g. frail elderly,

pathological subjects and children).

During the last decade, ANNs have been used in various biomechanical applications
with great success rates. Nonetheless, there has been limited application in gait analysis
and biomechanics, and many of the studies look at classifying normal and pathological
gaits. ANNs are particularly suitable for mapping the complex non-linear relationships
between inputs and outputs. This research explores the exciting ANN technology for its
suitability for predicting gait data and promotes further development of ANN

technology in biomechanics.
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CHAPTER FOUR

RESEARCH OBJECTIVES

4.1 General Aim

» To develop ANNs and investigate their ability to predict stabilized gait

characteristics from gait characteristics of fewer trials.
4.2  Specific Aims

» To derive MTC data during gait and calculate Mean (M), Standard Deviation (SD),
Skewness (S), Kurtosis (K).

» To develop ANNSs and test performance of long term stabilized data prediction.

» To investigate the effect of data pre-processing on prediction accuracy.

» To examine the effect of data segment lengths on prediction accuracy.

»

To compare statistical prediction and ANN prediction accuracies.
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CHAPTER FIVE

METHODS

51 Subjects

Foot motion data and minimum toe clearance (MTC) data during 30 minutes of
continuous gait trials on a treadmill were used to develop the ANNs. Twelve subjects’
data for ANN training were obtained from the Biomechanics Unit’s ‘gait database’.
Another twelve subjects’ data were collected and analysed in the Biomechanical Lab of
Victoria University. Currently, it takes about 18 hours of video digitisations time alone
for each subject. Altogether 24 subjects’ data were analysed during the time frame of
this Masters project. The population studied comprised of twenty-four subjects with
mixed gender (15 female and 9 male) and aged 19-79 years. Their health conditions
were known by feedback via a questionnaire. Table 5.1 shows individual subject

characteristics. The average age for all subjects was 37.1years.

Young subjects included Human Movement students at Victoria University, friends and
work colleagues. All subjects had prior experience of treadmill walking and jogging.
Elderly subjects were recruited from walking groups, local gymnasiums and the local
neighbourhood. Each of the elderly subjects included in this study were regular walkers
and were free of any injuries, musculoskeletal conditions or visual impairments that

would affect normal locomotion.

60



5.2

Table 5.1 Individual subject characteristics. Y=Young, E=Elderly, M=Male, F=Female

SUBJECT | GENDER |AGE (YRS) |BODY MASS (KG) |STATURE (M)
Y1 F 28 55.8 1.65
Y2 F 27 62.6 1.75
Y3 F 24 53.6 1.60
Y4 F 30 77.2 1.66
Y5 F 28 84.2 1.66
Y6 F 29 58.2 1.67
Y7 F 28 65.2 1.65
Y8 F 34 64.3 1.67
Y9 F 31 62.1 1.65
Y10 F 28 70.1 1.76
Y11 M 29 77.5 1.85
Y12 M 23 66.3 1.76
Y13 M 22 80.1 1.74
Y14 M 29 82.1 1.82
Y15 M 34 87.2 1.78
Y16 M 30 84.1 1.82
Y17 M 33 64.3 1.66
Y18 M 19 62.3 1.71
Y19 M 27 74.9 1.84
E1 F 70 61.4 1.52
E2 F 65 63.2 1.63
E3 F 67 67.2 1.71
E4 F 77 75.2 1.60
E5 F 79 68.2 1.54
IAverage 37.1 69.5 1.70
SD 18.2 9.4 0.1
Apparatus

Peak Motus system (Peak Performance Technologies Inc,. USA) was used for
video digitisation, accessing and retrieving foot motion and MTC data from 30-

minute gait trials under normal walking conditions on a treadmill.

Neural Works Professional II/Plus 386 software (NeuralWare. Inc., USA) was

used to develop and test 12 sets of ANNs.
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® SPSS version 10.0 software (SPSS Inc., USA) was used to calculate statistical
input and output variables for ANNs. Also during data analysis SPSS was used

for comparing the desired output and predicted output by ANNS.

o Fast Fourier Transformation (FFT) software (Victoria University) was used for

pre-processing of MTC data.

e IBM Pentium 133 MHz computer was used for building, training and testing

ANN:Ss.

5.3  Procedures for Collecting MTC Data

5.3.1 Data Collection

All of the foot motion data in this study were collected via a 50 Hz video on subjects

during their normal treadmill walking using PEAK 2D motion analysis procedures.

5.3.1.1 Treadmill Set-up

Two, 2.5cm spherical, reflective reference markers were attached to each end of the
treadmill for a 1.6m distance calibration required for the Peak motion analysis system.
Another two, 2.5cm spherical, reflective markers were attached to each subject’s left

shoe at the great toe (TM) and 5™ metatarsal head (MH) for analysing the motion of the

foot during swing phase (see Figure 5.1).
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Figure 5.1 Placement of reflective markers on left foot and treadmill

5.3.1.2 Treadmill Walking Task

All subjects were asked to walk continuously on the treadmill for at least 30 minutes at
a self-selected comfortable walking speed without holding safety rails. A self-selected
walking speed is regarded as the best representation of overall walking performance
(Kerrigan, Todd, Della Croce, Lipsitz and Collins, 1998). The longer period of walking
was required to obtain MTC histogram for deriving stable MTC characteristics and

probability of tripping calculation (see Best, Begg, Ball and James, 2000).

Subjects were requested to wear their own flat, comfortable shoes which would be
suitable for walking (black shoes were preferred) and wear something cool due to the
constant warm temperature regulated in the laboratory. All subjects were briefed on the
use of the treadmill as a safety precaution. The protocol for data collection was

approved by Human Research Ethic Committee at Victoria University.
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5.3.1.3 Recording the Stationary Foot for Foot Modelling

In order to obtain the minimum toe clearance data for each stride during the walking
task, a clear outline of the left shoe was required for the foot modelling procedure
designed to calculate foot end-point (at the toe where it would contact the ground in the
event of a trip). This technique is described in the Data Analysis section 5.3.2 (refer also
to Figure 5.3). Hence, at the end of the walking task, experiment operator asked subjects
to stand on the stationary treadmill with their left foot slightly elevated, and checked the
video monitor to ensure the outline of the shoe. Specifically the bottom edge of the shoe
was clearly visible. A light coloured sheet was place behind the shoe of subject who
wore dark coloured shoes, which blended into the background of the darkened walls, to

ensure a clear outline.

5.3.1.4 Experimental Set-up

Foot motion data were collected via a S0Hz video of subjects during their normal
treadmill walking. A camera was positioned 9m from the treadmill, perpendicular to the
plane of motion. Whittle (1991) indicated that perspective error during kinematic
analysis in the sagittal plane is quite small compared to that in the frontal plane. The
9m-distance, in conjunction with the camera positioned at right angles to the
participated foot clearance during swing phase, should eliminate perspective error (refer
to Figure 5.2). The video camera with a shutter speed of 1/1000s, recorded a minimum

of 30 minutes steady state, unobstructed treadmill walking.
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Figure 5.2 Experimental Set-up
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5.3.2 Data Analysis

5.3.2.1 Digitising Using the Peak Motus System

Two-dimensional calibration procedures were performed using the two markers at each
end of the treadmill (refer Figure 5.2). The distance between these two markers were
preset to be a reference distance (e.g. 1.6m). These two markers were each manually
digitised using the Peak Motus system. Then, Peak Motus calculated the average
vertical, horizontal coordinates of the two reference markers on screen, and converted
screen coordinates to real distance based on the information given by the operators.

These coordinates were then used as the calibration for the entire trial.

Fifth metatarsal head (MH) and great toe (TM) markers were automatically digitised in
the Peak Motus system for the entire walking task. Peak Motus system performed the
location of the two markers and calculation of the 2D trajectories of the two markers as
a function of time. Since the MTC value is directly related to the foot end-point, the foot
end-point during entire waking task was predicted using a 2D geometric model (Figure
5.3). This process involved manual digitisation of foot end-point and automatic
digitising of TM and MH for 0.5 second of video data (about 25 video field) and the
Peak Motus system calculated the mean horizontal and vertical coordinates of each

digitised point (TM, MH and foot end-point).
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5.3.2.2 Geometric Model of the Foot

Peak Motus data were exported to a Microsoft Excel spreadsheet. A geometric model of
the foot was used to predict foot end-point (PTP) at the toe where it clears the ground,
which is used to calculate the MTC for each stride, as shown in Figure 5.3. The model

calculates P3 (PTP) from MH (P;) and TM (P,) coordinates.

Figure 5.3 Geometric Model of the left foot (adapted from James, 1999)
P,= TM marker; P, = MH marker; P;=PTP

The foot (and foot model) is shown here at mid-swing.

The vertical coordinate of the predicted toe position (PTP), y (P3), was calculated using

the following equation:

y(B)=y(P)-d Equation 5.1
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The vertical position of PTP, y(P3), reaches a minimum value (y(P3)min; see Figure 5.4)
during the left swing phase. Consequently, MTC data can be calculated for each gait

cycle:

MFC = y(B) i, — Y, Equation 5.2

where y, is the ground reference, calculated as the minimum vertical coordinate of the
manually digitised PTP. The vertical displacement of TM marker and PTP is shown in
Figure 5.4. PTP vertical displacement is less than that of TM, and is likely to be an

accurate representation of the foot end-point.

145 -
—_ T\
135 { |——PTP
125 Toe-Off PTPmin

115

105

Vertical Displacement /

Foot Strike Foot StrikeT

Figure 5.4 Vertical Displacement of TM and PTP Markers (adapted from James, 1999)
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5S4  Development of ANN
5.4.1 Selecting Input Variables

In a recent review article, Chau (2001b) has emphasized the importance of proper pre-
processing of input variables for good generalization performance of ANN:S. In order to
find out the effect of pre-processing of input variables to predict the stabilized MTC
characteristics, seven ANNs were developed. 2-minute data were derived from 30-

minute gait trial for each subject using the following equation:

2-minute data =2*(the number of gait trials during 30 minutes walking/30) Equation 5.3

As gait trials must be an integer number, the closest integer of the result was taken as

the 2-minute’s data.

The output of the ANNSs had four statistics (mean, M; standard deviation, SD; skewness,
S; kurtosis, K) derived from 30-minute gait trials, which were considered as stabilized

MTC characteristics. The equations for calculating these four statistics are as follows:

X
M= ;— Equation 5.4
N

Equation 5.5

SD:\/M
N

DX -Mm) .
S = Equation 5.6
(N -1SD*

69



D, (X -M)* .
K = N 5D -3 Equation 5.7

The skew for a normal distribution is zero, and symmetric data would also have
skewness equal to zero. Negative values for the skewness indicate that data are skewed

to the left and positive values for the skewness indicate that are skewed right.

The kurtosis for a standard normal distribution is three and the standard normal
distribution is commonly considered that it has a kurtosis of zero from equation 5.7-3.

[4

Positive values calculated from Equation 5.7 indicate a “peaked” distribution and

negative values indicate a “flat” distribution (Aron and Aron, 1999).

Seven different combinations of input variables were generated using the following data
transformation techniques:
(a) Actual data normalized in time

Using actual data is a simple approach to represent the characteristics of MTC. The time
intervals for 2-minute gait trials were normalized to 30 data points. Thirty actual MTC
values were extracted for each subject by evenly dividing the number of gait trials into

30 intervals, and using the following formula:

V.= [(V,.2 —V“)*d]+ Vi Equation 5.8
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where, V; is the MTC value at interval i. Vi, is MTC value at the integer next to i (e.g. if
i=3.6, then Vi, is the MTC value at interval 4), and V;; is MTC value at the integer
before i (e.g. if i=3.6, then Vj; is the MTC value at interval 3). d is the decimal part of i,

1e. 0.6.

These 30 actual MTC values were used as input variables for both training and test sets.

(b) Fast Fourier Transform (FFT) Coefficients

The Fourier Transform is a mathematical technique for resolving a time-domain
function into a frequency spectrum. It is an algorithm, which converts a sampled
complex-valued function of time into a sampled complex-valued function of frequency
(Chau, 2001b). In this study, FFT software transformed the MTC data to their
equivalent frequency domain coefficients (see Figure 5.5) and has been used in many
studies for pre-processing input signals (Barton and Lee, 1997). FFT results in a set of
FFT coefficients (real and imaginary). This was done using custom made Fourier
transform software developed at Victoria University. As most useful information of a
curve is mainly present in the low frequency region (Barton and Lees, 1995), the
coefficients relating to lower frequencies i.e., the first 30 coefficients (15 real and 15
imaginary) were selected for input to the network. This method of input data pre-
processing has been used by other investigators (Sepulveda, Wells and Vaughan, 1993;

Barton and Lees, 1997) and shown to be an effective method for feature extraction.
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Figure 5.5 Output of FFT software showing time and frequency domain data. The graph on the top
shows 15 minutes MTC data (time domain) for subject Y10. The graph on the bottom of the

screen shows the equivalent MTC data (frequency domain) for subject Y10.

(c) Statistical parameters

Nine statistical parameters (Mean, Sum, SD, Minimum, Maximum, Variance, Range,
Skewness and Kurtosis) were calculated from the MTC distribution for each of the input
time intervals using the SPSS program (Aron and Aron, 1999). These parameters have
been reported to represent main characteristics of a distribution function (Aron and

Aron, 1999), and were used as inputs for both the training and test sets.

In addition to above three data types, combinations of these were used to test the
effectiveness of data pre-processing on outcome results.
(d) Actual data + FFT coefficients (60 inputs)

(e) Actual data + Statistical data (39 inputs)



(f) FFT data + Statistical data (39 inputs)

(g) Actual + FFT + Statistical data (69 inputs)

Hence, combined with three pre-processed inputs, altogether seven different

combinations of inputs were generated.

5.4.1.1 Development of Back Propagation Network (BPN)

54.1.1.1 Basic Structure of an ANN Developed for this Study

Back-propagation network (BPN) model has a number of advantages over other models
(e.g. simplicity, easy to use and implement). In addition, it often acts as universal

approximator for wide range of problems (Chau, 2001b; Dayhoff, 1990).

The typical structure of the developed BPN network is shown in Figure 5.6. The output
layer had 4 processing elements (PEs). They were stabilized M, SD, S and K. The
number of PEs making up the input layer depended on which combination of inputs was
used to train and test the ANN (e.g. 30 PEs made up the input layer if only FFT
coefficients were used as inputs). The number of PEs and layers making up the middle
hidden layer changes from application to application and also depends on the
complexity of the relationship between input and output data. As there is no precise rule
to calculate the number of hidden layers, the number of PEs per layer required for
convergence of training were determined experimentally. Chau (2001b) and
NeuralWare (1991) have recommended that the BPN network developed with a single

hidden layer, which includes sufficient PEs, can approximate any continuous function,
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regardless of its complexity. According to these studies, a three-layered BPN network is
able to model any complex relationships. For that reason, in this study, all ANNs were

developed with a single hidden layer.

The number of PEs in a hidden layer depends on inputs and outputs (NeuralWare,

1991):

Hidden layer PEs = (inputs +outputs) * (2/3) Equation 5.9

For example, a hidden layer between 20 inputs and 4 outputs would need 16 PEs.

The procedure underlying the development of the ANNs was followed (NeuralWare,

1991) and a number of tests by increasing and decreasing the number of PEs that

resulted from above calculation (equation 5.9) were also conducted to find out the best

structure of the BPN.

Output Variables

Hidden layer PEs

Inputs Variables

Figure 5.6 The basic structure of a BPN
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Seven different BPN architectures, as shown in Table 5.2, were constructed to
investigate the effect to BPNs’ performance with different combinations of inputs. All
the BPN configurations shown in Table 5.2 are the final ones, which had the best

performance after numerous testing by adjusting the number of PEs in the hidden layer.

Table 5.2 Details of BPNs configurations. These configurations provided the best performance after

hundreds of tests were conducted by adjusting the number of PEs in the hidden layer.

PEs in the PEs in the
BPN Input variables Input PEs
hidden layer | output layer

Net 1 | 30 FFT coefficients 30 22 4
Net 2 | 30 Real MTC data 30 22 4
Net 3 | 9 statistics 9 8 4
Net4 | 30 FT +30 Real data 60 32 4
Net 5 | 30 FT + 9 statistics 39 38 4
Net 6 | 30 Real data + 9 statistics 39 28 4
Net 7 | 30 Real data +30 FFT+9statistics | 69 32 4

5.4.1.1.2 ANN learning and Transfer Function

ANN (NeuralWorks’ professional II/plus software package) was used in designing,
training and testing of the network. In this research, the “BackProp Builder” was
employed to build different network configurations. It is a powerful tool that provides a
fast and easy way to build networks by starting the standard network types and then

adding necessary modifications. The standard network with particular learning rule and
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transfer function can be selected for training the desired network. Furthermore, the

number of layers and the number of PEs in each layer can be specified by the user.

The “delta rule” learning combined with “Sigmoid Transfer Function”, which generated
the best results after various preliminary tests, was used to develop the BPNs. The

actual weight update equations for the delta rule are as follows (NeuralWare, 1991):

w; =w; +C % *x, +C, *m, Equation 5.6
m; =w; —w; Equation 5.7
Cy: learning coefficient 1 from the appropriate column of the learning and

recall schedule.

Cs: learning coefficient 2.
X input to the i PE.
Wi initial weight vector for the i PE. wj is the connecting weight from the

™ input to the i PE.

w;': the weight vector after it has been updated by the learning rule. w;" =
(Wio', Wir', ... Win)

e the error vector. If the current layer is the output layer, e is either the
current error or the current error transformed by the derivative of the
transfer function. Otherwise it may be the accumulated, transformed
back-propagated error. The components of e are e = (e;....e,) Where e; 1s
the error for the iy, PE in the current layer.

m;: the memory of last change in weights for the i PE in the current layer.
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The weights are changed in proportion to the error (e) and the input to that connection

(x). The weight is updated when every pair of inputs and outputs are presented to the

BPN.

5.4.1.2 Training and Testing Procedures

BPNs usually work well with large input data sets. Due to time constraints on data
collection and analysis, MTC data of only 24 subjects were used for training and testing
the BPNs. The training data set included 20 subjects’ data and the test set had 4 subjects’
gait data. Because of the limited number of subjects, the data were split into training and
testing sets in six different ways, in order to cover the whole data range. In each group,
there was an allocation of 16.7% of the total data to the test set, as shown in Table 5.3.
The subjects’ data in the shaded box were assigned to the testing set whereas data in the
light boxes were assigned to the training set. Thus, each BPN was trained and tested six

times. Similar method was also used by Barton and Lees (1997).

Table 5.3 Six ways the subject data were split into training and test sets. Subjects in shaded box were

assigned to test set, and the remaining subjects in that column were assigned to the training set.

Subject 1-4 Subject 1-4 Subject 1-4 Subject 1-4 Subject 1-4 Subject 1-4
5-8 5-8 5-8 5-8 5-8 5-8
9-12 9-12 9-12 9-12 9-12 9-12
13-16 13-16 13-16 13-16 13-16 13-16
17-20 17-20 17-20 17-20 17-20 17-20
21-24 21-24 21-24 21-24 21-24 21-24
Groupl Group 2 Group 3 Group 4 Group 5 Group 6

The training strategy adopted and which led to repeatable results was as follows:
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1) Delta learning style was used for adjusting the connection weights.

2) Sigmoid transfer function was used to transfer the internally
generated sum for each PE to a potential output value.

3) 20 trials (epochs) with a decreasing learning rate ranging from 0.25
to 0.00001 was set.

4) 50000 iterations were used to train the BPN and the “Save best
function” with test interval set to 3000 was selected to prevent over-

training the BPN.

The details of training and testing data for Net 1, 2 and 3 are shown in Tables 5.4.1a to

5.4.1¢ in Appendix I.

5.4.2  Statistical Modelling to Predict MTC Statistics

Statistical techniques are often used for modelling the relationships between predictor
variable(s) and dependent variable (Aron and Aron, 1999; Herrn, Sparti, Aminian and
Schutz, 1999). In this study, stabilized four MTC statistics were also separately
predicted using Multiple Linear Regression methods. Group 1 data (see Table 5.3) were
used to model the relationship and evaluating its performance. The results were

compared with BPNs’ predictions.

Stepwise forward estimation method operated by SPSS software was used to calculate
the regression coefficients for nine statistics calculated from 2-minute MTC data. This
method is able to find the “best” regression model via examining the contribution of

each predictor variable to the regression model (Hair, Anderson, Tatham and Black,



1992). A general MLR model developed for this research can be written as follows

(Aron and Aron, 1999):

Yi=aiH(b1)(Xm)+(b2i)(Xsp)+(b3i)(Xvariance) T(bai) (Xs)+(0s5i) (Xx )+ (D6i)(Xrange ) (07i) (X imi

mum) (08D (XMaximum) +(09i) (Xsum)

where

Yi: the stabilized statistics (M, SD, S and K calculated from 30-minute data).
ai: the regression constant.

bi: the regression coefficient.

X: the independent variables (nine statistics values, which were calculated

from 2-minute MTC data).

79



5.4.3 Testing BPNs With Inputs Selected at Different Times

The purpose of this test was to investigate whether 2-minute input data taken from
different locations within the 30 minutes data would affect the performance of the

BPNs. Input data were selected from 5 different parts of 30 minutes data as illustrated in

Figure 5.7.
First 2 min Second 2 min Third 2 min Fourth 2 min Fifth 2 min

01234567 8 9101112131415161718192021222324252627282930Minutes
I |

| | | | | >

Figure 5.7 Figure illustrating sampling of input data at 5 different locations.

Four (Net 8-Net 11) additional BPNs were developed to predict the four stabilized MTC
statistics from 9 statistical inputs relating to 2 minutes data. The architectures, learning
style and transfer function of these BPNs were exactly the same as Net 3 shown in
Table 5.2. These networks had 9 statistical inputs, 8 hidden layer PEs and 4 outputs (M,

SD, S K).

The details of training and testing data for developing Net 8 to 11 are shown in Tables

5.4.3at0 5.4.3d in Appendix L.
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54.4  Testing The Performance of BPNs with Different Input Data Segment

Lengths

In this section, the performance of the developed BPN, in predicting steady-state
stabilized MTC statistics from information relating to relatively fewer gait trials, was
investigated. Data relating to relatively fewer gait trials were extracted from the 30-
minute gait trial, and included 10 data segment lengths: the first 5, 10 and 20 gait trials,
and the first 1, 2, 5, 10, 15, 20 and 25 minutes of MTC data. Nine statistical inputs were
separately calculated for each of the above 10 data segment lengths. As the BPN for 2-
minute data has already been developed (section 5.4.1.1), another nine BPNs were
developed. The architectures and training strategies of these BPNs were same as Net 3
(see Table 5.2). The aim of this test is to find out the minimum number of gait trials
required in predicting stabilized MTC statistics. All six groups of data (Table. 5.3) were

used to train and test each of the BPNs.

Table 5.4 Characteristics of BPNs developed to test the effect of input data length on prediction

performance.
PEs in the hidden | PEs in the output
BPNs Input variables Input PEs
layer layer

Net 12 9 statistics (5 trials) 9 8 4
Net 13 9 statistics (10 trails) 9 8 4
Net 14 9 statistics (20 trials) 9 8 4
Net 15 9 statistics (1 minutes) 9 8 4
Net 16 9 statistics (5 minutes) 9 8 4
Net 17 9 statistics (10 minutes) 9 8 4
Net 18 9 statistics (15 minutes) 9 8 4
Net 19 9 statistics (20 minutes) 9 8 4
Net20 | 9 statistics (25 minutes) 9 8 4
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The details of training and testing data were shown in Tables 5.4.4a to 5.4.4i in

Appendix L.

5.4.5 Selection of Input Variables

The performance of a developed ANN is highly sensitive to the choice of the
appropriate selected input variables (Chau, 2001b). Discarding irrelevant variables and
retaining only those that are potentially good predictors of the desired output variables
would enhance network performance. In this section, the performances of BPNs were

investigated by deleting and adding input variable(s) to the nine statistical inputs.

5.4.5.1 Increasing Characteristics of Input Data

In this section, the predicting accuracy of stabilized mean, M, was the focus. The nine
statistics used in previous sections might well represent the characteristics of MTC data
during different segment length. Although these inputs are able to reflect the general
characteristics of MTC distribution, they do not provide information regarding the
instantaneous change of MTC data. Best, Begg, Ball and James (2000) examined the
‘stability’ of MTC descriptive statistics (e.g. mean, SD, skew and kurtosis) as shown in
Figure 5.8, which was derived by plotting each statistic e.g. mean, as they changed with
the addition of new MTC data point. This type of graphical representation clearly
indicates the trend of MTC. The nine statistics used in previous sections might represent
the general characteristics of MTC data during different segment lengths, but they may
not clearly indicate the trend of MTC over time. Hence, more information was added to

the BPNs, to better represent the characteristics of MTC to investigate if this would
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improve the performance of BPN in predicting stabilized statistics, specially the

stabilized M.

Figure 5.8 Stability of MTC mean for one subject for 1 hour (adapted from Best, Begg, Ball and James,

2000).

In order to provide more information to BPNs, 5 additional data were extracted and
added to the input layer. For example, for 15-minute MTC data, 5 cumulative means at
14-, 13-, 12-, 11- and 10-minute time were calculated and added to BPN inputs. Three
BPNs were developed for testing with 15-, 10- and 5 minutes MTC data. Five additional
variables for 10-minute were the mean MTC values for the first 9-, 8-, 7-, 6- and 5-
minute MTC data. Five additional variables for five minutes MTC data were slightly
different. Four of them were calculated from the first 4-, 3-, 2- and 1-minute MTC data,
and last one was the mean value of the first 5 trials’ MTC data rather than the first

single data.

Architectures of these BPNs are shown in Table 5.5. The training techniques of these

BPNs were the same as Net 3 (see section 5.4.1.2). All six groups of data (Table. 5.3)
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were used to train and test these BPNs. Details of training and testing data sets are

shown in Table 5.4.5a to 5.4.5¢ in Appendix 1.

Table 5.5 Characteristics of BPNs developed to test the effect of adding inputs on prediction

performance.
Input PEs in the PEs in the
BPN Input variables
PEs hidden layer output layer
Net 21 | 14 statistics (5 minutes) 14 8 4
Net 22 | 14 statistics (10 minutes) 14 8 4
Net 23 | 14 statistics (15 minutes) 14 8 4
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5.4.6 BPNs Developed for Separately Predicting Four Stabilized Statistics

In previous sections, all BPNs focused on predicting four statistics (M, SD, S and K) at
the same time. BPNs modelled relationships between inputs and four outputs. The
stored interconnection weights between input layer PEs and hidden layer PEs were
related to all four output PEs during training. BPNs learnt the generalized relationships
between input and all four outputs. They did not concentrate on learning the specific
relationship between inputs and one output. The aim of this test was to examine whether
BPNs predicting only one output statistic (e.g. M) would have better accuracy of

prediction compared to the BPNs predicting all four statistics simultaneously.

Eight BPNs were developed to separately predict four stabilized statistics. The inputs
variables used to develop Net 3 (nine inputs calculated from 2-minute data) and Net 23

(fourteen inputs calculated from 15-minute data) were used to develop these eight

BPNss.

5.4.6.1 BPNs Developed with Nine Inputs

BPNs developed in this section were to investigate if separately predicting four statistics
using nine statistical inputs would improve the performance of BPNs. The nine statistic
variables (M, SD, variance, S, K, range, minimum, maximum and sum) derived from 2-
minute MTC data were used as inputs to the BPNs (Net 24, 25, 26 and 27). The output
variables of these four BPNs were respectively stabilized M (Net 24), SD (Net 25), S

(Net 26) and K (Net 27). The architectures of these BPNs are shown in Table 5.6:
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Table 5.6 Characteristics of BPNs developed to test the effect of individually predicting the stabilized

statistics using nine statistical inputs.

Input PEs in the PEs in the
BPN Type of input variables
PEs hidden layer output layer
Net 24 | 9 statistics (2 minutes) 9 8 1 (M)
Net 25 | 9 statistics (2 minutes) 9 8 1 (SD)
Net 26 | 9 statistics (2 minutes) 9 8 1(S)
Net 27 | 9 statistics (2 minutes) 9 8 1 (K)

Six groups of data were used to train and test each BPN (Table. 5.3). The training
strategy adopted and which led to repeatable results, was the following:
1) Delta learning style was used for adjusting the connection weights.
2) Sigmoid transfer function was used to transfer the internally generated sum for
each PE to a potential output value.
3) 20 trials (epochs) with a decreasing learning rate ranging from 0.25 to 0.00001
was set.
4) 50000 iterations were used to train the BPN and the “Save best function” with

test interval set to 3000 was selected to prevent over-training the BPN.

5.4.6.2 BPNs Developed with Fourteen Inputs

The fourteen statistical variables (nine statistics calculated from the first 15-minute
MTC data plus 5 mean MTC values calculated from the first 14-, 13-, 12-, 11- and 10-
minute MTC data) were used as input variables to the BPNs (Net 28, 29, 30 and 31).

The output variables of these four BPNs were respectively stabilized mean (Net 28), SD
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(Net 29), skewness (Net 30) and kurtosis (Net 31). The architectures of BPNs are

shown in Table 5.7:

Table 5.7 Characteristics of BPNs developed to test the effect of individually predicting the stabilized

statistics using fourteen statistical inputs.

Input PEs in the PEs in the
BPN Input variables
PEs hidden layer output layer
Net 28 | 14 statistics (15 minutes) 14 8 1(M)
Net 29 | 14 statistics (15 minutes) 14 8 1(SD)
Net 30 | 14 statistics (15 minutes) 14 8 1(S)
Net 31 | 14 statistics (15 minutes) 14 8 I{K)

Six groups of data were used to train and test each BPN (Table. 5.3). The same training

strategies as described in section 5.4.6.1 were used.
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CHAPTER SIX

RESULTS AND DISCUSSION

In this chapter, the generalization ability of the neural networks was tested using
predicted and desired results. Predicted results of the neural networks were compared
with desired results to calculate BPN errors in their predictions and the implications of
these results are discussed. Both absolute actual error (AAE) and the percentage of error

(POE) of all predictions were determined using the following two formulae:

AAE = absolute (Desired Result — Predicted Result) Equation 6.1

POE = (AAE/ Desired Result)*100% Equation 6.2

The first section compares the performance of BPNs for different pre-processed inputs.
The best prediction is then compared with predictions generated by statistical method
(Multiple Linear Regression). Section 6.2 reports on results of the BPNs with input data
selected from different parts within the total 30-minute duration. Nine statistical inputs
calculated from 2-minute MTC data were used in this testing procedure. The results of
BPNs developed with 10 different MTC data segment lengths are presented in section
6.3 to show how the prediction accuracy would be influenced by the length of input
data. In section 6.4 results of BPNs with increased/reduced inputs are analysed. Finally,
the results of BPNs developed to predict the four statistics individually are compared

and discussed in section 6.5.
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6.1 Optimising BPN Inputs

6.1.1 Effect of Input Variables and their Pre-processing on BPN Performance

In this section, input data are generated based on pre-processing the first 2-min raw
MTC data using three different methods (actual data normalized in time, Fast Fourier
Transforms and statistical technique). As each pre-processing method has its own way
of describing the characteristics of 2-minute MTC data, their combinations might be
able to more comprehensively represent characteristics than that provided by each
individual method. Seven BPNs (Netl-Net7) were developed to predict the four
stabilized statistics with Groupl data (see Table 5.3). The detailed individual results of
the BPNs are shown in Table 6.1a to 6.1g (see testing results for Netl-7) in Appendix

IL.

Table 6.1 shows the overall results of four statistics predicted by the seven BPNs. These
results show that overall all the BPNs had better performance in predicting M and SD,
while had worse performance in S and K predictions. Furthermore, BPNs (Net 1, 4, 5,
and 7), which used FFT coefficients, had largest error in predicting all four statistics.
Net 2 developed with 30 real data performed well in predicting M and SD, nevertheless,
it had poor performance in predicting S and K. The overall performance of Net 3 (nine
statistical inputs) in predicting all four statistics was better than other BPNs. Especially
the predictions for M, SD and S, which are regarded as the most important parameters
for probability of tripping (PT) calculations (Best, Begg and James, 1999), had

reasonable error.
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Table 6.1 Prediction results of Net 1 to 7 developed with Group 1 data.

GROUP 1 M SD S K

Input variables ﬁf) Pf/i')z ﬁf) '?f/:')i AAE | POE(%) | AAE | POE (%)

— ,
et 1 30 FFT coefficients | 0.305 | 28.9 10.084|24.7] 0722 104.7 4660 | 5082
<t 2 |30 Real MTC data ] 0.155 | 12.9 |0.050|139] 0.735 144.4 4778 | 4682
ot 3 |9 statistics 0.139 | 14.2 |0.054[152] 0.186 28.9 2150 | 2217
otd |30 FFT+30 Real | 0.235| 21.9 |0.079]|22.9] 0.626 77.1 4093 | 4644
ot 5 30 FFT + 9 statistics| 0.240 | 27.6 |0.088]25.9] 0.499 62.0 3.002 | 346.2
¢t 6 130 Real + 9 statistics| 0.145 | 12.6 |0.054|153] 0.202 58.9 2210 | 2367
et 3‘;,,1;1;'5;3;’“1“ [0:224 | 211 oos2|242] 0505 69.8 2654 | 3369

6.1.1.1 Good Performance of BPNs in Predicting Mean and SD

Net 2 (30 real data) performed the best predictions for both M and SD (POEM=12.9%
and POEsp=13.9%). Net 6 using the combination of 30 real data and 9 statistics slightly
improved the prediction accuracy for M (POEM=12.6%), but slightly decreased the
prediction accuracy for SD (POEsp=15.3%) in comparison to Net 2. The BPN using the
combination of 30 real data, 30 FFT coefficients and 9 statistics showed decreased
prediction accuracy for M and SD further, with POEy=21.1% and POEgp=24.2%.
These results indicated that increasing input variables sometimes improve the
performance of the BPN, but also sometimes reduced the performance of the BPN.
These also suggested that the input variables should be carefully selected. One of the
characteristics of BPN is its ability to model relationships between inputs and outputs.
This means inputs that provide better correlation with the outputs would result in better

performance by the BPNs. Real data correlated to stabilized M/SD better than the FFT
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coefficients, because the FFT coefficients only represent frequency domain information
of MTC data (see Figure 5.5 in Section 5.4.1) whereas real data provide the exact
values. Then, the FFT coefficients would provide insufficient information to a BPN to
predict a value. Input data including the FFT coefficients was seen to affect BPNs’
performance, because the connection weights between PEs at the input layer and PEs at
the hidden layer were influenced by the FFT coefficients (e.g. Net 1, 4, 5, 7). 9 statistics
were found to describe the characteristics of 2-minute MTC data well. Their inclusion
improved the prediction accuracy for M as shown in Table 6.1. Like real data, the

statistical inputs also provided better prediction for M and SD.
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6.1.1.2 Poor Performance of BPNs in Predicting Skewness and Kurtosis

Table 6.1 shows that the performance of the networks was, in general, poor in
predicting S and K. To understand the reason for this, it is necessary to look at S and K
calculations as shown below. S is a measure of symmetry, or more accurately, the lack
of symmetry (Aron and Aron, 1999). It describes the distribution of MTC data deviated

from a normal distribution curve. Mathematically, the value of S is:

G LK MY
- (N-Ds®

The formula indicates that a data set exhibiting significant positive/negative skew

depends on the result of
> (X -M)

The mathematical equation for calculating K also has been mentioned in section 5.4.1.

Y (x -M) s
(N -1)SD*

Any extreme data point in the distribution would affect K by a power of 4.

The above two formulas provide both polarity and value of S and K. A few extreme

data in the distribution has the potential to affect both S & K significantly compared to
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M & SD (see Figure 2.5 in section 2.1.4). For example, Figure 6.1 shows the first 2-
minute MTC data for subject ES. An extreme MTC data point appeared at the 37" gait
cycle. Four statistics of the first 36 MTC data are M=0.603cm, SD=0.193cm, S=-0.256
and K=-0.259, whereas, after adding this high value (MTC value at the 37" gait cycle) S
and K changed significantly including their sign (S=0.444 and K=1.243), whereas M
and SD had minimal change (M=0.622cm and SD=0.220cm). Even a single extreme
data has the potential to cause a large change in both S and K. Such change in MTC
data may be caused by subject’s change in walking style due to some external
distractions and might affect both the polarity and value of stabilized S and K. If this
type of information were not presented in the input data, it would be unlikely for the
networks to predict the stabilized S and K. Extreme data point(s) have the potential to
affect stabilized S and K values more than M and SD values. If this type of extreme data
are not presented to networks’ training set, BPN would be unlikely to be able to model
S and K accurately. This does not support the initial hypothesis that S and K derived
from fewer gait trials might provide ANN significant information to predict stabilized S

and K accurately.
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Figure 6.1 First 2-minute MTC data for subject ES (E=Elderly). There were 54 gait cycles/trials in 2-

minute treadmill walking test. A high MTC data point appeared at the 37th trial.
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6.1.1.2.1 Polarity of S and K on Prediction Accuracy

In this research, both polarity and value of S and K were predicted by the BPNs. The
above two formulas (see section 6.1.1.2) show that both S and K are related to every
value in a set of MTC data by a power of 3 and 4 respectively. It is possible that one
extreme data could affect either the value or the polarity of S and K (positive/negative).
Calculations for AAE and POE have been described at the beginning of this chapter (see
equations 6.1 and 6.2). It is worth noting that the wrong prediction in the polarity of S
and K could amplify the value of AAE and POE. For example, the desired S for subject
Y8 is -0.238 (negative skew), and the predicted S is 0.804 (positive skew). Calculated
absolute error i.e., AAEg is 1.042, and the corresponding percentage error (POEs) is
437.4%. As shown in the previous section, this reversal of the sign of S is possible even
by one extreme data point. Predicting both the polarity and value of S and K at the same
time introduces more complexity in the development of a BPN. This may be one of the

reasons why the S and K prediction errors are so large.

6.1.1.2.2 Effect of Variability of S and K on the Performance of BPN

The results in Table 6.1 show that the best results in predicting S and K were generated
by Net 3 (POEs= 28.9%, and the POEx=221.7%). It seems to indicate that the nine
statistics were able to better represent the characteristics of MTC data compared to other
inputs. But the POEs were large, especially the POEk, suggesting that these BPNs were
not good predictors, especially for K. In the test, S and K for 30-minute MTC data were

predicted from information related to 2-minute MTC data. Hence, the prediction
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accuracy would depend on how accurately the 2-minute MTC data were able to relate to

S and K for 30-minute MTC data.

Table 6.2 shows a comparison of S and K between 2-minute MTC data and 30-minute
MTC data for all subjects in Group 1. The averaged absolute difference for S is 0.433,
and that for K is 1.195. These data suggest that both S and K of 2-minute data differ
from their respective 30-minute data significantly (except S of subject Y?7).
Furthermore, the polarity of S for subjects E1 and Y8 are completely different when
compared between their 2-minute and 30-minute data (for example, S for 2-minute
MTC data for subject E1 is negative, whereas for 30-minute data it is positive). It was
thought that some significantly high MTC value(s) after 2-minute walking could have

changed the sign of S from a left-skewed distribution to a right-skewed distribution.

Table 6.2 Comparison of calculated S and K between 2-minute data and 30-minute data for individual

subjects in Group 1.

SUBJECTS | 2-MINUTES | 30-MINUTES | ABSOLUTE  miNUTEK | 30-MINUTEK | SBSOLTE
1 0.144 0.511 0.368 0.381 0.716 0.335
E1 -0.200 0.685 0.884 1.408 0.453 0.956
| 2.449 2.456 0.006 6.678 7.145 0.467
8 0.238 -0.238 0.476 -0.430 2,593 3.023
verage 0433 | 1195

Figure 6.2 shows the MTC data for subjects E1 and Y8 during 30 minutes treadmill
walking. Figure 6.2a shows the MTC data for subject E1 significantly changed after the
146" trail (approximately 4.5-minute treadmill walking). The average MTC for the first
146 MTC data is 1.73cm, and the average MTC for the rest of MTC data is 1.1cm. A
number of high MTC data also appeared after the 146™ trial. Those high MTC data

might be responsible to change the distribution from negative skew to positive skew. In
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subject Y8, there are also some extreme MTC data, which are sufficient to change the

polarity of S between 2-minute and 30-minute data. More discussion about this has been

presented in section 6.3.3.1. Hence, it is very unlikely that the BPNs would be able to

find relationships for S and K between their 2-minute and 30-minute data.
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Figure 6.2 MTC data for subject E1 and Y8 during 30-minute gait trials

In summary, human gait is variable, and so is the MTC value from one gait cycle to the

next one (Winter, 1991). Although, the nine statistical parameters have represented the

characteristics of 2-minute MTC data well in predicting M and SD, these inputs provide

insufficient information to the BPNs to correctly predict both the polarity and value of S

and K for 30-minute data.
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6.1.1.3 FFT Coefficients Provided Insufficient Information

FFT has been used in other research as one of the main data pre-processing techniques
to train BPNSs. It is often regarded as a feature extracting technique in frequency domain
or curve fitting function, which reduces the size of the pattern but still preserves the
features of the curve. In some studies, FFT coefficients have been shown to perform
very well as ANN inputs (Barton and Lees, 1997; Holzreiter and KOhle, 1993). These

studies used FFT coefficients in ANNs to classify gait characteristics.

The aim of this study was to predict exact values, and FFT coefficients provided
insufficient information to the BPNs (see Table 6.1). The 30 FFT coefficients used in
this study could extract the feature of the MTC curve, but it perhaps lacks in providing
necessary information to accurately predict exact stabilized statistical values. The
results in Table 6.1 show that Net 1 (FFT coefficients) performed poorly in comparison
to the performance of Net 3 (nine statistics). The prediction accuracies of Net 1 were
fairly low; POEN=28.9%, POEsp=24.7%, POEs=104.7% and POEx=508.2%.
Furthermore, when FFT coefficients were added to the inputs, the performance of the
BPNs deteriorated. For example, Net 3 with nine statistics performed considerably
better (POEy=14.2%, POEsp=15.2%, POEs=28.9% and POEx=221.7%) than Net 5
with nine statistics and 30 FFT coefficients (POEn=27.6%, POEgp=25.9%, POEs=62%
and POEx=346.2%). These results indicate that FFT coefficients did not map well the
relationships between characteristics of MTC data derived from 2-minute data and that
derived from 30-minute data, when applied to predict exact MTC data. The reason why
FFT coefficients could not accurately predict stabilized statistics has been described in

section 6.1.1.1.
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6.1.1.4 Use of Raw Data to Represent MTC Characteristics

30 real data representing the features of MTC data were derived from 2-minute data and
these are perhaps the most direct way to represent the MTC characteristics. The results
in Table 6.1 show that Net 2 with 30 real data better predicted the stabilized M and SD
(POEy = 12.9% and POEsp = 13.9%) than other BPNs. Nevertheless, it poorly
predicted the stabilized S and K (POEs =144.4% and POEx=468.2%). These results
demonstrate that the real values as inputs might efficiently improve the performance of
BPN in predicting M and SD, but might provide insufficient information to BPNs in
predicting S and K. Chau (2001b) concluded that the performance of the BPN is highly
sensitive to the choice of input gait variables. Figure 6.3 shows the extraction of 30 real
data for subject Y1. The diamonds in Figure 6.3 are the actual MTC data for 2-minute
data, and the squares are the 30 real data extracted as inputs. As can be seen from Figure
6.3 although the 30 real data discribes well the trend of the curve well, many small and
large values have been missed out. These missing values can be important to work out

the skewness and kurtosis, as described earlier (see section 6.1.1.2).
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Figure 6.3 Extracted 30 real data for subject Y1. Dark diamonds are the actual MTC data for 2-minute

(112 gait trials). Light squares are the extracted 30 real data.

Table 6.3 shows the four statistics (M, SD, S and K) calculated from 2-minute MTC
data for subjects in the testing data set and also those four statistics calculated from 30
real data extracted from 2-minute data. Results show that both POEy and POEgp are

relatively small (e.g. the maximum POEy =9.4%, and the maximum POEgp =16.9%).

Table 6.3 Comparison of four statistics (M, SD, S and K) calculated between 30 real data and 2-minute
data for all subjects in the testing set (Group 1). Y=Young and E=Elderly. AAE is absolute

actual error & POE is percentage of error.

Both POEs and POEg are very high (e.g. the maximum POEs

———
M (CM) SD (CM) S K

2-min|30 Real| AAE [POE (%)[2-min[30 Real| AAE [POE (%)| 2-min [30 Real| AAE [POE (%)| 2-min [30 Real| AAE [POE (%)]
Y1 [0.950] 0.967 [0.017] 1.8 [0.285 0.247 [0.038] 13.3 |0.144| 1.148 |1.005| 700.0 |0.381[ 2.629 [2.249| 590.4
E1 _|1.753 1.757 [0.004| 0.2 J0.259] 0.216 [0.044| 16.9 }0.200]-0.082[0.117| 58.8 |1.408| 1.417 [0.008] 0.6
Y7 _ [0.434] 0.475 [0.041] 9.4 [0.361] 0.409 [0.048] 13.3 |2.449| 2.724 |0.274| 11.2 |6.678| 7.448 [0.770| 11.5
Y8 [1.962| 1.973 [0.011] 0.6 [0.176] 0.146 [0.030] 16.9 |0.238| 0.193 [0.045| 18.9 |}0.430|-0.596 [0.166| 38.6
Prerage 3.0 |_15.1 197.2 | 1602

= 700%, and the

maximum POEg = 590.4). According to these results, the 30 real data even can not

discribe the S and K of 2-minute data, it is very unlikely that they would be able to

contain enough information for skewness and kurtosis of 30-minute data.
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6.1.2  Prediction Outcomes of Statistical Modelling

Multiple Linear Regression (MLR) statistical techniques have been widely used in
biomechanical analysis for many years (Chau, 2001b). MLR makes predictions based
on associated variables (Aron and Aron, 1999). The results of MLR predictions are
summarized in Table 6.4. The four stabilized statistics were separately predicted for the
four subjects of Groupl based on different predictor variable(s). The results show that
the average AAEs for M and SD were low (AAEn=0.209¢m, and AAEsp=0.064cm).
Also, their POE was less than 20% (POEM=19%, and POEgp=18.3%). But these
prediction errors were more than the corresponding BPN predictions using similar data

(see Net 3, Table 6.1, POEy=14.2%, and POEgp=15.2%).

POEs of predicted S and K by MLR method were too high (POEs=150%, and
POEx=130%). These results indicate that the statistical modeling technique using MLR
was able to predict M and SD with moderate accuracy, but the error was too high when
applied to predict S and K. Also, MLR model performed poorly in predicting the
polarity of S. For instance, S predicted for subject E1 was negative, but the desired
skew was positive. Conversely, the neural network predicted polarity accurately for all
subjects (see Table 6.5). Although the overall POEx of MLR (130%) was less than that
of BPN (221.7%), the prediction error for K was too high. These results indicate that
multiple linear regression modelling perhaps lacks in its ability to describe the complex,

non-linear relationships between 30-minute and 2-minute data.
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Subjects

Table 6.4 Tested results from MLR developed with Group 1 data.

Desired M (cm)

Predicted M (cm)

Absolute Actual

Error (cm)

Percentage of error
(%)

Y1

0.860

1.024

0.164

19.1

1.196

1.076

0.119

10.0

0.502

0.604

0.102

20.3

1.681

2.130

0.449

26.7

Subjects

Desired SD (cm)

Predicted SD (cm)

___0.209

Ablute. Actual
Error (cm)

Percentage of rror
(%)

0.266

0.302

0.036

134

0.378

0.290

0.088

23.3

0.359

0.339

0.020

5.6

0.361

0.249

0.112

31.0

Subjects

Desired S

Predicted S

0.064

Absolute Actual
Error

18.3f

Percentage of error
(%)

Y1

0.511

0.328

0.183

35.8

0.685

0.243

0.441

64.5

2.456

1.311

1.144

46.6

-0.238

0.846

1.085

Subjects

Desired K

Predicted K

Absolute Actual
Error

Perentage of error
(%)

Y1

0.716

0.573

0.143

20.0

E1

0.453

1.810

1.358

299.8

7.145

4.308

2.836

39.7

2.593

6.753

4.160
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Table 6.5 S and K predictions by Net 3 for all subjects in the testing data set in Group 1.

Absolute Actual

Percentage of

Subjects Desired S Predicted S
Error error (%)
Y1 0.511 0.924 0.412 80.7
E1 0.685 0.489 0.196 28.6
Y7 2.456 2.321 0.135 5.5
Y8 -0.238 -0.236 0.002 0.7 ;
verage - 0.186 1289
Subjects Desired K Predicted K | APsolute Actual | Per ‘;fgrt?ge) of
Y1 0.716 2.916 2.200 307.2
E1 0.453 2.589 2.136 471.7
Y7 7.145 9.451 2.306 32.3
1 vs 2.593 0.637 1.957 755 ‘
Javerage 2150 2217
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6.1.3  Overall Performance of BPNs Using Seven Combinations of Inputs

BPN learns relationships between its inputs and outputs by examples presented to it.
Different training samples (examples) can provide BPNs with different relationships to
model. In section 6.1.1, the performances of seven BPNs tested with Group 1 data were
analysed. One group of training and testing data may not be able to correctly indicate
performance of BPNs, because characteristics of the randomly selected 20 training
samples may not fully cover characteristics of the testing data. Generally, the larger the
sample size in training data set, the better the performance of BPN (NeuralWare, 1991;
Holzreiter, and Kohle, 1993). A total of 24 subjects were used in this study because of
time limitation in collecting and processing MTC data. It is therefore, necessary to train
and test BPN with different combinations of training and testing samples (see section
5.4.1.2) to investigate the performance of BPN. This method of testing neural networks
has been used in other studies, e.g. by Barton and Lees (1997). So overall performance
of BPNs (Netl to 7) was investigated using all six groups data (see Figure 5.3 for

division of subjects into groups).

Table 6.6 is the summarized results of predictions by all groups. Detailed individual
results of four statistics predicted by the BPNs are shown in Table 6.1a to 6.1g (testing
results for Netl to 7) in Appendix II. The average results for twenty-four subjects show
that all BPNs performed reasonably well in predicting stabilized M and SD, but not well
in predicting stabilized S and K. The best-predicted M was produced by Net 6 (30 real
and 9 statistics inputs) with average POEy=19.1%. 16 subjects’ POEy were less than
15%. 10 out of 16 subjects’ POEy were less than 10%. Six subjects’ POEy were greater

than 30%. One of subject (E2) had extremely high error with POEy=104.9%. These
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results indicate that 66.6% subjects’ M could be accurately predicted by BPN with

POEM<15%, whereas other 25% subjects had POEp>30%. The possible reason may be

the limited training sample, which could not cover the characteristics of the testing set.

This will also be discussed in later section (see section 6.4.2).

Net 2 (30 real inputs) generated the best-predicted SD (average POEsp=14.3%), but

poor predictions in S (POEs =104%) and K (POEk = 346.6%). Net 1 (with 30 FFT

coefficients inputs) again had the poor predictions for all four statistics. BPNs using real

data had better performance in predicting M than BPNs without them. For example,

POEw from Net 3 (9 statistics inputs) was 22%, while POEy from Net 6 (9 statistics and

30 real data inputs) was 19.1%. Similarly, inclusion of nine statistics inputs also

improved performance. For example, POEy from Net 2 (30 real data inputs) was

21.5%, while POEy from Net 6 (9 statistics and 30 real data inputs) was 19.1%.

However, thirty real inputs did not improve the performance of BPNs in predicting

other stabilized statistics.

Table 6.6 Accuracy of four stabilized statistics predicted by the BPNs (Net 1 to Net 7) developed using

all six groups’ data. Net 1: 30 FFT coefficients, Net2: 30 Real data, Net 3: nine statistical

inputs, Net 4: 30 FFT coefficients+30 real data, Net5: 30 FFT coefficients+9 statistics, Net 6:

30 real data+9 statistics, Net 7: 30 FFT coefficients+30 real data+9 statistics.

¥ spN M SD S K
1 Average Average Average Average Average Average Average Average
AAE (cm) [ POE (%) AAE (cm) | POE (% AAE POE (%) AAE POE (%)

Pet 1 0.395 34.9 0.068 23.0 0.903 149.8 4.869 449.6
Net 2 0.214 21.5 0.054 14.3 0.709 104.0 4.562 346.6
ANet 3 0.240 22.0 0.042 14.6 0.550 84.0 4.062 304.1
BNet 4 0.246 23.0 0.066 22.6 0.836 124.1 5.044 539.1
WNet 5 0.279 26.6 0.053 18.6 0.789 119.6 4.130 230.7
ANet 6 0.218 19.1 0.061 21.1 0.581 119.1 4.267 304.2
Net 7 0.230 21.5 0.054 19.1 0727 | 1124 | 4.061 2731
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Although, real data and nine statistics could potentially improve the performance of
BPNs in predicting M, but their combination did not improve the performance in
predicting other statistics. POEgp increased from14.6% to 21.1% when real data were

added to statistical inputs.

Pre-processing of input data appeared to affect the performance of BPNs significantly.
As mentioned before, FFT coefficients were used quite often and exhibited the excellent
feature extraction ability in previous research (Chau, 2001b). In this study, they
performed poorly in predicting exact statistical values. Consequently, FFT coefficients
were excluded from further study. The real data only provided better performance for M
and SD prediction, but showed decreased performance in predicting others. Thirty real
data points were not able to describe well the feature of long-term data and were
excluded from further testing. The performance of Net 3 (nine statistics) in predicting
all four statistics showed relatively better predicting ability. Any other inputs combined
with nine statistics did not improve the predicting performance of the BPNs
significantly. Among all the input combinations, statistical inputs seemed to be the best

choice, and therefore were used in subsequent BPN training and testing.

6.1.4 Summary of Performance of BPNs Using Different Combinations of Inputs

and MLR Model

Both neural networks and multiple linear regression models showed good accuracy to
predict stabilized M and SD, but performed poorly for S and K. Results show that
prediction results using multiple regression method were not as good as the BPNG.
Multiple regression model incorrectly differentiated the polarity of S, but the BPN (Net

3) correctly differentiated them. Although, overall prediction accuracy was not good for
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BPNs for S and K (POEs=28.9%, POEx=221.7%), in comparison to multiple regression

method (POEs =166.2%, POEx=410%) the predicting ability of BPN was better.

In addition, the results of BPNs developed with different combination of input data
showed that Net 3 (with nine statistics inputs) seemed to perform the best. Nine
statistics seemed to better represent the feature of MTC data derived from different data
segments compared to other pre-pro;essing techniques. There might be three other
possibilities that might affect the accuracy of predictions as discussed below:

1. The MTC data derived from the first 2-minute gait trials may not provide
enough information to the BPNs (Net 3) to predict stabilized statistics.
However, the 2-minute data derived from other parts within the 30-
minute data might provide more useful information to BPN.

2. The MTC data derived from the 2-minute gait trials might not provide
enough information to the BPN (Net 3). Thus, the effects of increasing
more data (data length) to the inputs need to be tested.

3. Nine statistics might not be the best inputs. So effects of additional

information to the BPN inputs need to be investigated.

In the next sections, results from further tests explore the issues raised above.
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6.2 Effect of Different Blocks of MTC Data on Performance of BPN

The aim of this section was to investigate whether nine statistical inputs calculated from
2-minute data segment derived from five different parts of 30-minute data would affect
the performance of the BPNs. BPNs developed in this section were trained and tested
with Group 1 data. The testing results in Table 6.7 and Figure 6.4 show that 2-minute
data taken from different locations generated different results. For example, the best
result for subject Y1 was from Net 8 (7-9min) with POEy of 6.6%, while POEy for the
same subject was 34.8% predicted by Net 9 (14-16min). Corresponding AAEy

increased from 0.057cm to 0.299cm.

K for all the subjects was poorly predicted by all the BPNs. S for most subjects (except
S for Y8 predicted by Net 3 with POEs=0.7%) was also poorly predicted by all the
BPNs. Some BPNs (Net 3 and 8) moderately predicted M (average POEN=20.7%) for
all subjects. SD was relatively predicted well by all BPNs. Average POEs of four
statistics were quite different. None of the four statistical predictions (M, SD, S and K)
show any clear trend (Figure 6.4), meaning the predicting ability of 2-minute data does
not depend on where that 2-minute data is taken. Although SD appears to decrease up to
21-23 min (averaged POEsp=10.5%) and then rise for 28-30 min data (averaged
POEsp=18.2%), it is unlikely that Net 11 (28-30min) was overtrained. This is because
of the set up of overtraining prevention in the network (see section 5.4.1.2). One reason
for the poor SD prediction might be a substantial difference in training or testing data

set (as highlighted in Figures 6.5a and 6.5b).
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30 minutes (Group 1 data and nine statistics only).

R T AR P L 4

Table 6.7 Testing results of BPNs developed with 2-minute MTC data selected from S different parts of

ET 3 M SD S K
-2min IDesired Predicted|AAE (cm)|POE (%)|[Desired|Predicted|AAE (cm)|POE (%)||Desired|Predicted| AAE |[POE (%)||Desired|Predicted| AAE [POE (%)
Y1 0.860 | 0.945 0.086 9.9 0.266 | 0.287 0.021 7.7 0.511 | 0.924 [0.412| 80.7 0.716 | 2.916 |2.200| 307.2
E1 1196 | 1.371 | 0176 | 14.7 || 0.378 | 0.294 | 0084 | 222 || 0.685| 0.489 |0.196] 28.6 || 0.453 | 2.589 |2.136 471.7
Y7 0.502 | 0.606 0.104 20.7 0.359 | 0.330 0.029 8.2 2456 | 2.321 |0.135| 5.5 7.145 | 9.451 [2.306] 32.3
Y8 1.681 | 1.871 0.190 11.3 0.361 | 0.279 0.082 22.6 -0.238 | -0.236 10.002| 0.7 2.593 | 0.637 [1.957] 755
verage 0139 14.2]) _ 0.054] 152 10.186]  28.9]) 2.150 22.1.-.7%
Net 8 M SD s K ‘
-9min IDesired Predicted AAE (cm)|POE (%)||Desired|Predicted AAE (cm)|POE (%)||Desired|Predicted| AAE [POE (%)||Desired|Predicted| AAE |POE (%)
Y1 0.860 0.803| 0.057 6.6 0.266 0.268| 0.002 0.6 0.511 0.735/0.224 43.9 0.716 1.168]|0.452| 63.2
E1 1.196 0.876( 0.320 26.7 0.378 0.321] 0.057 15.2 0.685 1.550|0.865| 126.4 || 0.453 6.686|6.233| 1376.5
Y7 0.502 0.620] 0.118 23.6 0.359 0.311] 0.048 13.3 2.456 1.461|0.995| 40.5 7.145 4.130(3.015[ 42.2
Y8 1.681 2,029 0.348 20.7 0.361 0.245| 0.116 32.1 -0.238 0.293(0.531] 223.0 || 2.593 5.975|3.382| 1304
verago 0211 19.4|] 0056 15.3]] Jo.es4 _1084]| 3.271| 403.1.
Net 9 M SD S K
14-16min | Desired| Predicted| AAE (cm)|POE (%)||Desired|Predicted|AAE (cm)|POE (%)||Desired|Predicted| AAE |POE (%)||Desired|Predicted| AAE |POE (%)
A 0.860 1.159] 0.299 34.8 0.266 0.335| 0.069 25.9 0.511 1.255(0.744| 1454 || 0.716 6.051|5.335| 745.0 r
E1 1.196 1.280| 0.084 7.0 0.378 0.309] 0.069 18.2 0.685 0.601)0.084| 12.3 0.453 2.451|1.998| 441.3
Y7 0.502 0.972| 0.470 93.8 0.359 0.332| 0.027 7.5 2.456 1.375/1.081] 44.0 7.145 5.413|1.732] 24.2
Y8 1.681 1.944] 0.264 15.7 0.361 0.380[ 0.019 5.3 -0.238 0.369|0.607| 255.0 2.593 4.058(1.465[ 56.5
verage § ~ 0.279, 37.8 - 0.046 14.2 0.629 114.2 2.633] 316.8
et 10 M SD S K
1-23min|Desired Predicted|AAE (cm)|POE (%)||Desired|Predicted| AAE (cm)|POE (%)||Desired|Predicted| AAE |POE (%)||Desired|Predicted| AAE |POE (%)
Y1 losso| o931 oor1 | 83 | o266 | 0303 0037 | 139 [[ 0511 | 13660854 167.2 || 0.716 | 5.790/5.074 7086
E1 1.196 1.372] 0.176 14.7 0.378 0.346| 0.032 8.5 0.685 1.531]0.847( 123.7 || 0.453 9.821|9.368| 2068.8 ’
Y7 0.502 0.677| 0.175 34.9 0.359 0.348] 0.011 3.0 2.456 2.748|0.292| 11.9 7.145 13.993|6.848| 95.8 ’
Y8 1.681 2.384| 0.703 41.9 0.361 0.301| 0.060 16.7 -0.238 -0.736|0.498| 209.0 || 2.593 0.748(1.845| 71.1
Lk : 0281]  24.9 0.035] 105 0623 _127.9] 15784] 7361
Net 11 M SD s K ,
8-30min|Desired|Predicted|AAE (cm)|POE (%)||Desired|Predicted| AAE (cm)|POE (%)||Desired|Predicted| AAE [POE (%)|[Desired Predicted) AAE |POE (%)
AL 0.860 0.965| 0.105 12.3 0.266 0.303] 0.037 13.8 0.511 0.484|0.028| 5.4 0.716 -0.064|0.780] 108.9
E1 1.196 0.961] 0.235 19.7 0.378 0.318] 0.060 15.9 0.685 0.403{0.281 41.1 0.453 -0.536|0.989| 218.3 ;
Y7 0.502 0.962] 0.460 91.8 0.359 0.333| 0.026 7.3 2.456 0.702(1.754| 714 7.145 1.609|5.536| 77.5
Y8 1.681 2.084] 0.404 24.0 0.361 0.232| 0.129 35.7 -0.238 -0.587/0.349] 146.6 || 2.593 0.505/2.088| 80.5
yerage § 0.301]  36.9 0.063  18.2]| 0.603]  66.1 2348 1213
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Figure 6.4 Average POE of all statistics (M, SD, S and K) generated by Net 8-11 and Net 3.

POE=Percentage of error.




Figures 6.5a and 6.5b show two of the nine statistical inputs (M and SD) for all subjects
in the training data set. These graphs (Figure 6.5a and 6.5b) reveal that both M and SD
values are different across the five 2-minute blocks. Sometimes the variability between
the blocks is quite significant. For example, M for subject Y5 during the first four 2-
minute blocks is less than 0.67cm, whereas for the 28-30 minutes block it is 1.089cm.
Significant variations across blocks can also be seen for SD for subjects E2, E4, Y11

and Y17 (see figure 6.5b).

BPNs trained with different inputs whereas expecting same outputs would certainly lead
to different predictions during testing. This might be one of the reasons why 2-minute
MTC data from different blocks generated varying results. The results obtained so far
were generated from BPNs developed with 2-minutes data and indicated that 2-minutes
MTC data could not provide sufficient information to BPNs for predicting stabilized
MTC characteristics. It is necessary to obtain nine statistics from increased MTC data
length (e.g. from 5-, 10-, 15-minute MTC data) to develop BPNs. In the next section,

the results from BPNs developed with increased data length will be discussed.

110



195 ejep SUTuIen Sy} Ul 193fqns yoes 10J SIUdWTSS ejep D LN SINUTW-Z JUSIJJIP ¢ WOIJ paje[nofed N €5 9 aangdig




193 gjep SuTulen Ay Ul J03[qus yoes 10 sjuswrdas ejep DA ANUIL-Z JUSISHIP G WOy Paje[no[ed (S qs 9 3nSig




6.3 Effect of MTC Data Length on Prediction Accuracy

In this section, another nine BPNs were separately developed and tested with nine
statistics calculated from nine varying data segment lengths as inputs to predict the
stabilized statistics. Nine different data segment lengths were extracted from the 30-
minute gait trial, and they included the first 5, 10 and 20 gait trials, and the first 1-, 5-,
10-, 15-, 20- and 25- minute equivalent gait trials. These nine BPNs together with Net 3
are designed to give an indication if whether information collected from increased MTC
data segment lengths would improve the performance of the BPN. The average POE
and AAE results for 24 subjects are shown in Table 6.8. The details of prediction results
by BPNs developed with six groups of data are shown in Appendix II (see Tables 6.8a
to 6.81 and 6.5¢). The results show that both M and SD were better predicted by each
BPN (maximum average POEy=22.6% generated by Net 15 using 5-minute data,
maximum average POEsp=20.5% generated by Net 12 using 5 trials MTC data,),
whereas both S and K were poorly predicted by each BPN (minimum average
POEs=55.6% generated by Net 20 using 25-minute data, minimum average
POEx=148.2% generated by Net 18 using 15-minute data). These results indicate that
the nine statistical inputs calculated even from 25-minute data provided insufficient
information in predicting S and K. Nevertheless, trends of POE change for all statistics

indicate that increasing MTC data length certainly improves the performance of BPN.



Table 6.8 Testing results of 10 BPNs developed with the nine statistical inputs calculated from ten

different MTC data segment lengths. Average AAE and POE for 24 subjects are shown in this

table.
M SD S K
Average Average Average Average Average Average | Average | Average
AAE (cm) POE (%) AAE (cm) POE (%) AAE POE (%) AAE POE (%)
Net 12
Strials) 0.239 204 0.061 20.5 0.715 105.3 4.912 330.7
et 13
10trials) 0.247 21.3 0.060 20.2 0.813 126.3 5.205 408.3
Net 14
(20trials) 0.256 21.3 0.058 19.9 0.828 106.4 5.600 352.6
ANet 15
H(imin) 0.263 22.6 0.263 18.2 0.263 116.8 0.263 3304
MNet 3
M(2min) 0.240 22.0 0.042 14.6 0.550 84.0 4.062 304.1
WNet 16
5min) 0.222 19.7 0.039 13.7 0.549 89.1 4.062 274.5
et17
10min) 0.194 15.2 0.033 13.4 0.491 771 3.197 158.6
Net
18(15min) 0.203 16.3 0.030 10.7 0.486 79.2 3.077 148.2
et 19
‘H(20min) 0.192 15.3 0.018 6.5 0.416 62.3 2.776 154.5
HlNet 20
25min) | 0180 | 146 | 0018 | 65 | 0329 | 556 | 2789 | 1727
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6.3.1 Effect of MTC Data Length on M Prediction

POEw predicted by Net 3 and 12-16 are approximately 21% (Figure 6.6). There is a
clear trend showing that the prediction accuracy increased when the MTC data segment
length increased. The biggest improvement appeared with Net 17 developed with 10-
minute MTC data. After that there was little improvement in mean MTC prediction
accuracy between 10-minute data and 25-minute data. A notable point is that the
different BPNs generated the best average POEy for different groups of data. For
example, Net 17 (10-minute data) generated the best average POEy, for Group 1 data,
which was 3.0%. Net 19 (20-minute data) generated the best average POEy for Group 2
data, which was 6.8%. Figure 6.6 also shows that nine statistical inputs from at least 10-

minute MTC data improve the ability of the BPN to predict M.

POE,,
25.0
. M\’——O\.\,_
£ 15.0 —
100
S 50

Net 12 Net 13 Net 14 Net 15 Net 3 Net 16 Net 17 Net 18 Net 19 Net 20
(Strials)  (10trials) (20trials)  (1min) (2min) (5min) (10min)  (15min)  (20min)  (25min)

Length of Input Data

Figure 6.6 Average POE)y for 24 subjects generated by 10 BPNs based on data length varying from 5

trials to 25-minute
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The best POEy for all of the twenty-four subjects was generated by Net 20 (25-minute
data) with an average POEy of 14.6% (see Table 6.8). In fact, the overall POEy was
affected by some subjects’ high POEy values. Table 6.9 shows the number of subjects
under four POE scales. Net 20 using 25-minute data had 7 subjects’ POEy>20%,
especially subject E2 with POEy=56.6%. 17 subjects’ POEy were less than 15%, and
13 out of these 17 subjects’ POEy were less than 10%. In fact these 13 subjects’ POEy
were less than 6% (details in Table 6.8i in Appendix II). Although Net 17 using 10-
minute data had the same number of subjects in each POE scale, the prediction

accuracies were slightly lower i.e. POEy for the 13 subjects were just below 9%.

Table 6.9 Classification of subjects into four POEy, scales

POEy,

BPNs POE<=10%]10%<POE<=15%]15%<POE<=20%|POE>20%
INet12 (5trials) 7 6 4 7
INet13 (10 trials)] 11 1 2 10
INet14 (20trails)| 11 3 3 7
INet15 (1min) 8 4 1 11
INet3 (2min) 10 5 2 7
INet16 (5min) 11 2 3 8
INet17 (10min) 13 4 0 7
INet18 (15min) 12 4 1 7
INet19 (20min) 13 3 0 8
INet20 (25min) 13 4 0 7
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6.3.2 Effect of MTC Data Length on SD Prediction

Like M, there was a clear trend showing that the prediction accuracy of SD increased as
the MTC data increased (Figure 6.7). POEsp predicted by Net 12 (5trials), 13 (10 trials),
14 (20 trials) and 15 (1 min) slightly improved, nonetheless, the first significant
improvement was found for Net 3 (2-minute MTC data) where POEgp dropped down to
15.2%. A second significant improvement occurred with BPN developed between 10-

and 20-minute data. 20-minute data generated the best prediction for SD with an

average error of 6.5%.

% Error

Net 12 Net 13 Net 14 Net15  Net3(2min) Net16 Net 17 Net 18 Net 19 Net 20
(Strials)  (10trials)  (20trials)  (imin) (5min) (10min)  (15min)  (20min)  (25min)
Length of Input Data

Figure 6.7 Average POEgp, for 24 subjects generated by 10 BPNs based on data length varying from 5

trials to 25-minute.

Although Figure 6.7 displayed no significant change between average POEsp of 20-
minute data and 25-minute data (Net 20), actually, there were significant improvement
in prediction accuracy of individual subjects for 25-minute data. Table 6.10 shows the

number of subjects in 4 POE scales. Both 20— and 25-minute data had 22 subjects with
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POEsp<15%. But 20-minute data only had 18 subjects’ POEgp<10%, while 25-minute

data had 21 subjects’ POEgp less than 10%. This result confirms that increasing data

length improves the performance of BPN in predicting stabilized SD.

Table 6.10 Classification of subjects into four POEg, scales

POEsp

BPNs POE<=10%[10%<POE<=15%15%<POE<=20%|POE>20%
Net12 (5trials) 6 2 3 13
Net13 (10 trials)| 8 3 1 12
Net14 (20trails) 4 8 5 7
INet15 (1min) 6 6 3 9
INet3 (2min) 13 2 3 6
INet16 (5min) 13 4 2 5
INet17 (10min) 14 5 2 3
INet18 (15min) | 15 3 3 3
INet19 (20min) | 18 4 1 1
INet20 (25min) 21 1 0 2
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6.3.3 Effect of MTC Data Length on Predicting S and K

Neither skewness nor kurtosis was accurately predicted. However, there was a clear
trend to show that the prediction accuracy for S and K increased when the MTC data
segment length increased (see Figure 6.8 and 6.9). Figure 6.8 shows the average POE;g
of 24 subjects generated by 10 BPNs. Although the reducing trend of POEg was not as
clear as that of POEsgp, it did still indicate that the prediction accuracy of S improved
with increased input data. The best prediction for S was found with BPN developed
with 25-minute data (Net 20), which generated the POEs=55.6%. Results in Figure 6.8
also show that there were two major improvements in predictions. The first
improvement occurred at Net 3 when POEg dropped to 84%. There were no change
between Net 3 (2-minute data) and Net 18 (15-minute data). The second significant
improvement was found by Net 19 (20-minute data), which generated 62.3% error.

Although POEgreduced with data, the prediction accuracy was still poor.

POEs

140.0
120.0 =

= e
a SNe——

B0 \_g—

‘ 40.0
20.0

% Error

|

Net12 Net13 Net14 Net15 Net 3 Net16 Net17 Net18 Net19 Net?O
(trials) (10trials) (20trials) (1min)  (2min)  (5min) (10min) (15min) (20min) (25min)

l Length of Input Data

Figure 6.8 Average POE; for 24 subjects generated by 10 BPNs based on data length varying from 5

trials to 25-minute



Figure 6.9 shows the average POEk of 24 subjects generated by 10 BPNs. The POEg
results seemed to be the worst of the four statistics. The best prediction was generated
by Net 18 (15-minute data) with POEg = 148.2%. The prediction accuracy slightly
improved between Net 13 (10 trials) and Net 16 (5-minute data); POEg dropped from
408% to 274.5%. Significant improvement occurred by Net 17 (10-minute data) with a
POEx of 158.6%. Afterwards the prediction accuracy stayed fairly constant (~155%).
While the best prediction for K was found with Net 18 (POE,=148.2%), but these errors
are unacceptably high. The reason why POEs and POE were poorly predicted even by

25-minute data will be discussed in the next section (section 6.3.3.1).

POE,

‘ 500.0

400.0 -
300.0 = \\‘\-&

1
o
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| E ‘\0\
200.0
e e —*
100.0

Net12 Net13 Net14 Net15 Net 3 Net16 Net17 Net18 Net19 Net20
(5trials)  (10trials) (20trials) (1min) (2min) (6min)  (10min) (15min) (20min) (25min)

| Length of Input Data

e e Ce = 8 e ——

Figure 6.9 Average POEg for 24 subjects generated by 10 BPNs based on data length varying from 5

trials to 25-minute

120



6.3.3.1 Possible Reasons for Poor Prediction of S and K

The results in the previous sections show that the performance of BPNs can be
improved by increasing input MTC data. M and SD could be predicted with reasonable
accuracy but skewness and kurtosis could not be predicted accurately. Even BPN using
25-minute data poorly predicted S and K. As BPN learns by examples via mapping the
relationship between its inputs and outputs, whether the inputs could correctly represent
the characteristics or not is very important. In order to explain this, the variability of S

and K at different MTC data lengths for one subject (Y8) are presented in Table 6.9.

Net 20 using 25-minute data poorly predicted both S and K of subject Y8 with POEg
=103% and POEx=154.1% (see also Table 6.8 g in Appendix II). S and K at 30-minute
are the desired outputs whereas S and K calculated from other data segment were used
as inputs to develop BPNs. The data in Table 6.11 show that there are significant
differences between S and K as inputs and the desired S and K outputs. For example,
the AAEg between 25-minute data and 30-minute data is 0.707, and the corresponding
POEs is 300%. AAEx between 25-minute data and 30-minute is 2.254, and POE is
90%.

Table 6.11 S and K for subject Y8 calculated at different data point.

5TRIALS | 10TRIALS | 20TRIALS | 1 MIN | 2MIN | 5MIN | 10MIN | 15MIN [ 20MIN | 25MIN | 30MIN
S 0.923 -0.104 -0.168 0.101 | 0.238 | 0.385 | 0.203 | -0.815 | -0.914 | -0.945 | -0.238

0.471 0.030 -0.548 -0.379 | -0.430 | -0.131 | 0.063 | 3.766 | -0.113 | 0.339 | 2.593
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Figure 6.10 shows MTC for the subject Y8 during 30-minute gait trials. MTC data were
steady up to the first 913 gait trials (about 14-minute data). MTC then dropped by
0.6cm and did not recover to the first 14-minute’s data. Some extreme values appeared
after about 1673 gait trials (26™-minute data). These high values were responsible to
cause abrupt change in stabilized S and K, such as S=-0.945 at 25-minute, but S=
0.238 at 30-minute. Also during this time K increased from 0.339 to 2.593 (see table

6.9).

Cxtreme Jat

- -
< ==

~—
o
o N O

Number of G ait Trials

Figure 6.10 MTC data for subject Y8 during 30-minute gait trials

As stated earlier (see section 6.1.1.2), both S and K are very sensitive to extreme data.
These outliers not only change the magnitude of S and K, but also have the potential to
cause a change in the sign of S and K. The seemingly random variations in S and K

shown in table 6.11 highlight the difficulty in predicting long term S and K.

The other possible reason for the poor performance by BPN in predicting S and K might
be the limited sample size. BPN learns by examples. In this study, randomly selected 20
subjects’ data were used for training BPN and 4 subjects’ data were used for testing. It

might be that BPN did not learn sufficiently with those training samples. In other words,
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the characteristics of training data set might not be enough to cover the characteristics of

testing data set.

Net 20, developed with Group 5 data, performed better than other group’s data in
predicting the statistics (see also Table 6.8i in Appendix II). Table 6.12 shows testing
results of Net 20 developed with Group 5 data. POEs for each subject is quite accurate
with an average POEg=4.2%. Although K was poorly predicted, the average

POEx=82% was still better than other groups’ data (see Table 6.8i in Appendix II).

Table 6.12 Testing results of Net 20 developed with Group 5 data.

M SD S K

roup5 |nesired |Predicted|AAE(cm)|POE(%) |Desired |Predicted|ancm)|POE(%) |Desired |PredictedlanE  |POE(%) |Desired |Predictedlane  |PoEs)

Y12

1.405]11.348]0.057| 4.0 ]0.3680.334]0.033] 9.1 |0.928]0.912]0.016] 1.7 ] 1.701]5.725]4.024]236.6

13 0.989]0.955]0.033] 3.4 |0.277]0.279]0.002] 0.6 ]0.438]0.422]0.015] 3.5 ]0.899]0.264]0.635] 70.6
14 1.495]11.434]0.061| 4.1 ]0.197]0.253]0.057 | 28.8 | 1.120 ] 1.067 |0.053| 4.7 ]11.946]10.161]1.786] 14.9
15 1.011]0.892]0.119] 11.8 ] 0.265]0.287]0.021] 8.0 | 1.200]1.116]0.084] 7.0 |4.420]4.162]0.258] 5.8

Average 0.068] 5.8 0.028] 11.6 0.042] 4.2 1.676] 82.0

Table 6.12 also shows that both average POEy and POEgp are very low (5.8% and
11.6%). It appears that the training set data in Group 5 provided sufficient information
to cover the characteristics of testing data, as reflected by the good accuracy of

predictions.
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6.4  Effect of Additional Inputs on The Performance of BPN

In section 6.1.4, three possibilities that might affect the accuracy of predictions have
been discussed. The results from the first two issues have been discussed in section 6.2
and 6.3. In this section, the effects of additional information to BPN inputs will be

discussed.

6.4.1 Testing Results Using Fourteen Inputs (Nine Statistics + Five Cumulative

Means)

M and SD are the commonly used statistics in gait analysis, and in last section (section
6.3 Table 6.8), the BPNs with nine statistical inputs moderately predicted M
(POEM>14.6%). In this section, five cumulative M values were added to the inputs. The
aim was to investigate whether increased inputs would improve the performance of
BPN in predicting stabilized statistics. Net 21, 22 and 23 (Table 6.13), using fourteen
inputs (nine statistical inputs and five cumulative mean values), calculated from 5-, 10-

and 15-minute MTC data were developed to predict the stabilized four statistics.

Table 6.13 shows average results for four statistics for six groups. The details of the
testing results are shown in Appendix II (Tables 6.13a to 6.13c, Net 21 to 23). The
results show that the prediction accuracy of all statistics improved via increasing the
MTC data. But this was not the case with BPNs developed with nine statistical inputs
(see results from Net 16 to 18, Table 6.8). For example, POEy of Net 21, 22 and 23 (see
Table 6.13) using fourteen inputs calculated from 5-, 10- and 15-minute data were

19.4%, 14.2% and 12.4%, whereas POEy of Net 16, 17 and 18 (see Table 6.8 in section
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6.3) using nine inputs were respectively 19.7%, 15.2% and 16.3%. Fourteen inputs

calculated from 15-minute data seemed to provide better BPN in predicting M and SD.

Table 6.13 Testing results of 3 BPNs developed with the fourteen statistical inputs calculated from 3

different MTC data segment lengths.

MEAN SD SKEWNESS KURTOSIS
Net 21 (5min) | AAE (cm) | POE (%) | AAE (cm) | POE (%) AAE POE (% AAE POE (%)
Group 1 0.180 16.0 0.056 16.0 0.294 62.4 3.655 325.6
Group 2 0.146 15.0 0.023 15.0 0.347 52.2 1.297 135.6 '
Group 3 0.315 445 0.048 44 .5 0.567 127.2 1.468 791.6
Group 4 0.341 17.2 0.032 17.2 0.382 433 1.806 67.1
Group 5 0.146 12.0 0.032 12.0 0.638 64.8 5.328 109.1
Group 6 0.270 11.7 0.044 11.7 0.915 177.9 9.792 1334 |
Prerage 0233 194 0039 194 0524 880 3891 2604
ENet 22 (10min) | AAE (cm) | POE (%) | AAE (cm) | POE (%) AAE POE (%) AAE |POE (%)
| Group 1 0.044 4.4 0.059 16.7 0.216 53.5 1.948 178.0
Group 2 0.112 12.0 0.020 7.6 0.374 61.0 0.572 67.7
Group 3 0.202 28.7 0.026 8.3 0.735 151.0 2.234 531.7
Group 4 0.324 13.1 0.027 8.8 0.301 34.2 2.635 98.6
Group 5 0.187 14.3 0.053 23.8 0.353 36.4 2.459 84.0
Group 6 0.276 12.7 0.045 16.6 0.868 86.5 9.590 1229
Average | 0191 142 0038 136 0475 704 3240 1805
et 23 (15min) | AAE (cm) | POE (%) | AAE (cm) | POE (%) AAE POE (%)| AAE  |POE (%)
Group 1 0.105 10.3 0.039 10.9 0.240 38.1 1.435 122.8 |
Group 2 0.039 54 0.015 6.1 0.284 42.9 0.843 81.8
Group 3 0.155 21.7 0.015 4.7 0.588 118.0 1.876 346.8
Group 4 0.332 16.9 0.028 9.8 0.411 47.8 2.973 95.2
; Group 5 0.112 9.1 0.032 14.2 0.255 27.9 1.483 45.2
: Group 6 0.248 11.1 0.040 14.4 0.974 125.1 10.051 128.4
verage 0165 124 o028 t0oo 0459 66 3110 1367

Figure 6.11 shows a comparison of POE between nine inputs and fourteen inputs. It

shows that all BPNs using fourteen inputs had improved prediction accuracy for M and

S. But POEsp (19.4%) for Net 21 (fourteen inputs) was worse than that of Net 16

(13.7%) using nine inputs. Figure 6.10b shows that SD and K predicted by Net 22

(POEsp=13.6% and POEx=180.5%) using fourteen inputs were not as good as Net 17
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(POEsp=13.4% and POEx=158.6%) using nine inputs. In spite of this, the prediction
accuracy of four statistics generated by Net 23 (14 inputs from 15-minute data) was
better than those generated by Net 18 (9 inputs from 15-minute data). Each POE of Net
23 (14 inputs) was lower than that of Net 18 (9 inputs). These results indicate that five
added inputs improved predicting M and S, but did not improve the performances of all
the BPNs in predicting the SD and K. Performance of BPN using fourteen inputs was
also improved by increasing input data lengths. Both adding more input characteristics

and increasing input data length were found to improve the performance of BPN.
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Figure 6.11 POE comparison between BPNs using nine inputs and BPNs using fourteen
inputs. Nets 16-18 used nine inputs. Nets 21-23 used fourteen inputs. a)=5-

minute data, b)=10-minute data and c)=15-minute data.



6.4.2 Effect of High S and K in Input Data on Prediction Accuracy: A Case Study

In pervious tests, the POEy, for subject E2 generated by most BPNs (Net 3 and Net 13
to 23) was very high (47.7%-180.3%). Net 23 using 14 inputs calculated from 15-
minute data seemed to generate the best prediction for M with POEy =47.7%. But this
prediction is still very poor compared with other results. In order to explore this, the
inputs and desired outputs for Net 23 are shown in Table 6.14. It was found that the all
subjects (highlighted with red colour in Table 6.14) with high S and K in the input
variables had poor predictions for M (POEp>19%), except Y14 with POEy=6.7%. But
Y14 had a very high POEgp (44%). It appears that high S and K might be responsible
for bad prediction accuracy. To verify this, additional two BPNs were developed using
El, E2 and ES5 subjects’ data. Figure 6.12 shows the cumulative M for subjects E1, E2
and ES. It shows that the trends of cumulative mean (CM) for these three subjects are

very similar. E1 and E5 had low S and K, but E2 had high S and K,

El and ES were assigned to the training set, whereas E3 was assigned to the testing set.
Net Al was developed with fourteen inputs adapted from the inputs of Net 23. Net A2
was developed with twelve inputs (all inputs of Net A1 except S and K). The outputs for

these two BPNs were the same four stabilized statistics.
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Figure 6.12 The cumulative mean (CM) of subjects E1, E2 and ES showing similar trends

The training strategy adopted and which led to repeatable results was mainly the same
as described before (see section 5.4.5.1). But learning iterations were set to 1000, and

test interval was set to 4 to prevent over training Al and A2.

Table 6.15 shows the AAE and POE of all four statistics for the three BPNs (Al, A2
and Net 23). The results in Table 6.15 show that POEy of net A2 (6.1%) was
significantly lower that that of net A1 (63.1%). More details of these testing results for

Al and A2 are shown in Table 6.15a in Appendix II.



Table 6.15 Testing results of subject E2 by Nets Al, A2 and 23. AAE=Absolute Actual Error;

POE=Percentage of Error.

M SD S K |
AAE (cm) | POE (%) | AAE (cm) [POE (%)| AAE | POE (%) |AAE |POE (%)
1 0415 | 63.1 0054 | 136 | 2057 | 733 | 11862 | 942 |
0.040 6.1 0.081 205 | 1448 | 516 | 8346 | 662
Net 23 0314 | 477 | 0009 [ 23 | 0547 | 195 | 2870 | 2238

In fact, most (M, S & K) of A2 predictions were better than those of Al. These results
suggest that high S and K found in subject E2’s data might have affected its M
prediction accuracy. Table 6.15 also shows that SD, S and K predictions for subject E2
via Net 23 were better than those generated by Al and A2. These results also highlight
the importance of the training sample size. Net 23 was trained with 20 subjects’ data,
whereas nets A1 & A2 were trained using only 2 subjects. Therefore, Nets Al and A2

might have limited generalization ability.

In this section, five new BPNs were developed to investigate the effect of additional
input variables on the performance of BPNs. The results demonstrate that selecting
input variables are very important in the performance of BPN. Some inputs (e.g. five
added inputs) were able to improve the performance of BPN (Net 23) in predicting
stabilized variables (specially M). On the contrary, some inputs misled the BPN in
predicting some stabilized variables (e.g. high skewness and kurtosis reduced the
predicting ability of Al in predicting M). The most important observation is that the
different stabilized variables were sensitive to different input variables. Discretely
selecting input variables is very important for the performance of BPN. The current
results suggest that 15-minute MTC data provide reasonable accuracy in predicting the

stabilized M and SD.
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The BPNs developed in previous sections predicted four statistics at the same time. As
the different stabilized variables were sensitive to different input variables, thus the

following section focused on investigating the performance of BPN in separately

predicting stabilized statistics.

132



6.5 Separately Predicting the Four Stabilized Statistics

Prediction results of separately predicting stabilized statistics using 2-minute input data
are shown in Table 6.16. Details of testing results of Nets 24, 25, 26 and 27 are shown
in Table 6.16a in Appendix II. Table 6.16 shows average AAE and POE results of all
groups. Average POEy generated by Net 24 was 17.6%, which is considerably better
than that generated by Net 3 (22.0%), which predicted four stabilized statistics at the
same time. POEsp (14.3%) generated by Net 25 did not change much compared to Net 3
(14.6%). Kurtosis seemed to have the biggest improvement with POEx of 304.1%
generated by Net 3 dropped down to 265.4% generated by Net 27 whereas prediction

accuracy of skewness slightly decreased (84% compared to 86.9%).

Table 6.16 Testing results of Nets 24, 25, 26 and 27 (2-minute inputs) predicting outputs separately

INET 25

I nNET 27

NET 24 M SD |l NET 26 S K
Average | Average | Average | Average | Average | Average; Average |Average
AAE (cm) | POE (%)! AAE (cm) | POE (%)! AAE |POE (%) AAE  |POE (%)
JGroup 1] 0.137 10.1 WGroup1 | 0.059 16.9 f Group1 | 0.256 | 40.7 WGroup1 | 1.461 2154
Group 2| 0.143 13.4 #Group2 | 0.028 105 WGroup2 | 0.327 | 46.1 MGroup 2 1.720 180.9
Yoroup3| 0203 | 409 Borowps| 0054 | 151 foroups | osse | 126.2 Group3 | 1.003 | 908.0
[ Group 4] 0.431 25.0 WGroup 4 0.025 10.5 HGroup4 | 0.639 71.9 QNGroup 4 3.546 80.8 |
MGroup 5| 0156 13.4 A Group5 | 0.034 14.9 HGroup5 | 0.581 62.0 MGroup 5 5.055 115
#Group 6] 0.066 3.1 Group 6 | 0.049 17.9 WGroup6 | 1.064 | 174.8 Group 6 | 9.584 95.8
Average]  0.204]  17.6fJAverage 0.042  14.3QAverage ] 0.575 86.9QAverage 3.728] 2654

Table 6.17 shows average results of all the groups for 15-minute input data. The details
of testing results of Nets 28-31 are shown in Table 6.17a in Appendix II. Average
POEy generated by Net 28 was 10.6%, which is 20% better than that generated by Net
23 (12.4%), which predicted four stabilized statistics at the same time. POEsp (9.4%)
generated by Net 29 did not change much compared to Net 23 (10%). POEs stayed

around 66% generated by both BPNs (Net 30 and 23). Kurtosis seemed to have
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significant improvement with POEx of 136.7% generated by Net 23 dropped down to

117.3% generated by Net 31.

Table 6.17 Testing results by Nets 28, 29, 30 and 31 (15-minute input).

NET 28 M NET 29 SD WNET 30 S #l NET 31 K

Average |Average! Average Average% Average |Average Average |Average!
AAE (cm)|POE (%) AAE (cm)|POE (%) AAE POE (%) AAE  [POE (%)
! f

WGroup 1] 0.104 7.6  MGroup 1] 0.039 11.1 lGroup1 0.220 38.8 fiGroup 1 1.379 79.7 |

Group2| 0.050 | 65 roup2] 0017 | 66 W}Group2| 0.254 349 Nerow2 | 0616 | 574

Group 3] 0.142 20.6 MGroup 3] 0.014 4.3 HWGroup 3 0.573 118.3 HGroup 3 1.963 309.1 ;

JGrour 4] 0296 | 140 HGroup4| 0026 | 89 fGroup4| 0.348 405 Mcroup4 | 2378 | 842

fGroup 5] 0.111 86 Mcroups] 0.029 | 123 Weroups| 0.241 273 Merowps | 1212 | 447

§

Group6] 0126 | 6.3 MGroupe| 0036 | 133 flcroups] 0.842 132.9 Moroup6 | 9.608 | 1285 |

verage] _0.138] _ 10.6fAverage]  0.027)  9.4ffAveragel 0413 655fAverage ) 2850 1173

Using separate BPNs to predict four statistics generated improved results compared to
using one BPN to predict them at the same time. Architecture of a typical BPN is shown
in Figure 6.13 to explain this. The back-propagation learning algorithm involves a
forward-propagating step followed by a back-propagating step. Figure 6.13 illustrates
the back propagating step. & values are calculated for all processing units and weight
changes are calculated for all interconnections. The calculations begin at the output
layer and progress backward through the network to the input layer. Each PE in the
output layer produces a single real number for its output, which is compared to the
target output specified in the training set (see Figure 6.13a), based on this difference, an
error value is calculated for each PE in the output layer as shown in Figure 6.13b. Then
connection weights are adjusted for all the interconnections that go into the output layer.
Next an error value is calculated for each of the PEs in the hidden layer that is just
below the output layer (Figure 6.13c). Then the weights are adjusted for all

interconnections that go into the hidden layer.
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Figure 6.13 Basic back-propagation dynamics. (a) After forward propagation, the target pattern is
compared to the output pattern. (b) § values are calculated for the output layer. Arrows represent flow of
information. After § values are calculated for the output layer, its incoming weights are adjusted. (c) &
values are calculated for the hidden layer. Heavy lines indicate that § values are communicated from the
output layer to the hidden layer. After § values are calculated for the hidden layer, its incoming weights

are adjusted (adapted from Dayhoff, 1991).

The process is continued until the last layer of weights has been adjusted. The
connection weight adjustment between a PE (i) at input layer and a PE (j) at the middle

hidden layer is carried out as follow:
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Wji=C ] *5} *a;
where,

wj s the adjusted weight. §; is error value of PE (j) at hidden layer. C; is learning rate.
a; is activation level of PE (i) at input layer. This equation indicates that the amount of
adjustment depends on three factors: Cj, & and a; This weight adjustment equation
indicates that the adjustment of weight between PEs at input layer and PEs at the middle
hidden layer is related to §; §; is calculated based on all PEs at output layer. Hence, the

adjustment of connection weight between PEs is related to all PEs at the output layer.

For that reason, adjusted incoming weights of PEs in the middle hidden layer would be
different between a BPN developed with four PE in the output layer and a BPN
developed with one PE in the output layer. BPN with single output would have
dedicated connection weights relating to the inputs and the output and are expected to
provide better results. This has been reflected in better prediction results by Nets 28, 29,
30 and 31 compared to Net 23. Although Nets 24-27 (2-minute inputs, single output)
were developed to separately predict the stabilized statistics, the results were not as
good as the results generated by Net 23 (15-minute data & four outputs). It indicates
that 2-minute data were not the best inputs. Nets 28-31 using 15-minute MTC data
generated much improved predictions. S and K errors were still not satisfactory which
indicates that further study needs to be carried out to find the best inputs for predicting

stabilized S and K.
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CHAPTER SEVEN

CONCLUSION AND FURTHER STUDY

Pl

Tripping is a commonly reported cause of falls. Minimum toe clearance plays a major
role in quantifying the probability of tripping. Best, Begg and James (1999) used a
Gaussian curve to model a histogram of a group of MTC data from a subject with
skewness modelled by transforming MTC to a power of 0.21 (MTC®?"), Z-score was
calculated. Then the probability of tripping is obtained by calculating the relative of
Gaussian curve from the Z-score. Such as for MTC=1, PT=47% means that the subject
hitting a 1.0cm unseen obstacle is a chance of 47%. It needs a large amount of
minimum toe clearance data to work out the probability of tripping via obtaining the
relative area of the Gaussian curve from a z-score. To obtain such amount of MTC data
one would need to spend a lot of time digitising markers and calculating parameters.
Furthermore, subjects, in certain population (e.g. children and frail elderly), are not able
to walk on a treadmill for 30 minutes to generate such amount of MTC data. It is
important to devise the innovative ANN model for predicting stabilized gait parameters

from relatively fewer gait trials.

The results of this research highlight that both neural networks and multiple linear
regression models showed good accuracy to predict stabilized M and SD, but performed
poorly for S and K. A BPN developed with nine statistical inputs derived from 2-minute

data generated better prediction for M (POEw=14.2%), SD (POEsp=15.2%) and S
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(POEs=150%) than the multiple linear regression models (POEp=19%, POEsp=18.3%

and POEs=28.9%).

ANN is very sensitive to its inputs. Proper pre-processed inputs would significantly
improve the performance of BPNs. By comparing the performances of seven BPNs
developed with seven different combinations of inputs (e.g. FFT coefficients, real data
and statistical inputs), it was found that FFT coefficients provided insufficient
information to BPNs in predicting the specific MTC values (e.g. M). Any BPN that
included FFT coefficients performed relatively poorly. Nine statistics were found to
better represent the feature of input MTC data compared to other pre-processing

techniques (e.g. FFT coefficients and real data).

Furthermore, nine statistical inputs calculated from 2-minute data, which was derived
from five different parts of 30-minute data segment, provided different predictions for
the BPNs. It indicated that information obtained from 2-minute data length might not be
enough to successfully develop BPN for predicting the stabilized statistics.

By comparing the performances of 10 BPNs developed with inputs derived from 10
different MTC data segment lengths, it was concluded that the performance of BPN
could be improved via increasing the MTC data segment lengths. M and SD were

accurately predicted with , but skewness and kurtosis predictions were not.

Following on from above results, additional input variables were tested. Three BPNs
developed with 14 inputs derived from 3 different MTC data segment lengths (5-, 10-,
15-minute) showed that they had better predictions than BPNs developed with 9 inputs.

15-minute MTC data seemed to be the minimum number of gait trials that should be
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used to develop BPN for better predictions. Furthermore, extreme S and K values in
inputs were found to affect the performance of BPN in accurately predicting some
variables (e.g. M). Sample size is also very important for the performance of BPNs. The

larger the sample size, the better the performance of BPNs.

The results of this research also confirmed that BPNs are able to predict stabilized
statistics better if developed to predict them separately compared to predicting four

statistics at the same time.

One limitation of this study was the limited sample size (24 subjects), because of the
nature of the project and time intensive data collection and digitisation procedures.
Currently, 30-minute data are required to estimate tripping risks in individuals. This
research has demonstrated that even with 24 subjects’ data the length of data collection
and digitisation can be reduced significantly with the help of neural networks. Future
studies may focus on increased sample size to investigate the performance of neural
networks. Furthermore, the subjects involved in this study were all healthy adults.
Different population groups (e.g. elderly fallers, children and amputee etc.) may also be
included in the further studies to examine data prediction accuracy of the networks in

these important population groups.

The other limitation of this research was that the sensitivity of the gait measures to large
unpredictable disturbances to lower limb trajectory due to distraction, which directly
change the magnitude of minimum toe clearance, was hardly to be modelled based on
information provided to BPN. This is because the individual sensitivity of the gait

measures due to distraction is unpredictable and not logical. Further studies are needed
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to train/test ANNs with information related to the sensitivity of gait measure due to

distraction.

This research focused on using single hidden layer networks for predicting stabilized
statistics. Further studies may concentrate on developing multiple hidden layers and
investigate their performance. Different pre-processing of input data was found to affect
the performance of BPNs significantly. Further pre-processing of input data to improve
S and K predictions will be important and useful, e.g., including more input

characteristics.

The potential of BPNs to be applied for predicting some stabilized gait parameters has
been highlighted in this research. Future study may be useful to use neural networks to
predict complex gait parameters from simpler gait parameters. For instance, using force

platform outputs to predict body centre of mass excursions and velocities.
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